Use of Oxidative Stress Responses to Determine the Efficacy of Inactivation Treatments on Cryptosporidium Oocysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parasites
2.2. Experimental Setup
2.2.1. Identification of Inducible Target Genes Using RNA-Seq and DEG Analysis
Induction of Upregulation of Gene Expression
RNA Extraction and Quality Assessment for RNA-Seq
RNA Sequencing (RNA-Seq)
2.2.2. RT-qPCR Method Development
Target Genes and Primers
RNA Extraction for the RT-qPCR Method
Reverse Transcription Quantitative PCR (RT-qPCR)
2.2.3. Evaluation of the RT-qPCR Method
2.2.3.1. Inactivation of Cryptosporidium Oocysts
2.2.3.2. Distinguishing between Viable and Inactivated Oocysts Using the New RT-qPCR Method
2.3. Statistical Analysis
2.3.1. Data Pre-Processing and Mapping
2.3.2. Differential Gene Expression Analysis
3. Results
3.1. RNA-Seq Analysis
3.2. RT-qPCR Method Development
3.3. Evaluation of the RT-qPCR Method
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerba, C.P. Environmentally transmitted pathogens. Environ. Microbiol. 2015, 509–550. [Google Scholar] [CrossRef]
- Craighead, S.; Huang, R.; Chen, H.; Kniel, K.E. The Use of Pulsed Light to Inactivate Cryptosporidium parvum Oocysts on High-Risk Commodities (Cilantro, Mesclun Lettuce, Spinach, and Tomatoes). Food Control 2021, 126, 107965. [Google Scholar] [CrossRef]
- Gérard, C.; Franssen, F.; La Carbona, S.; Monteiro, S.; Cozma-Petruţ, A.; Utaaker, K.S.; Režek Jambrak, A.; Rowan, N.; Rodríguez-Lazaro, D.; Nasser, A.; et al. Inactivation of parasite transmission stages: Efficacy of treatments on foods of non-animal origin. Trends Food Sci. Technol. 2019, 91, 12–23. [Google Scholar] [CrossRef]
- Gibson, K.E.; Almeida, G.; Jones, S.L.; Wright, K.; Lee, J.A. Inactivation of bacteria on fresh produce by batch wash ozone sanitation. Food Control 2019, 106, 106747. [Google Scholar] [CrossRef]
- Pan, H.A.O.; Buenconsejo, M.; Reineke, K.F.; Shieh, Y.C. Effect of process temperature on virus inactivation during high hydrostatic pressure processing of contaminated fruit puree and juice. J. Food Prot. 2016, 79, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- Fayer, R.; Morgan, U.; Upton, S.J. Epidemiology of Cryptosporidium: Transmission, detection and identification. Int. J. Parasitol. 2000, 30, 1305–1322. [Google Scholar] [CrossRef]
- Bouzid, M.; Hunter, P.R.; Chalmers, R.M.; Tyler, K.M. Cryptosporidium pathogenicity and virulence. Clin. Microbiol. Rev. 2013, 26, 115–134. [Google Scholar] [CrossRef] [Green Version]
- Gharpure, R.; Perez, A.; Miller, A.D.; Wikswo, M.E.; Silver, R.; Hlavsa, M.C. Cryptosporidiosis Outbreaks—United States, 2009–2017. Morb. Mortal. Wkly. Rep. 2019, 68, 568–572. [Google Scholar] [CrossRef] [Green Version]
- Ethelberg, S.; Lisby, M.; Vestergaard, L.S.; Enemark, H.L.; Olsen, K.E.P.; Stensvold, C.R.; Nielsen, H.V.; Porsbo, L.J.; Plesner, A.M.; MØLbak, K. A foodborne outbreak of Cryptosporidium hominis infection. Epidemiol. Infect. 2009, 137, 348–356. [Google Scholar] [CrossRef] [Green Version]
