Mineralogy and Geochemistry of Fluvial-Lacustrine Pisolith Micronodules from the Roztoka Odrzańska, Odra River, NW Poland
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. General Description
4.2. XRD
4.3. SEM-EDX Analysis
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Location and Type | SiO2 | P2O5 | Fe | Mn | Ca | Mg | S | Fe/Mn | Ca/Mg | P/Fe | Fe/S | (CaO+MgO)/SiO2 | Data Source (See References) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | - | - | - | - | - | ||||||||
Satterhutte, Krzyż, POL (bog ore) | 3.90 | 0.98 | 41.90 | 1.90 | 22.05 | 0.010 | [3] | ||||||
Wisła, Wisłok and San river valleys, POL (bog ore) | 19.35 | 2.14 | 28.69 | 2.89 | 9.93 | 0.033 | [3] | ||||||
Biłgoraj-Tomaszów Mazowiecki, POL (bog ore) | 21.00 | 1.12 | 29.32 | 3.00 | 9.77 | 0.017 | [3] | ||||||
Kalisz-Konin-Turek, POL (bog ore) | 5.89 | 42.39 | 1.62 | 26.17 | 0.061 | [3] | |||||||
Mława-Łomża, POL (bog ore) | 11.83 | 3.64 | 34.38 | 0.75 | 45.84 | 0.046 | [3] | ||||||
Upper Silesia, POL (bog ore) | 28.10 | 0.25 | 36.04 | 1.20 | 30.03 | 0.003 | [3] | ||||||
Wieluń, POL (bog ore) | 18.55 | 2.80 | 41.69 | 0.86 | 48.48 | 0.029 | [3] | ||||||
Mazowieckie Voivodeship, POL (bog ore) | 0.04 | 29.53 | 2.43 | 12.15 | 0.001 | [3] | |||||||
Łódzkie Voivodeship, POL (bog ore) | 8.06 | 31.14 | 2.79 | 11.16 | 0.113 | [3] | |||||||
Glinne, POL (bog ore) | 30.11 | 30.11 | 2.11 | 1.03 | 0.14 | 14.27 | 209.1 | 0.048 | [3] | ||||
Bobrowniki I, POL (rusty-yellowish bog ore) | 6.84 | 35.55 | 0.27 | 2.02 | 0.13 | 0.19 | 131.67 | 15.91 | 185.2 | 0.444 | [3] | ||
Bobrowniki II, POL (red bog ore) | 3.16 | 46.62 | 0.26 | 1.13 | 0.12 | 0.17 | 179.31 | 9.83 | 277.5 | 0.561 | [3] | ||
Rubinkowo I, POL (bog ore) | 6.60 | 45.79 | 2.01 | 1.59 | 0.41 | 0.07 | 22.78 | 3.88 | 636.0 | 0.440 | [3] | ||
Rubinkowo II, POL (bog ore) | 9.40 | 40.64 | 2.64 | 2.23 | 0.37 | 0.06 | 15.39 | 5.96 | 635.0 | 0.398 | [3] | ||
Białystok, POL (bog ore) | 14.90 | 29.83 | [3] | ||||||||||
Lublin, POL (bog ore) | 19.39 | 26.68 | [3] | ||||||||||
Olsztyn, POL (bog ore) | 12.66 | 28.09 | [3] | ||||||||||
Poznań, POL (bog ore) | 23.38 | 40.23 | [3] | ||||||||||
Rzeszów, POL (bog ore) | 21.14 | 29.12 | [3] | ||||||||||
Mazowieckie Voivodeship, POL (bog ore) | 34.49 | 0.84 | 26.97 | 2.01 | 0.50 | 0.05 | 0.08 | 13.42 | 10.00 | 0.014 | 336.3 | 0.023 | [3] |
Biedaszki, POL (bog ore) | 3.03 | 5.19 | 49.60 | 2.67 | 1.69 | 0.15 | 18.58 | 11.27 | 0.046 | 0.863 | [3] | ||
