Grapevine Powdery Mildew: Fungicides for Its Management and Advances in Molecular Detection of Markers Associated with Resistance
Abstract
:1. Introduction
2. Fungicides Used for Grapevine Powdery Mildew Management and Resistance in E. necator
2.1. Hydroxy-(2-Amino-)Pyrimidines
2.2. MBC-Fungicides
Mode of Action | Target Site and Code | Group Name | FRAC Code | Example A.I. a | Resistance |
---|---|---|---|---|---|
A: Nucleic acid metabolism | A2: Adenosin-deaminase | Hydroxy-(2-amino-) pyrimidines | 8 | Bupirimate | ND c |
B: Cytoskeleton and motor protein | B1: β-tubulin assembly in mitosis | MBC-fungicides | 1 | Thiophanate-methyl b | [41,42] |
B6: Actin/myosin/fimbrin function | Aryl-phenyl-ketones | 50 | Metrafenone, Pyriofenone | [11] | |
C: Respiration | C2: Complex II: succinate dehydrogenase | SDHI (Succinate-dehydrogenase inhibitors) | 7 | Boscalid, Fluopyram, Fluxa-pyroxad | [44,45,46] |
C3: Complex III: cytochrome bc1 (ubiquinol oxidase) at Qo site (cyt b gene) | QoI-fungicides (Quinone outside Inhibitors) | 11 | Azoxystrobin, Kresoxim-methyl, Pyraclostrobin, Trifloxystrobin | [47,48] | |
C5: Uncouplers of oxidative phosphorylation | 29 | Meptyldinocap | ND | ||
E: Signal transduction | E1: Signal transduction (mechanism unknown) | Azanaphthalenes | 13 | Proquinazid | [49] |
G: Sterol biosynthesis in membranes | G1: C14-demethylase in sterol biosynthesis (erg11/cyp51) | DMI-fungicides SBI: Class I | 3 | Difeconazole, Fenbuconazole, Myclobutanil, Penconazole, Tebuconazole, Tetraconazole, Triadimefon | [50,51,52] |
G2: Δ14-reductase and Δ8→Δ7- isomerase in sterol biosynthesis (erg24, erg2) | Amines (morpholines) SBI: Class II | 5 | Spiroxamine | [48] | |
U: Unknown | Unknown | Phenyl-acetamide | U06 | Cyflufenamid | ND |
M: Multi-site | Multi-site contact activity | Inorganic | M02 | Sulphur | ND |
2.3. Aryl-Phenyl-Ketones
2.4. Succinate-Dehydrogenase Inhibitors
2.5. Quinone Outside Inhibitors (Strobilurins)
2.6. Uncouplers of Oxidative Phosphorylation
2.7. Azanaphthalenes
2.8. Demethylation Inhibitors
2.9. Amines (Morpholines)
2.10. Cyflufenamid
3. Molecular Detection Methods of Fungicide Resistance in Erysiphe necator
Target Gene | Mutation | Molecular Method | Primer Description | Primer Sequence (5′->3′) | Ref |
---|---|---|---|---|---|
Succinate dehydrogenase | SdhB-H242R/Y,I244V | PCR-sequencing | Forward | AGACGAAGCTGTAGAGAGGGT | [44] |
Reverse | GCTGGAGAAAAACGCCTTTCAA | ||||
SdhC-G169D/S | Pyrosequencing | Forward | Biotin-ACATGGGAAAGGCTTTTACAAAT | [45] | |
Reverse | ACCAAAGCTACCAAAGCTAATGC | ||||
Sequencing primer | ATCCAACTACCATCCAG | ||||
Cytochrome b | G143A | ARMS a-qPCR | Forward-WT b | TACGGGCAGATGAGCCTATGCGG | [65,96] |
Forward-Mut c | TACGGGCAGATGAGCCTATGCGC | ||||
Reverse | ACCTACTTAAAGCTTTAGAAGTTTCC | ||||
TaqMAN-qPCR | Forward | CGCTACAGACTGGGTCACTG | [97] | ||
Reverse | AGTCTCTTAGGGCCCCCATT | ||||
Probe-WT | AGCCTATGGGGTGCAACCGT | ||||
Probe-Mut | AGCCTATGGGCTGCAACCGT | ||||
C14-demethylase | Y136F | PCR-Sequencing | Forward | TCATCTCTTTTCCCAGCCTATC | [101] |
Reverse-Mut | GTATTGAGGCGGGTAAATCG | ||||
Allele-specific PCR | Forward | ATGTACATTGCTGACATTTTGTCGG | [81] | ||
Reverse-Mut | AATTTGGACAATCAA | ||||
Allele-specific qPCR | Forward | TGGGAAGTTAAAAGATGTCAACG | [98] | ||
Reverse-Mut | TGAGTTTGGAATTTGGACAATCAA | ||||
Allele-specific qPCR | Forward | CGCCGAAGAGATTTACACTA | [99] | ||
Reverse-Mut | TGAGTTTGGAATTTGGACAATCAA | ||||
TaqMAN-qPCR | Forward | ACTAATTTAACAACTCCGGTCTTTGGA | [65,100] | ||
Reverse | ACTCGACCATTTACGGACCTTTTT | ||||
Probe-WT | VIC-TTGGACAATCAAATACAAC | ||||
Probe-Mut | FAM-TTTGGACAATCATATACAAC-3 | ||||
A1119C | PCR-Sequencing | Forward | TTCTGATGGCTGGACAACAC | [80] | |