- Pönka, A.; Kotilainen, H.; Rimhanen-Finne, R.; Hokkanen, P.; Hänninen, M.L.; Kaarna, A.; Meri, T.; Kuusi, M. A foodborne outbreak due to Cryptosporidium parvum in Helsinki, November 2008. Eurosurveillance 2009, 14, 19269. [Google Scholar] [CrossRef] [Green Version]
- Rousseau, A.; Carbona, S.L.; Dumètre, A.; Robertson, L.J.; Gargala, G.; Escotte-Binet, S.; Favennec, L.; Villena, I.; Gérard, C.; Aubert, D. Methods to assess viability and infectivity of Giardia duodenalis cysts, and Cryptosporidium spp., and Toxoplasma gondii oocysts: A review of the status. Parasite 2018, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, J.L.; Arrowood, M.J. Cell Culture Infectivity to Assess Chlorine Disinfection of Cryptosporidium Oocysts in Water. In Cryptosporidium: Methods and Protocols; Mead, J.R., Arrowood, M.J., Eds.; Springer: New York, NY, USA, 2020; pp. 283–302. [Google Scholar] [CrossRef]
- Murphy, J.L.; Arrowood, M.J.; Lu, X.; Hlavsa, M.C.; Beach, M.J.; Hill, V.R. Effect of cyanuric acid on the inactivation of Cryptosporidium parvum under hyperchlorination conditions. Environ. Sci. Technol. 2015, 49, 7348–7355. [Google Scholar] [CrossRef]
- Shin, G.A.; Linden, K.G.; Arrowood, M.J.; Sobsey, M.D. Low-pressure UV inactivation and DNA repair potential of Cryptosporidium parvum oocysts. Appl. Environ. Microbiol. 2001, 67, 3029–3032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmer, J.L.; Slawson, R.M.; Huck, P.M. Inactivation and potential repair of Cryptosporidium parvum following low- and medium-pressure ultraviolet irradiation. Water Res. 2003, 37, 3517–3523. [Google Scholar] [CrossRef]
- Morita, S.; Namikoshi, A.; Hirata, T.; Oguma, K.; Katayama, H.; Ohgaki, S.; Motoyama, N.; Fujiwara, M. Efficacy of UV irradiation in inactivating Cryptosporidium parvum oocysts. Appl. Environ. Microbiol. 2002, 68, 5387–5393. [Google Scholar] [CrossRef] [Green Version]
- Yanta, C.A.; Bessonov, K.; Robinson, G.; Troell, K.; Guy, R.A. CryptoGenotyper: A new bioinformatics tool for rapid Cryptosporidium identification. Food Waterborne Parasitol. 2021, 23, e00115. [Google Scholar] [CrossRef]
- UKWIR. Cryptosporidium: Enhancing the Water Industry’s Capability to Respond; Report Ref. No. 20/DW/06/22; UKWIR Limited: Westminster, UK; London, UK, 2020. [Google Scholar]
- Fayer, R.; Nerad, T. Effects of low temperatures on viability of Cryptosporidium parvum oocysts. Appl. Environ. Microbiol. 1996, 62, 1431–1433. [Google Scholar] [CrossRef] [Green Version]
- Travaillé, E.; La Carbona, S.; Gargala, G.; Aubert, D.; Guyot, K.; Dumètre, A.; Villena, I.; Houssin, M. Development of a qRT-PCR method to assess the viability of Giardia intestinalis cysts, Cryptosporidium spp. and Toxoplasma gondii oocysts. Food Control 2016, 59, 359–365. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2013, 30, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, N.; Jamil, R. Biochemistry, Xanthine Oxidase. Available online: https://www.ncbi.nlm.nih.gov/books/NBK545245/ (accessed on 12 March 2021).