Dąbrówka, POL (bog ore) | 14.57 | 3.65 | 39.36 | 0.15 | 0.52 | 0.13 | 262.40 | 4.09 | 0.040 | 0.064 | [3] | ||
Dębe Małe (bog ore) | 15.00 | 5.59 | 27.37 | 0.41 | 2.08 | 0.12 | 66.76 | 17.19 | 0.089 | 0.208 | [3] | ||
Grądy Dolne (bog ore) | 22.81 | 2.87 | 30.56 | 9.64 | 1.23 | 0.16 | 3.17 | 7.55 | 0.041 | 0.087 | [3] | ||
Kuźnica Słupska, POL (bog ore) | 7.04 | 10.03 | 27.74 | 0.78 | 2.60 | 0.33 | 35.56 | 7.98 | 0.158 | 0.594 | [3] | ||
Strzyżew, POL (bog ore) | 1.53 | 2.03 | 36.40 | 0.25 | 0.97 | 0.06 | 145.60 | 16.09 | 0.024 | 0.953 | [3] | ||
Mean soft bog ores, POL | 11.08 | 4.54 | 32.71 | 0.31 | 1.31 | 0.21 | 105.52 | 6.21 | 0.061 | 0.197 | [3] | ||
Mean solid bog ores, POL | 36.89 | 3.52 | 25.63 | 2.48 | 1.05 | 0.18 | 10.33 | 6.00 | 0.060 | 0.048 | [3] | ||
Roztoka Odrzańska, POL (pisolith nodules) | 14.04 | 4.11 | 50.42 | 0.28 | 1.52 | 0.16 | 0.72 | 385.45 | 9.50 | 0.036 | 167.2 | 0.170 | This study |
Ruukki-Vihanti, FIN (Fe-rich mire precipitates: black amorphic and vivianite) | 4.20 | 2.00 | 43.82 | 0.02 | 0.21 | 0.02 | 0.02 | 2921.33 | 11.86 | 0.020 | 2191.0 | 0.079 | [64] |
Ruukki-Vihanti, FIN (Fe-rich mire precipitates: vivanite and sand) | 35.80 | 9.20 | 21.21 | 0.05 | 0.50 | 0.78 | 0.01 | 461.09 | 0.64 | 0.189 | 2121.0 | 0.056 | [64] |
Ruukki-Vihanti, FIN (Fe-rich mire precipitates: yellow, black streaked, siderite and vivianite) | 1.00 | 2.10 | 58.97 | 0.09 | 0.29 | 0.01 | 0.01 | 634.09 | 47.43 | 0.016 | 5897.0 | 0.410 | [64] |
Ruukki-Vihanti, FIN (Fe-rich mire precipitates: pale yellow, fine grained, siderite) | 2.30 | 0.50 | 61.23 | 0.23 | 0.36 | 0.01 | 0.01 | 263.92 | 29.64 | 0.004 | 6123.0 | 0.226 | [64] |
Ruukki-Vihanti, FIN (Fe-rich mire precipitates: green, coarse grained, siderite) | 4.60 | 0.30 | 60.06 | 0.14 | 0.21 | 0.02 | 0.01 | 432.09 | 11.86 | 0.002 | 6006.0 | 0.072 | [64] |
Ruukki-Vihanti, FIN (Fe-rich mire precipitates: pale yellow, bedded, siderite) | 0.40 | 0.10 | 61.85 | 0.26 | 0.43 | 0.02 | 0.01 | 235.17 | 17.79 | 0.001 | 6185.0 | 1.602 | [64] |
Ruukki-Vihanti, FIN (Fe-rich mire precipitates: brown oxidized surface, goethite and limonite) | 0.50 | 0.10 | 66.36 | 0.08 | 0.14 | 0.01 | 0.01 | 857.36 | 23.71 | 0.001 | 6636.0 | 0.420 | [64] |
Ruukki-Vihanti, FIN (Fe-rich mire precipitates: brown oxidized, fine grained with dark nodules, goethite and limonite) | 2.40 | 1.30 | 62.39 | 0.01 | 0.07 | 0.01 | 0.01 | 8060.72 | 5.93 | 0.009 | 6239.0 | 0.050 | [64] |