Reverse | AACCCTAACACCTGCCATAAA |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gadoury, D.M.; Cadle-Davidson, L.; Wilcox, W.F.; Dry, I.B.; Seem, R.C.; Milgroom, M.G. Grapevine powdery mildew (Erysiphe necator): A fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol. Plant Pathol. 2012, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Calonnec, A.; Cartolaro, P.; Poupot, C.; Dubourdieu, D.; Darriet, P. Effects of Uncinula necator on the yield and quality of grapes (Vitis vinifera) and wine. Plant Pathol. 2004, 53, 434–445. [Google Scholar] [CrossRef]
- Gadoury, D.M.; Seem, R.C.; Ficke, A.; Wilcox, W.F. The epidemiology of powdery mildew on concord grapes. Phytopathology 2001, 91, 948–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, L.; Riaz, S.; Morales-Cruz, A.; Amrine, K.C.; McGuire, B.; Gubler, W.D.; Walker, M.A.; Cantu, D. Adaptive genomic structural variation in the grape powdery mildew pathogen, Erysiphe necator. BMC Genom. 2014, 15, 1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rantsiou, K.; Giacosa, S.; Pugliese, M.; Englezos, V.; Ferrocino, I.; Río Segade, S.; Monchiero, M.; Gribaudo, I.; Gambino, G.; Gullino, M.L.; et al. Impact of chemical and alternative fungicides applied to grapevine cv Nebbiolo on microbial ecology and chemical-physical grape characteristics at harvest. Front. Plant Sci. 2020, 11, 700. [Google Scholar] [CrossRef]
- Stummer, B.E.; Francis, I.L.; Markides, A.J.; Scott, E.S. The effect of powdery mildew infection of grape berries on juice and wine composition and on sensory properties of Chardonnay wines. Aust. J. Grape Wine Res. 2003, 9, 28–39. [Google Scholar] [CrossRef]
- Gaforio, L.; García-Muñoz, S.; Cabello, F.; Muñoz-Organero, G. Evaluation of susceptibility to powdery mildew (Erysiphe necator) in Vitis vinifera varieties. Vitis 2011, 50, 123–126. [Google Scholar] [CrossRef]
- Staudt, G. Evaluation of resistance to grapevine powdery mildew (Uncinula necator [Schw.] Burr., anamorph Oidium tuckeri Berk.) in accessions of Vitis species. Vitis 1997, 36, 151–154. [Google Scholar] [CrossRef]
- Dry, I.B.; Feechan, A.; Anderson, C.; Jermakow, A.M.; Bouquet, A.; Adam-Blondon, A.-F.; Thomas, M.R. Molecular strategies to enhance the genetic resistance of grapevines to powdery mildew. Aust. J. Grape Wine Res. 2010, 16, 94–105. [Google Scholar] [CrossRef]
- Caffi, T.; Rossi, V.; Legler, S.E.; Bugiani, R. A mechanistic model simulating ascosporic infections by Erysiphe necator, the powdery mildew fungus of grapevine. Plant Pathol. 2011, 60, 522–531. [Google Scholar] [CrossRef]
- Kunova, A.; Pizzatti, C.; Bonaldi, M.; Cortesi, P. Metrafenone resistance in a population of Erysiphe necator in northern Italy. Pest Manag. Sci. 2016, 2, 398–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pertot, I.; Caffi, T.; Rossi, V.; Mugnai, L.; Hoffmann, C.; Grando, M.S.; Gary, C.; Lafond, D.; Duso, C.; Thiery, D.; et al. A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Prot. 2017, 97, 70–84. [Google Scholar] [CrossRef]
- Gianessi, L.; Williams, A. Fungicides have protected European wine grapes for 150 years. Int. Pestic. Benefits Case Study 2011, 19. [Google Scholar]
- Brewer, M.T.; Milgroom, M.G. Phylogeography and population structure of the grape powdery mildew fungus, Erysiphe necator, from diverse Vitis species. BMC Evol. Biol. 2010, 10, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frenkel, O.; Portillo, I.; Brewer, M.T.; Péros, J.P.; Cadle-Davidson, L.; Milgroom, M.G. Development of microsatellite markers from the transcriptome of Erysiphe necator for analysing population structure in North America and Europe. Plant Pathol. 2012, 61, 106–119. [Google Scholar] [CrossRef]
- Cortesi, P.; Mazzoleni, A.; Pizzatti, C.; Milgroom, M.G. Genetic similarity of flag shoot and ascospore subpopulations of Erysiphe necator in Italy. Appl. Environ. Microbiol. 2005, 71, 7788–7791. [Google Scholar] [CrossRef] [Green Version]