- Lippuner, C.; Ramakrishnan, C.; Basso, W.U.; Schmid, M.W.; Okoniewski, M.; Smith, N.C.; Hässig, M.; Deplazes, P.; Hehl, A.B. RNA-Seq analysis during the life cycle of Cryptosporidium parvum reveals significant differential gene expression between proliferating stages in the intestine and infectious sporozoites. Int. J. Parasitol. 2018, 48, 413–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matos, L.V.S.; McEvoy, J.; Tzipori, S.; Bresciani, K.D.S.; Widmer, G. The transcriptome of Cryptosporidium oocysts and intracellular stages. Sci. Rep. 2019, 9, 7856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tandel, J.; English, E.D.; Sateriale, A.; Gullicksrud, J.A.; Beiting, D.P.; Sullivan, M.C.; Pinkston, B.; Striepen, B. Life cycle progression and sexual development of the apicomplexan parasite Cryptosporidium parvum. Nat. Microbiol. 2019, 4, 2226–2236. [Google Scholar] [CrossRef] [Green Version]
- Templeton, T.J.; Lancto, C.A.; Vigdorovich, V.; Liu, C.; London, N.R.; Hadsall, K.Z.; Abrahamsen, M.S. The Cryptosporidium oocyst wall protein is a member of a multigene family and has a homolog in Toxoplasma. Infect. Immun. 2004, 72, 980–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishinaka, Y.; Masutani, H.; Nakamura, H.; Yodoi, J. Regulatory roles of thioredoxin in oxidative stress-induced cellular responses. Redox Rep. 2001, 6, 289–295. [Google Scholar] [CrossRef]
- Bajszár, G.; Dekonenko, A. Stress-induced Hsp70 Gene expression and inactivation of Cryptosporidium parvum oocysts by chlorine-based oxidants. Appl. Environ. Microbiol. 2010, 76, 1732. [Google Scholar] [CrossRef] [Green Version]
- Garcés-Sanchez, G.; Wilderer, P.A.; Horn, H.; Munch, J.-C.; Lebuhn, M. Assessment of the viability of Cryptosporidium parvum oocysts with the induction ratio of hsp70 mRNA production in manure. J. Microbiol. Methods 2013, 94, 280–289. [Google Scholar] [CrossRef]
- Lee, S.-U.; Joung, M.; Ahn, M.-H.; Huh, S.; Song, H.; Park, W.-Y.; Yu, J.-R. CP2 gene as a useful viability marker for Cryptosporidium parvum. Parasitol. Res. 2008, 102, 381–387. [Google Scholar] [CrossRef]
- Chambers, C.D. Development and application of a molecular viability assay for Cryptosporidium parvum based on heat shock protein 70 gene expression: A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Microbiology at Massey University. Ph.D. Thesis, Massey University, Auckland, New Zealand, 2005. [Google Scholar]
- Widmer, G.; Orbacz, E.A.; Tzipori, S. Beta-tubulin mRNA as a marker of Cryptosporidium parvum oocyst viability. Appl. Environ. Microbiol. 1999, 65, 1584–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauret, C.P.; Radziminski, C.Z.; Lepuil, M.; Creason, R.; Andrews, R.C. Chlorine dioxide inactivation of Cryptosporidium parvum oocysts and bacterial spore indicators. Appl. Environ. Microbiol. 2001, 67, 2993–3001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korich, D.G.; Mead, J.R.; Madore, M.S.; Sinclair, N.A.; Sterling, C.R. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability. Appl. Environ. Microbiol. 1990, 56, 1423–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatment | Brief Description |