Ruukki-Vihanti (42), FIN (Fe-rich mire precipitates: black amorphic, siderite and vivianite) | 10.65 | 25.20 | 0.09 | 0.12 | 0.25 | 0.59 | 280.00 | 0.48 | 0.184 | 42.7 | [64] | ||
Ruukki-Vihanti (43), FIN (Fe-rich mire precipitates: black amorphic) | 4.63 | 16.90 | 0.07 | 0.27 | 0.31 | 1.37 | 241.43 | 0.87 | 0.119 | 12.3 | [64] | ||
Ruukki-Vihanti (48), FIN (Fe-rich mire precipitates: black amorphic, siderite and vivianite) | 6.05 | 31.50 | 0.10 | 0.24 | 0.36 | 0.10 | 315.00 | 0.67 | 0.084 | 315.0 | [64] | ||
Ruukki-Vihanti (50), FIN (Fe-rich mire precipitates: black amorphic, siderite and vivianite) | 14.24 | 26.50 | 0.14 | 0.31 | 0.69 | 0.57 | 189.29 | 0.45 | 0.234 | 46.5 | [64] | ||
Ruukki-Vihanti (54), FIN (Fe-rich mire precipitates: black amorphic, siderite) | 1.97 | 20.70 | 0.04 | 0.24 | 0.48 | 0.14 | 517.50 | 0.50 | 0.041 | 147.9 | [64] | ||
Ruukki-Vihanti (55), FIN (Fe-rich mire precipitates: black amorphic) | 4.88 | 17.00 | 0.07 | 0.36 | 0.65 | 0.33 | 242.86 | 0.55 | 0.125 | 51.5 | [64] | ||
Ruukki-Vihanti (58), FIN (Fe-rich mire precipitates: black amorphic, siderite) | 3.94 | 15.20 | 0.05 | 0.38 | 0.68 | 0.25 | 304.00 | 0.56 | 0.113 | 60.8 | [64] | ||
Ruukki-Vihanti (60), FIN (Fe-rich mire precipitates: black amorphic, siderite and vivianite) | 16.12 | 26.70 | 0.16 | 0.16 | 0.34 | 0.26 | 166.88 | 0.47 | 0.263 | 102.7 | [64] | ||
Ruukki-Vihanti (63), FIN (Fe-rich mire precipitates: black amorphic, siderite and vivianite) | 6.73 | 12.10 | 0.09 | 0.25 | 0.51 | 2.17 | 134.44 | 0.49 | 0.243 | 5.6 | [64] | ||
Ruukki-Vihanti (65), FIN (Fe-rich mire precipitates: siderite) | 3.30 | 31.80 | 0.09 | 0.43 | 0.27 | 0.05 | 353.33 | 1.59 | 0.045 | 636.0 | [64] | ||
Ruukki-Vihanti (67), FIN (Fe-rich mire precipitates: siderite) | 2.08 | 29.10 | 0.08 | 0.29 | 0.31 | 0.06 | 363.75 | 0.94 | 0.031 | 485.0 | [64] | ||
Ruukki-Vihanti (68), FIN (Fe-rich mire precipitates: siderite) | 1.81 | 37.80 | 0.17 | 0.32 | 0.25 | 0.04 | 222.35 | 1.28 | 0.021 | 945.0 | [64] | ||
Ruukki-Vihanti (69), FIN (Fe-rich mire precipitates: black amorphic) | 1.81 | 20.90 | 0.04 | 0.27 | 0.47 | 0.24 | 522.50 | 0.57 | 0.038 | 87.1 | [64] | ||
Ruukki-Vihanti (74), FIN (Fe-rich mire precipitates: black amorphic, siderite) | 2.79 | 19.50 | 0.03 | 0.21 | 0.41 | 0.13 | 650.00 | 0.51 | 0.062 | 150.0 | [64] | ||
Ruukki-Vihanti (75), FIN (Fe-rich mire precipitates: siderite) | 1.56 | 37.20 | 0.11 | 0.28 | 0.29 | 0.03 | 338.18 | 0.97 | 0.018 | 1240.0 | [64] | ||
Ruukki-Vihanti (76), FIN (Fe-rich mire precipitates: black amorphic, siderite and vivianite) | 7.37 | 25.90 | 0.14 | 0.21 | 0.42 | 0.12 | 185.00 | 0.50 | 0.124 | 215.8 | [64] | ||