- Delye, C.; Ronchi, V.; Laigret, F.; Corio-Costet, M.-F. Nested allele-specific PCR primers distinguish genetic groups of Uncinula necator. Appl. Environ. Microbiol. 1999, 65, 3950–3954. [Google Scholar] [CrossRef] [Green Version]
- Délye, C.; Laigret, F.; Corio-Costet, M.-F. RAPD analysis provides insight into the biology and epidemiology of Uncinula necator. Phytopathology 1997, 87, 670–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Délye, C.; Corio-Costet, M.F. Origin of primary infections of grape by Uncinula necator: RAPD analysis discriminates two biotypes. Mycol. Res. 1998, 102, 283–288. [Google Scholar] [CrossRef]
- Miazzi, M.; Hajjeh, H.; Faretra, F. Observations on the population biology of the grape powdery mildew fungus Uncinula necator. J. Plant Pathol. 2003, 85, 123–129. [Google Scholar] [CrossRef]
- Miazzi, M.; Hajjeh, H.R. Differential sensitivity to triadimenol of Erysiphe necator isolates belonging to different genetic groups. J. Plant Pathol. 2011, 93, 729–735. [Google Scholar]
- Ramadan Hajjeh, H. Observation on baseline sensitivity of Erysiphe necator genetic groups to azoxystrobin. Am. J. Plant Sci. 2012, 3, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Vielba-Fernández, A.; Polonio, Á.; Ruiz-Jiménez, L.; de Vicente, A.; Pérez-García, A.; Fernández-Ortuño, D. Fungicide resistance in powdery mildew fungi. Microorganisms 2020, 8, 1431. [Google Scholar] [CrossRef] [PubMed]
- Hollomon, D.W. Target sites of hydroxypyrimidine fungicides. In Target Sites of Fungicide Action; Köller, W., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 31–41. [Google Scholar]
- Buchenauer, H. Physiological reactions in the inhibition of plant pathogenic fungi. In Controlled Release, Biochemical Effects of Pesticides, Inhibition of Plant Pathogenic Fungi; Haug, G., Hoffmann, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 217–292. [Google Scholar]
- Hollomon, D.W. Fungicides, 2-Aminopyrimidines. In Encyclopedia of Agrochemicals; Plimmer, J.R., Gammon, D.W., Ragsdale, N.A., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; ISBN 9780471263630. [Google Scholar]
- Hollomon, D.W. Behaviour of a barley powdery mildew strain tolerant to ethirimol. Proc. Br. Insectic. Fungic. Conf. 1975, 1, 51–58. [Google Scholar]
- Bent, K.J.; Cole, A.M.; Turner, J.A.Q.; Woolner, M. Resistance of cucumber powdery mildew to dimethirimol. Proc. 6th Br. Insectic. Fungic. Conf. 1971, 1, 274–282. [Google Scholar]
- Brent, K.J.; Hollomon, D.W. Fungicide Resistance in Crop Pathogens: How Can It Be Managed? Fungicide Resistance Action Committee (Croplife International): Brussels, Belgium, 2007. [Google Scholar]
- Hollomon, D.W. Genetic control of ethirimol resistance in a natural population of Erysiphe graminis f. sp. hordei. Phytopathology 1981, 71, 536. [Google Scholar] [CrossRef]
- Hermann, D.; Stenzel, K. FRAC Mode-of-action classification and resistance risk of fungicides. In Modern Crop Protection Compounds; Jeschke, P., Witschel, M., Krämer, W., Schirmer, U., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2019; pp. 589–608. [Google Scholar]
- Morton, V.; Staub, T. A short history of fungicides. Online. APSnet Feature Artic. 2008. [Google Scholar] [CrossRef]
- Klittich, C.J. Milestones in fungicide discovery: Chemistry that changed agriculture. Plant Health Prog. 2008. [Google Scholar] [CrossRef] [Green Version]
- Morinaga, H.; Yanase, T.; Nomura, M.; Okabe, T.; Goto, K.; Harada, N.; Nawata, H. A benzimidazole fungicide, benomyl, and its metabolite, carbendazim, induce aromatase activity in a human ovarian granulose-like tumor cell line (KGN). Endocrinology 2004, 145, 1860–1869. [Google Scholar] [CrossRef] [Green Version]
- Ilyushina, N.A. Cytogenetic effects of carbendazim on mouse bone marrow cells. Russ. J. Genet. 2020, 56, 1193–1202. [Google Scholar] [CrossRef]
- EU Pesticides Database | Food Safety. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-db_en (accessed on 25 March 2021).