---|---|
1 M MSB | 200 µL of oocysts (ca. 10 million) were mixed with 500 µL of 1 M MSB, vortexed, then held at room temperature for 4 h. The suspension was then washed 3 times with water before total RNA extraction |
0.1 M MSB | 200 µL of oocysts (ca. 10 million) were mixed with 500 µL of 0.1 M MSB, vortexed, then held at room temperature for 4 h. The suspension was then washed 3 times with water before total RNA extraction |
Xanthine oxidase and hypoxanthine | 200 µL of oocysts (ca. 10 million) were vortexed and 50 µL of xanthine oxidase (20 U/mL) added to the suspension. The suspension was brought up to 500 µL with PBS (pH 8.5) and incubated at 37 °C for 10 min. Thereafter, 500 µL of 0.5 mM hypoxanthine was added to the mixture, briefly vortexed and further incubated at 37 °C for 30 min with the lids open. The sample was then washed 3 times with water before total RNA extraction. |
Heat shock | 200 µL of oocysts (ca. 10 million) were incubated at 37 °C for 20 min. The sample was then washed 3 times with water before total RNA extraction. |
Heat shock | 200 µL of oocysts (ca. 10 million) were incubated at 45 °C for 20 min. The sample was then washed 3 times with water before total RNA extraction. |
Control | 200 µL of oocysts (ca. 10 million) stored at refrigeration temperature were washed five times with water before total RNA extraction. |
Target Gene | Forward Primer (5′ → 3′) | Reverse Primer (5′ → 3′) | Probe (5′ → 3′) | Product Size (bp) | Locus Tag (Ref.) |
---|---|---|---|---|---|
COWP7 | CTATGGGATTCAATTTCGAAGTTCC | CCCAATACAAAATCTGCTACTTCCA | ATGGAATATCATCATCCCCTCAGCAA | 97 | cgd4_500 |
Thioredoxin | GAAAAGCTGAACCTCGCATTCG | CGTCCCGTGGTCAATGCAATAA | NA | 134 | cgd7_4080 |
Prohibitin | CCTTTTAGGTGCAATCGGAACA | CATGGGAGGAAGAAGTGGGTAC | NA | 141 | cgd7_4240 |
MDH | TCCTCTAGATGCGATGGTTTACTAC | CCACCTACAACAATGGCTGATACA | NA | 162 | cgd7_470 |
UGDH | CCTCCAACATTATCAGCTTTTTGAG | TGCATTTTAGAGTGAACCGCTT | NA | 141 | cgd8_920 |
HSP70 | AGCCCGTATGAGTACAGAAGACT | GCCTGTGCCAAGAACCCTAAGA | NA | 168 | cgd4_3270 |
18S rRNA | JF1: AAGCTCGTAGTTggatTTCTGJF2: AAGCTCGTAGTTaatcTTCTG | JR: TAAGGTGCTGAAGGAGTAAGG | JT2: TCAGATACCGTCGTAGTCT | 434 | [18] |
Target Gene | Test Samples (Cq) a | Control Samples (Cq) | Log2FC b | |||||
---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | Mean | C1 | C2 | Mean | ||
COWP7 | 28.7 | 28.9 | 28.3 | 28.6 | 34.6 | 35.1 | 34.8 | 6.34 |
Thioredoxin | 23.4 | 23.5 | 23.2 | 23.3 | 27.3 | 27.3 | 27.3 | 4.08 |
UGDH | 25.1 | 25.2 | 25.1 | 25.1 | 29.6 | 29.4 | 29.5 | 4.49 |
MDH | 22.7 | 22.6 | 22.6 | 22.6 | 26.5 | 26.7 | 26.6 | 4.11 |
HSP70 | 24.6 | 24.0 | 24.5 | 24.3 | 28.9 | 28.6 | 28.7 | 4.54 |
Prohibitin | 26.0 | 25.8 | 25.9 | 25.9 | 30.0 | 30.1 | 30.0 | 4.28 |