Peat Kirjaneva, FIN | 0.32 | 4.00 | 0.02 | 0.34 | 0.55 | 0.63 | 210.53 | 0.62 | 0.035 | 6.3 | [64] | ||
Surface sediments from Roztoka Odrzańska, POL | 0.52 | 2.80 | 0.17 | 3.50 | 0.25 | 0.95 | 16.47 | 14.00 | 0.081 | 2.9 | This study | ||
Equatorial Pacific (CCFZ) polymetallic nodules, IOM | 16.48 | 0.57 | 12.50 | 18.60 | 2.30 | 1.60 | 0.50 | 0.67 | 1.44 | 0.020 | 25.0 | 0.357 | [73] |
Baltic Sea, Słupsk Bank, POL (nodules) | 36.76 | 1.68 | 13.55 | 9.75 | 0.81 | 1.23 | 0.04 | 1.39 | 0.66 | 0.054 | 338.8 | 0.086 | [74] |
Szklarka Przygodzicka, POL (solid bog ore) | 25.90 | 4.17 | 30.61 | 3.55 | 0.50 | 0.05 | 0.02 | 8.62 | 9.26 | 0.059 | 1530.5 | 0.030 | [75] |
Studzieniec, POL (solid bog ore) | 18.32 | 3.56 | 38.36 | 1.42 | 0.85 | 0.07 | 0.08 | 27.01 | 12.88 | 0.040 | 479.5 | 0.071 | [75] |
Wilanów, POL (solid bog ore) | 17.83 | 5.13 | 43.33 | 0.60 | 72.22 | 0.052 | [13] | ||||||
Northern Praga, Warszawa, POL (solid bog ore) | 16.41 | 5.36 | 49.20 | 0.36 | 136.67 | 0.047 | [13] | ||||||
Brwinów, POL (soft bog ore) | 4.49 | 7.53 | 45.35 | 0.87 | 52.13 | 0.072 | [13] | ||||||
Tisjoen Lake, NOR (Fe-rich lake nodules) | 50.05 | 1.83 | 27.35 | [25] | |||||||||
Dębe Małe II, POL (soft bog ore) | 4.02 | 7.68 | 44.16 | 1.28 | 2.05 | 1.52 | 34.50 | 1.35 | 0.076 | 1.342 | [16] | ||
Kolechowice, POL (soft bog ore) | 7.88 | 3.11 | 33.52 | 0.17 | 1.88 | 0.05 | 197.18 | 39.17 | 0.040 | 0.344 | [16] | ||
Lowland Point (cliff), Lizard, ENG (solid bog ore formed on magmatic rocks) | 34.49 | 0.47 | 24.05 | 2.85 | 0.52 | 0.78 | 0.07 | 8.44 | 0.67 | 0.009 | 343.6 | 0.059 | [76] |
Nowosielec, POL (Quaternary bog ore) | 42.07 | [77] | |||||||||||
Wola Chorzelowska, POL (Quaternary bog ore) | 2.38 | 26.04 | 2.04 | 12.76 | 0.040 | [77] | |||||||
Cmolas, POL (Quaternary bog ore) | 2.41 | 39.50 | 1.31 | 30.15 | 0.027 | [77] | |||||||
Ruda, POL (Quaternary bog ore) | 4.31 | 31.90 | 4.52 | 7.06 | 0.059 | [77] | |||||||
Biały Bór, POL (Quaternary bog ore) | 1.60 | 33.15 | 3.18 | 10.42 | 0.021 | [77] | |||||||
Lipa, POL (Quaternary bog ore) | 1.60 | 29.32 | 0.024 | [77] | |||||||||
Krownice, POL (Quaternary bog ore) | 1.74 | 27.72 | 2.62 | 10.58 | 0.027 | [77] | |||||||
Ocieka-Zdziary, POL (Quaternary bog ore) | 1.52 | 33.95 | 4.94 | 6.87 | 0.020 | [77] | |||||||
Prażuchy, POL (Quaternary bog ore) | 30.04 | [77] | |||||||||||
Kuźnica-Zakrzyn, POL (Quaternary bog ore) | 7.61 | 40.64 | 0.81 | 50.17 | 0.082 | [77] | |||||||