- Davidse, L.C. Antimitotic activity of methyl benzimidazol-2-yl carbamate (MBC) in Aspergillus nidulans. Pestic. Biochem. Physiol. 1973, 3, 317–325. [Google Scholar] [CrossRef]
- Lucas, J.A.; Hawkins, N.J.; Fraaije, B.A. The evolution of fungicide resistance. Adv. Appl. Microbiol. 2015, 90, 30–92. [Google Scholar]
- Ishii, H.; Hollomon, D.W. Fungicide Resistance in Plant Pathogens; Ishii, H., Hollomon, D.W., Eds.; Springer: Tokyo, Japan, 2015; ISBN 978-4-431-55641-1. [Google Scholar]
- Vela-Corcía, D.; Romero, D.; De Vicente, A.; Pérez-García, A. Analysis of β-tubulin-carbendazim interaction reveals that binding site for MBC fungicides does not include residues involved in fungicide resistance. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pearson, R.C.; Taschenberg, E.F. Benomyl-resistant strains of Uncinula necator on grapes. Plant Dis. 1980, 64, 677–680. [Google Scholar] [CrossRef]
- Naegler, M.; Diaconu, V.; Alexandri, A.A. The resistance of powdery mildew of vine (Uncinula necator) and powdery mildew of cucumber (Sphaerotheca fuliginea) to benzimidazole systemic fungicides. An. Inst. Cercet. Pentru Prot. Plantelor 1977, 12, 345–352. [Google Scholar]
- FRAC. FRAC Code List ©* 2020: Fungal Control Agents Sorted by Cross Resistance Pattern and Mode of Action. Available online: www.frac.info (accessed on 17 May 2021).
- Cherrad, S.; Charnay, A.; Hernandez, C.; Steva, H.; Belbahri, L.; Vacher, S. Emergence of boscalid-resistant strains of Erysiphe necator in French vineyards. Microbiol. Res. 2018, 216, 79–84. [Google Scholar] [CrossRef]
- Graf, S. Characterisation of Metrafenone and Succinate Dehydrogenase Inhibitor Resistant Isolates of the Grapevine POWDERY Mildew Erysiphe necator. Ph.D. Thesis, Technische Universitat Kaiserslautern, Kaiserslautern, Germany, 2017. [Google Scholar]
- Graf, S.; Zito, R.; Re, G.; Stammler, G. Status of in vivo and molecular diagnosis of fungicide resistance in powdery mildews. In Modern Fungicides and Antifungal Compounds; Deising, H.B., Fraaije, B., Mehl, A., Oerke, E.C., Sierotzki, H., Stammler, G., Eds.; Deutsche Phytomedizinische Gesellschaft: Braunschweig, Germany, 2017; Volume VIII, pp. 243–248. ISBN 9783941261150. [Google Scholar]
- Wilcox, W.; Burr, J.; Riegel, D.; Wong, F. Practical resistance to QoI fungicides in New York populations of Uncinula necator associated with quantitative shifts in pathogen sensitivities. Phytopathology 2003, 93, S90. [Google Scholar]
- Miller, T.C.; Gubler, W.D. Sensitivity of California isolates of Uncinula necator to trifloxystrobin and spiroxamine, and update on triadimefon sensitivity. Plant Dis. 2004, 88, 1205–1212. [Google Scholar] [CrossRef] [Green Version]
- Genet, J.-L.; Jaworska, G. Baseline sensitivity to proquinazid in Blumeria graminis f. sp. tritici and Erysiphe necator and cross-resistance with other fungicides. Pest Manag. Sci. 2009, 65, 878–884. [Google Scholar] [CrossRef]
- Steva, H.; Cartolaro, P.; Silva, M. Tolerance of powdery mildew of SBI fungicides: Situation for 1989. Phytoma 1990, 419, 41–44. [Google Scholar]
- Gubler, W.D.; Ypema, H.L.; Ouimette, D.G.; Bettiga, L.J. Occurrence of resistance in Uncinula necator to triadimefon, myclobutanil, and fenarimol in California grapevines. Plant Dis. 1996, 80, 902–909. [Google Scholar] [CrossRef]
- Halleen, F.; Holz, G.; Pringle, K.L. Resistance in Uncinula necator to triazole fungicides in South African grapevines. South Afr. J. Enol. Vitic. 2000, 21, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Opalski, K. Cell Polarity in Plant Defense and Fungal Pathogenesis in the Interaction of Barley with Powdery Mildew Fungi. Ph.D. Thesis, Justus-Liebig-University Giessen, Giessen, Germany, 2005. [Google Scholar]