Sample Preparation | Induction Treatment Group | ||||
---|---|---|---|---|---|
Viable (%) | Inactivated (%) | Control Cq Value | Oxidative Stress Cq Value | ΔCq | |
Sample 1 | 100 | 0 | 29.9 | 25.6 | 4.3 |
100 | 0 | 30.0 | 25.8 | 4.2 | |
Sample 2 | 10 | 90 | 34.9 | 29.6 | 5.3 |
10 | 90 | 33.6 | 28.6 | 5 | |
Sample 3 | 1 | 99 | No Cq | 32.0 | NA |
1 | 99 | 36.4 | 31.5 | 4.9 | |
Sample 4 | 0 | 100 | No Cq | No Ct | NA |
0 | 100 | 35.9 | 36.0 | −0.1 |
Treatment Condition | Cq Value COWP7 | Cq Value Thioredoxin | |||
---|---|---|---|---|---|
No Oxidative Stress | Oxidative Stress | No Oxidative Stress | Oxidative Stress | ||
−20 °C for 2 h | Replicate 1 | 34.1 | 28.4 | 26.9 | 24.6 |
Replicate 2 | 34.3 | 28.5 | 26.7 | 23.6 | |
Replicate 3 | 33.7 | 28.4 | 26.9 | 23.9 | |
Mean Cq ± SD | 34 ± 0.3 | 28.5 ± 0.1 | 26.8 ± 0.1 | 24.0 ± 0.5 | |
−20 °C for 24 h | Replicate 1 | 33.7 | 35.3 | 30.2 | 30.2 |
Replicate 2 | 33.9 | 34.7 | 30.4 | 30.0 | |
Replicate 3 | 33.6 | 33.7 | 30.2 | 29.1 | |
Mean Cq ± SD | 33.7 ± 0.2 | 34.6 ± 0.8 | 30.2 ± 0.1 | 29.7 ± 0.6 | |
−20 °C for 48 h | Replicate 1 | 36.6 | 37.8 | 30.7 | 30.8 |
Replicate 2 | 37.9 | 37.6 | 30.7 | 32.8 | |
Replicate 3 | 35.1 | 36.4 | 29.9 | 31.2 | |
Mean Cq ± SD | 36.5 ± 1.4 | 37.3 ± 0.7 | 30.4 ± 0.5 | 31.6 ± 1.1 | |
60 °C for 2 min | Replicate 1 | 37.8 | 36.7 | 31.8 | 30.8 |
Replicate 2 | 37.7 | 35.1 | 32.9 | 31.0 | |
Replicate 3 | No Cq | 35.7 | 31.7 | 30.8 | |
Mean Cq ± SD | 37.8 ± 0.1 | 35.8 ± 0.8 | 32.1 ± 0.7 | 30.9 ± 0.1 | |
80 °C for 3 min | Replicate 1 | No Cq | No Cq | No Cq | No Cq |
Replicate 2 | No Cq | No Cq | 35.9 | 36.0 | |
Mean Cq ± SD | NA | NA | NA | NA | |
Control a | Replicate 1 | 34.6 | 28.7 | 27.3 | 23.4 |
Replicate 2 | 35.1 | 28.9 | 27.3 | 23.5 | |
Replicate 3 | ND | 28.3 | ND | 23.2 | |
Mean Cq ± SD | 34.9 ± 0.4 | 28.6 ± 0.3 | 27.3 | 23.4 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temesgen, T.T.; Tysnes, K.R.; Robertson, L.J. Use of Oxidative Stress Responses to Determine the Efficacy of Inactivation Treatments on Cryptosporidium Oocysts. Microorganisms 2021, 9, 1463. https://doi.org/10.3390/microorganisms9071463
Temesgen TT, Tysnes KR, Robertson LJ. Use of Oxidative Stress Responses to Determine the Efficacy of Inactivation Treatments on Cryptosporidium Oocysts. Microorganisms. 2021; 9(7):1463. https://doi.org/10.3390/microorganisms9071463
Chicago/Turabian StyleTemesgen, Tamirat Tefera, Kristoffer Relling Tysnes, and Lucy Jane Robertson. 2021. "Use of Oxidative Stress Responses to Determine the Efficacy of Inactivation Treatments on Cryptosporidium Oocysts" Microorganisms 9, no. 7: 1463. https://doi.org/10.3390/microorganisms9071463
APA StyleTemesgen, T. T., Tysnes, K. R., & Robertson, L. J. (2021). Use of Oxidative Stress Responses to Determine the Efficacy of Inactivation Treatments on Cryptosporidium Oocysts. Microorganisms, 9(7), 1463. https://doi.org/10.3390/microorganisms9071463