Annopol, POL (Quaternary bog ore) | 4.74 | 29.53 | 2.88 | 10.25 | 0.070 | [77] | |||||||
Jarantów, POL (Quaternary bog ore) | 5.48 | 36.51 | 0.35 | 104.31 | 0.065 | [77] | |||||||
Stojanów-Modła, POL (Quaternary bog ore) | 2.37 | 24.39 | 2.22 | 10.99 | 0.042 | [77] | |||||||
Sobiesęki, POL (Quaternary bog ore) | 6.75 | 35.37 | 2.04 | 17.34 | 0.083 | [77] | |||||||
Zajęczki, POL (Quaternary bog ore) | 6.73 | 40.70 | 1.41 | 28.87 | 0.072 | [77] | |||||||
Łęki Godzieskie, POL (Quaternary bog ore) | 4.25 | 24.50 | 4.87 | 5.03 | 0.076 | [77] | |||||||
Grodziec, POL (Quaternary bog ore) | 1.86 | 42.06 | 0.86 | 48.91 | 0.019 | [77] | |||||||
Kolonia Łazińska, POL (Quaternary bog ore) | 5.09 | 34.26 | 3.87 | 8.85 | 0.065 | [77] | |||||||
Gozdów, POL (Quaternary bog ore) | 5.58 | 44.03 | 1.40 | 31.45 | 0.055 | [77] | |||||||
Skrzynno, POL (Quaternary bog ore) | 8.80 | 41.28 | 1.00 | 41.28 | 0.093 | [77] | |||||||
Krzynowłoga Mała, POL (Quaternary bog ore) | 2.12 | 17.57 | 0.053 | [77] | |||||||||
Małowidz, POL (Quaternary bog ore) | 6.63 | 33.85 | 0.085 | [77] | |||||||||
Kadzidło, POL (Quaternary bog ore) | 2.80 | 33.44 | 0.037 | [77] | |||||||||
Krobia, POL (Quaternary bog ore) | 5.29 | 34.90 | 0.066 | [77] | |||||||||
Wydmusy, POL (Quaternary bog ore) | 3.71 | 27.40 | 0.059 | [77] | |||||||||
Oberwia, POL (Quaternary bog ore) | 4.35 | 49.84 | 0.50 | 99.68 | 0.038 | [77] | |||||||
Przystań, POL (Quaternary bog ore) | 4.38 | 26.02 | 0.073 | [77] | |||||||||
Łazy, POL (Quaternary bog ore) | 3.75 | 24.93 | 0.066 | [77] | |||||||||
Ruda, POL (Quaternary bog ore) | 2.28 | 32.18 | 0.031 | [77] | |||||||||
Krasny Borek, POL (Quaternary bog ore) | 3.97 | 31.79 | 0.054 | [77] | |||||||||
Krebki, POL (Quaternary bog ore) | 3.29 | 27.33 | 0.052 | [77] | |||||||||
Nowa Ruda, POL (Quaternary bog ore) | 5.75 | 33.27 | 0.075 | [77] | |||||||||
Zabiele, POL (Quaternary bog ore) | 4.08 | 47.82 | 0.39 | 122.62 | 0.037 | [77] | |||||||
Błonie-Miedniewice, POL (Quaternary bog ore) | 3.52 | 34.80 | 2.43 | 14.32 | 0.044 | [77] | |||||||
Garwolin kol. Czarnica, POL (Quaternary bog ore) | 2.31 | 37.97 | 0.027 | [77] | |||||||||
Bramka, POL (Quaternary bog ore) | 2.50 | 33.68 | 0.032 | [77] | |||||||||
Toruń Bobrowniki, POL (Quaternary bog ore) | 3.95 | 41.11 | 0.22 | 186.86 | 0.042 | [77] | |||||||
Szczytno Męcice, POL (Quaternary bog ore) | 4.12 | 37.00 | 1.22 | 30.33 | 0.049 | [77] | |||||||
Lesiny Wielkie, POL (Quaternary bog ore) | 2.64 | 44.00 | 0.026 | [77] | |||||||||