- Schmitt, M.R.; Carzaniga, R.; Cotter, H.V.T.; O’Connell, R.; Hollomon, D. Microscopy reveals disease control through novel effects on fungal development: A case study with an early-generation benzophenone fungicide. Pest Manag. Sci. 2006, 62, 383–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felsenstein, F.; Semar, M.; Stammler, G. Sensitivity of wheat powdery mildew (Blumeria graminis f. sp. tritici) towards metrafenone. Gesunde Pflanz. 2010, 62, 29–33. [Google Scholar] [CrossRef]
- Miyamoto, T.; Hayashi, K.; Ogawara, T. First report of the occurrence of multiple resistance to Flutianil and Pyriofenone in field isolates of Podosphaera xanthii, the causal fungus of cucumber powdery mildew. Eur. J. Plant Pathol. 2020, 156, 953–963. [Google Scholar] [CrossRef]
- Torriani, S.F.F.; Frey, R.; Buitrago, C.; Wullschleger, J.; Waldner, M.; Kuehn, R.; Scalliet, G.; Sierotzki, H. Succinate-dehydrogenase inhibitor (SDHI) resistance evolution in plant pathogens. In Modern Fungicides and Antifungal Compounds; Deising, H.B., Fraaije, B., Mehl, A., Oerke, E.C., Sierotzki, H., Stammler, G., Eds.; Deutsche Phytomedizinische Gesellschaft: Braunschweig, Germany, 2016; Volume VIII, pp. 89–94. ISBN 978-3-941261-15-0. [Google Scholar]
- Ruprecht, J.; Yankovskaya, V.; Maklashina, E.; Iwata, S.; Cecchini, G. Structure of Escherichia coli succinate: Quinone oxidoreductase with an occupied and empty quinone-binding site. J. Biol. Chem. 2009, 284, 29836–29846. [Google Scholar] [CrossRef] [Green Version]
- Klappach, K.; Stammler, G.; Bryson, R.; Semar, M.; Mehl, A.; Steiger, D.; Derpmann, J.; Genet, J.-L.; MBoup, M.; Sierotzki, H.; et al. Succinate Dehydrogenase Inhibitor (SDHI) Working Group. 2021. Available online: https://www.frac.info/docs/default-source/working-groups/sdhi-fungicides/sdhi-meeting-minutes/minutes-of-the-2021-sdhi-meeting-20-21th-of-january-2021-with-recommendations-for-2021.pdf (accessed on 20 April 2021).
- Jeschke, P.; Witschel, M.; Krämer, W.; Schirmer, U.; Earley, F. Fungicides acting on oxidative phosphorylation. In Modern Crop Protection Compounds; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2019; pp. 609–747. [Google Scholar]
- Hirooka, T.; Ishii, H. Chemical control of plant diseases. J. Gen. Plant Pathol. 2013, 79, 390–401. [Google Scholar] [CrossRef]
- Balba, H. Review of strobilurin fungicide chemicals. J. Environ. Sci. Health Part B 2007, 42, 441–451. [Google Scholar] [CrossRef]
- Bartlett, D.W.; Clough, J.M.; Godwin, J.R.; Hall, A.A.; Hamer, M.; Parr-Dobrzanski, B. The strobilurin fungicides. Pest Manag. Sci. 2002, 58, 649–662. [Google Scholar] [CrossRef]
- Wong, F.P.; Wilcox, W.F. Sensitivity to azoxystrobin among isolates of Uncinula necator: Baseline distribution and relationship to myclobutanil sensitivity. Plant Dis. 2002, 86, 394–404. [Google Scholar] [CrossRef] [Green Version]
- Rallos, L.E.E.; Johnson, N.G.; Schmale, D.G.; Prussin, A.J.; Baudoin, A.B. Fitness of Erysiphe necator with G143A-based resistance to quinone outside inhibitors. Plant Dis. 2014, 98, 1494–1502. [Google Scholar] [CrossRef] [Green Version]
- Miles, L.A.; Miles, T.D.; Kirk, W.W.; Schilder, A.M.C. Strobilurin (QoI) resistance in populations of Erysiphe necator on grapes in Michigan. Plant Dis. 2012, 96, 1621–1628. [Google Scholar] [CrossRef] [Green Version]
- FRAC. Quinone “Outside” Inhibitor (QoI) Working Group; 2021. Available online: https://www.frac.info/docs/default-source/working-groups/qol-fungicides/qoi-meeting-minutes/minutes-of-the-2021-qoi-wg-meeting-and-recommendations-for-2021-(-january-march-2021).pdf?sfvrsn=28f0499a (accessed on 21 June 2021).
- Wicks, T.J.; Wilson, D.; Stammler, G.; Paton, S.; Hall, B.H. Development of grape powdery mildew strains resistant to QoI fungicides in Australia. In Modern Fungicides and Antifungal Compounds; Dehne, H.W., Deising, H.B., Fraaije, B., Gisi, U., Hermann, D., Mehl, A., Oerke, E.C., Russell, P.E., Stammler, G., Kuck, K.H., Eds.; Deutsche Phytomedizinische Gesellschaft: Braunschweig, Germany, 2013; Volume VII, pp. 253–256. [Google Scholar]
- Hall, B.; McKay, S.; Lopez, F.; Harper, L.; Savocchia, S.; Borneman, A.; Herderich, M. Fungicide resistance in Australian viticulture. In Modern Fungicides and Antifungal Compounds; Deising, H.B., Fraaije, B., Mehl, A., Oerke, E.C., Sierotzkin, H., Stammler, G., Eds.; Deutsche Phytomedizinische Gesellschaft: Braunschweig, Germany, 2016; Volume VIII, pp. 181–186. [Google Scholar]
- Bacci, L.; Bosco, V.; Alfarano, L.; Bradascio, R. Meptyldinocap: Un nuovo fungicida antioidico per impieghi su vite, fragola e cucurbitacee. Atti Giornate Fitopatol. 2008, 2, 141–148. [Google Scholar]
- Ouimette, D. Fungicide resistance in Erysiphe necator—Monitoring, detection and management strategies. In Fungicide Resistance in Crop Protection: Risk and Management; Thind, T.S., Ed.; CABI: Wallingford, UK, 2011; pp. 32–43. ISBN 978-1-84593-905-2. [Google Scholar]
- Dietz, J.; Winter, C. Recently introduced powdery mildew fungicides. In Modern Crop Protection Compounds; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2019; pp. 933–947. [Google Scholar]
- Lee, S.; Gustafson, G.; Skamnioti, P.; Baloch, R.; Gurr, S. Host perception and signal transduction studies in wild-type Blumeria graminis f. sp. hordei and a quinoxyfen-resistant mutant implicate quinoxyfen in the inhibition of serine esterase activity. Pest Manag. Sci. 2008, 64, 544–555. [Google Scholar] [CrossRef]
- Gilbert, S.R.; Cools, H.J.; Fraaije, B.A.; Bailey, A.M.; Lucas, J.A. Impact of proquinazid on appressorial development of the barley powdery mildew fungus Blumeria graminis f. sp. hordei. Pestic. Biochem. Physiol. 2009, 94, 127–132. [Google Scholar] [CrossRef]
- Green, E.A.; Gustafson, G.D. Sensitivity of Uncinula necator to quinoxyfen: Evaluation of isolates selected using a discriminatory dose screen. Pest Manag. Sci. 2006, 62, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Colcol, J.F.; Baudoin, A.B. Sensitivity of Erysiphe necator and Plasmopara viticola in Virginia to QoI fungicides, boscalid, quinoxyfen, thiophanate methyl, and mefenoxam. Plant Dis. 2016, 100, 337–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, X.; Nita, M.; Baudoin, A.B. Evaluation of quinoxyfen resistance of Erysiphe necator (grape powdery mildew) in a single Virginia vineyard. Plant Dis. 2018, 102, 2586–2591. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, I.E.; Hollomon, D.W.; Gustafson, G.; Mitchell, J.C.; Longhurst, C.; Zhang, Z.; Gurr, S.J. Quinoxyfen perturbs signal transduction in barley powdery mildew (Blumeria graminis f. sp. hordei). Mol. Plant Pathol. 2003, 4, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Ziogas, B.N.; Malandrakis, A.A. Sterol biosynthesis inhibitors: C14 demethylation (DMIs). In Fungicide Resistance in Plant Pathogens; Springer: Tokyo, Japan, 2015; pp. 199–216. [Google Scholar]