Łuka, POL (Quaternary bog ore) | 0.64 | 35.50 | 0.008 | [77] | |||||||||
Kołodziej Grad, POL (Quaternary bog ore) | 28.75 | [77] | |||||||||||
Myszyniec Wykrot, POL (Quaternary bog ore) | 2.65 | 35.96 | 0.84 | 42.81 | 0.032 | [77] | |||||||
Riga Bay, Baltic Sea, LT (nodules) | 24.07 | 1.65 | 22.65 | 10.36 | 1.54 | 0.33 | 2.19 | 4.67 | 0.032 | 0.112 | [78] | ||
Finland Bay, Baltic Sea, FIN (nodules) | 17.42 | 2.76 | 18.96 | 15.78 | 1.66 | 0.60 | 1.20 | 2.77 | 0.063 | 0.191 | [78] | ||
Central Baltic, POL (nodules) | 35.33 | 2.09 | 16.62 | 10.80 | 1.15 | 0.72 | 1.54 | 1.60 | 0.055 | 0.079 | [78] | ||
residual Jurassic (J2) Fe-rich sands, POL | 67.00 | 0.32 | 16.20 | 0.40 | 0.50 | 0.10 | 0.12 | 40.50 | 5.00 | 0.009 | 135.0 | 0.013 | [79] |
Wierzbowa, Bolesławiec, POL (Quaternary bog ore) | 28.20 | 4.58 | 35.20 | 2.50 | 14.08 | 0.057 | [79] | ||||||
Grabowa, Ostrów Wielkopolski, POL (Quaternary bog ore) | 7.20 | 8.48 | 48.60 | 3.40 | 14.29 | 0.076 | [79] | ||||||
Zajączki, Ostrów Wielkopolski, POL (Quaternary bog ore) | 8.02 | 47.20 | 0.60 | 78.67 | 0.074 | [79] | |||||||
Małowich, Przasnysz, POL (Quaternary bog ore) | 6.65 | 33.80 | 1.20 | 28.17 | 0.086 | [79] | |||||||
Chorzele, Przasnysz, POL (Quaternary bog ore) | 10.60 | 4.28 | 35.43 | 0.93 | 38.10 | 0.053 | [79] | ||||||
Ziomek, Przasnysz, POL (Quaternary bog ore) | 4.60 | 45.50 | [79] | ||||||||||
Wólka Kątna, Puławy, POL (Quaternary bog ore) | 16.70 | 28.80 | [79] | ||||||||||
Cmolas II, Wisła-San, POL (Quaternary bog ore) | 10.50 | 3.67 | 42.00 | 1.30 | 0.79 | 1.10 | 32.31 | 0.038 | 38.2 | 0.105 | [79] | ||
Rudawa, Wisła-San, POL (Quaternary bog ore) | 33.80 | 1.15 | 33.60 | 1.00 | 33.60 | 0.015 | [79] | ||||||
Trzciana, Wisła-San, POL (Quaternary bog ore) | 20.00 | 1.37 | 33.00 | 0.90 | 1.36 | 2.20 | 36.67 | 0.018 | 15.0 | 0.095 | [79] | ||
Bratkowice, Wisła-San, POL (Quaternary bog ore) | 11.30 | 3.90 | 34.30 | 0.30 | 114.33 | 0.050 | [79] | ||||||
Jamno, Łódź, POL (Quaternary bog ore) | 9.40 | 7.10 | 38.50 | 1.00 | 38.50 | 0.080 | [79] | ||||||
Zawady, Łódź, POL (Quaternary bog ore) | 15.60 | 5.27 | 34.50 | 1.10 | 31.36 | 0.067 | [79] | ||||||
Dylewo, Warszawa, POL (Quaternary bog ore) | 4.10 | 10.54 | 30.00 | 0.30 | 1.57 | 100.00 | 0.153 | 0.536 | [79] | ||||
Czerwonki Hermanowskie, POL (ochre) | 14.10 | 0.22 | 45.88 | 1.40 | 0.15 | 0.17 | 32.77 | 0.88 | 0.002 | 0.035 | [80] | ||