- Frenkel, O.; Cadle-Davidson, L.; Wilcox, W.F.; Milgroom, M.G. Mechanisms of resistance to an azole fungicide in the grapevine powdery mildew fungus, Erysiphe necator. Phytopathology 2015, 105, 370–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Délye, C.; Laigret, F.; Corio-Costet, M.F. A mutation in the 14 alpha-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Appl. Environ. Microbiol. 1997, 63, 2966–2970. [Google Scholar] [CrossRef] [Green Version]
- Cools, H.J.; Hawkins, N.J.; Fraaije, B.A. Constraints on the evolution of azole resistance in plant pathogenic fungi. Plant Pathol. 2013, 62, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Schoonbeek, H.-j.; Sugiura, H.; De Waard, M.A. Multidrug resistance in Botrytis cinerea associated with decreased accumulation of the azole fungicide oxpoconazole and increased transcription of the ABC transporter gene BcatrD. Pestic. Biochem. Physiol. 2001, 70, 168–179. [Google Scholar] [CrossRef]
- Omrane, S.; Sghyer, H.; Audéon, C.; Lanen, C.; Duplaix, C.; Walker, A.-S.; Fillinger, S. Fungicide efflux and the MgMFS1 transporter contribute to the multidrug resistance phenotype in Zymoseptoria tritici field isolates. Environ. Microbiol. 2015, 17, 2805–2823. [Google Scholar] [CrossRef] [PubMed]
- Dyer, P.S.; Hansen, J.; Delaney, A.; Lucas, J.A. Genetic control of resistance to the sterol 14α-demethylase inhibitor fungicide prochloraz in the cereal eyespot pathogen Tapesia yallundae. Appl. Environ. Microbiol. 2000, 66, 4599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peever, T.L.; Milgroom, M.G. Inheritance of triadimenol resistance in Pyrenophora teres. Phytopathology 1992, 82, 821. [Google Scholar] [CrossRef]
- Krämer, W.; Berg, D.; Dutzmann, S.; Etzel, W.A.; Gau, W.; Stelzer, U.; Weissmüller, J. Chemistry, stereochemistry and biological properties of KWG 4168. Pestic. Sci. 1999, 55, 610–614. [Google Scholar] [CrossRef]
- FRAC. Sterol Biosynthesis Inhibitor (SBI) Working Group: Minutes from Virtual Call Protocol of the Discussions and Recommendations of the SBI Working Group of the Fungicide Resistance Action Committee (FRAC). 2021. Available online: https://www.frac.info/docs/default-source/working-groups/sbi-fungicides/group/minutes-of-the-2021-sbi-telco-meeting-recommendations-for-2021-from-3rd-of-march-2021.pdf?sfvrsn=55f3499a (accessed on 4 May 2021).
- Sano, S.; Kasahara, I.; Yamanaka, H. Development of a novel fungicide, cyflufenamid. J. Pestic. Sci. Pestic. Sci. Soc. Jpn. 2007, 32, 137–138. [Google Scholar] [CrossRef] [Green Version]
- Haramoto, M.; Yamanaka, H.; Sano, H.; Sano, S.; Otani, H. Fungicidal activities of cyflufenamid against various plant-pathogenic fungi. J. Pestic. Sci. 2006, 31, 95–101. [Google Scholar] [CrossRef] [Green Version]
- FRAC. FRAC List of Plant Pathogenic Organisms Resistant to Disease Control Agents. Available online: www.frac.info (accessed on 4 May 2021).
- Pirondi, A.; Nanni, I.M.; Brunelli, A.; Collina, M. First report of resistance to cyflufenamid in Podosphaera xanthii, causal agent of powdery mildew, from melon and zucchini fields in Italy. Plant Dis. 2014, 98, 1581. [Google Scholar] [CrossRef]
- McGrath, M.T.; Sexton, Z.F. Poor control of cucurbit powdery mildew associated with first detection of resistance to cyflufenamid in the causal agent, Podosphaera xanthii, in the United States. Plant Health Prog. 2018, 19, 222–223. [Google Scholar] [CrossRef]
- Corio-Costet, M.-F. Monitoring resistance in obligate pathogens by bioassays relating to field use: Grapevine powdery and downy mildews. In Fungicide Resistance in Plant Pathogens; Ishii, H., Hollomon, D.W., Eds.; Springer: Tokyo, Japan, 2015; pp. 251–279. [Google Scholar]
- Ma, Z.; Michailides, T.J. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot. 2005, 24, 853–863. [Google Scholar] [CrossRef]
- Baudoin, A.; Olaya, G.; Delmotte, F.; Colcol, J.F.; Sierotzki, H. QoI resistance of Plasmopara viticola and Erysiphe necator in the Mid-Atlantic United States. Plant Health Prog. 2008, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Miles, T.D.; Neill, T.M.; Colle, M.; Warneke, B.; Robinson, G.; Stergiopoulos, I.; Mahaffee, W.F. Allele-specific detection methods for QoI fungicide-resistant Erysiphe necator in vineyards. Plant Dis. 2020, 105, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Dufour, M.C.; Fontaine, S.; Montarry, J.; Corio-Costet, M.F. Assessment of fungicide resistance and pathogen diversity in Erysiphe necator using quantitative real-time PCR assays. Pest Manag. Sci. 2011, 67, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Pintye, A.; Németh, M.Z.; Molnár, O.; Horváth, Á.N.; Spitzmüller, Z.; Szalóki, N.; Pál, K.; Váczy, K.Z.; Kovács, G.M. Improved DNA extraction and quantitative real-time PCR for genotyping Erysiphe necator and detecting the DMI fungicide resistance marker A495T, using single ascocarps. Phytopathol. Mediterr. 2020, 59, 97–106. [Google Scholar] [CrossRef]
- Rallos, L.E.E. Characterizing Resistance of Erysiphe necator to Fungicides Belonging to the Quinone Outside Inhibitors and Demethylation Inhibitors. Ph.D. Thesis, Virginia Tech, Blacksburg, Virginia, 2013. [Google Scholar]
- Colcol, J.F.; Rallos, L.E.; Baudoin, A.B. Sensitivity of Erysiphe necator to demethylation inhibitor fungicides in Virginia. Plant Dis. 2012, 96, 111–116. [Google Scholar] [CrossRef] [Green Version]
FRAC Code | Group Name | Target Gene | Mutations Associated with Resistance in | |
---|---|---|---|---|
Various Fungal Pathogens | E. necator | |||
8 | Hydroxy-(2-amino-) pyrimidines | adenosin-deaminase | unknown a | not detected b |
1 | MBC-fungicides | β-tubulin | E198A/G/K/Q, F200Y | not investigated |
50 | Aryl-phenyl-ketones | unknown | unknown | unknown |
7 | SDHI (Succinate-dehydrogenase inhibitors) | succinate dehydrogenase | various mutations mostly in SdhB gene | SdhB H242R/Y, I244V, SdhC G169D/S |
11 | QoI-fungicides (Quinone outside Inhibitors) | cytochrome b | F129L, G137R, G143A/S, other mechanisms | G143A |
29 | Uncouplers of oxidative phosphorylation | unknown | not detected | not detected |
13 | Azanaphthalenes | unknown | unknown | unknown |
3 | DMI-fungicides SBI: Class I | C14-demethylase | V136A, Y137F, A379G, other mechanisms | Y136F, A1119C |
5 | Amines (morpholines) SBI: Class II | Δ14-reductase, Δ8→Δ7- isomerase | unknown | unknown |
U06 | Phenyl-acetamide | unknown | unknown | not detected |
M02 | Inorganic | multi-site | not detected | not detected |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunova, A.; Pizzatti, C.; Saracchi, M.; Pasquali, M.; Cortesi, P. Grapevine Powdery Mildew: Fungicides for Its Management and Advances in Molecular Detection of Markers Associated with Resistance. Microorganisms 2021, 9, 1541. https://doi.org/10.3390/microorganisms9071541
Kunova A, Pizzatti C, Saracchi M, Pasquali M, Cortesi P. Grapevine Powdery Mildew: Fungicides for Its Management and Advances in Molecular Detection of Markers Associated with Resistance. Microorganisms. 2021; 9(7):1541. https://doi.org/10.3390/microorganisms9071541
Chicago/Turabian StyleKunova, Andrea, Cristina Pizzatti, Marco Saracchi, Matias Pasquali, and Paolo Cortesi. 2021. "Grapevine Powdery Mildew: Fungicides for Its Management and Advances in Molecular Detection of Markers Associated with Resistance" Microorganisms 9, no. 7: 1541. https://doi.org/10.3390/microorganisms9071541
APA StyleKunova, A., Pizzatti, C., Saracchi, M., Pasquali, M., & Cortesi, P. (2021). Grapevine Powdery Mildew: Fungicides for Its Management and Advances in Molecular Detection of Markers Associated with Resistance. Microorganisms, 9(7), 1541. https://doi.org/10.3390/microorganisms9071541