Czerwonki Hermanowskie, POL (clayey ochre) | 44.76 | 0.20 | 22.13 | 0.85 | 0.24 | 0.68 | 26.04 | 0.35 | 0.004 | 0.033 | [80] | ||
Czerwonki Hermanowskie, POL (Fe-nodules) | 6.74 | 0.12 | 47.38 | 5.97 | 0.03 | 0.01 | 7.94 | 3.00 | 0.001 | 0.009 | [80] | ||
Czerwonki Hermanowskie, POL (Fe-gel) | 37.25 | 5.39 | 14.10 | 0.59 | 1.92 | 0.19 | 23.90 | 10.11 | 0.167 | 0.081 | [80] | ||
Lorraine I, FRA (Jurassic limonite ore) | 8.20 | 1.37 | 31.10 | 9.28 | 2.61 | 0.12 | 3.35 | 3.56 | 0.019 | 259.2 | 2.113 | [81] | |
Lorraine II, FRA (Jurassic limonite ore) | 17.10 | 1.38 | 32.10 | 5.42 | 1.53 | 0.28 | 5.92 | 3.54 | 0.019 | 114.6 | 0.592 | [81] | |
Maghemite (pure mineral) | 0.30 | 52.15 | 0.57 | 5.07 | 28.054 | [82] | |||||||
Hematite (pure mineral) | 69.60 | 0.67 | [82] | ||||||||||
Goethite (pure mineral) | 0.36 | 62.67 | [82] | ||||||||||
Lepidocrocite (pure mineral) | 62.84 | [82] | |||||||||||
Feroxyhyte (pure mineral) | 62.85 | [82] | |||||||||||
Ferrihydrite (pure mineral) | 66.21 | [82] | |||||||||||
Wüstite (pure mineral) | 0.14 | 77.37 | 0.07 | [82] | |||||||||
Siderite (pure mineral) | 42.69 | 0.87 | 0.07 | 0.08 | 609.86 | 0.88 | [82] | ||||||
Vivianite (pure mineral) | 0.10 | 27.17 | 34.27 | 0.346 | [82] | ||||||||
Metavivianite (pure mineral) | 28.40 | 30.23 | 3.25 | 0.36 | 83.97 | 0.410 | [82] | ||||||
Strengite (pure mineral) | 38.24 | 30.34 | 0.550 | [82] | |||||||||
Beraunite (pure mineral) | 30.17 | 39.52 | 0.333 | [82] | |||||||||
Phosphosiderite (pure mineral) | 38.85 | 30.97 | 0.547 | [82] | |||||||||
Tomahawk Lake, USA (Fe-rich nodules) | 8.02 | 3.27 | 54.44 | 1.14 | 0.23 | 236.70 | 0.026 | 0.040 | [70] | ||||
Tomahawk Lake, USA (Mn-rich nodules) | 0.27 | 0.20 | 0.50 | 52.88 | 1.09 | 0.46 | 0.174 | 5.652 | [70] | ||||
Hershey Bay, USA (Fe-rich nodules) | 7.40 | 2.88 | 54.86 | 1.14 | 0.65 | 84.40 | 0.023 | 0.123 | [70] | ||||
Hershey Bay, USA (Mn-rich nodules) | 0.24 | 2.05 | 41.19 | 2.62 | 0.78 | 0.051 | [70] | ||||||
Tomahawk Lake, USA (mean for nodules) | 4.15 | 1.74 | 27.47 | 27.01 | 0.66 | 118.58 | 0.100 | 2.846 | [70] | ||||
Hershey Bay, USA (mean for nodules) | 3.70 | 1.56 | 28.46 | 21.17 | 1.64 | 42.59 | 0.037 | 0.061 | [70] | ||||
Green Bay, USA-CAN (freshwater nodules) | 27.30 | [70] | |||||||||||
Northern Lake Michigan, USA-CAN (nodules) | 12.40 | [70] | |||||||||||
Lake Ontario, USA-CAN (nodules) | 20.50 | [70] | |||||||||||
Lake Oneida, USA (nodules) | 23.00 | [70] | |||||||||||
Baltic Sea nodules, POL (type V) | 35.30 | 1.91 | 12.88 | 13.69 | 1.00 | 1.13 | 12.88 | 0.88 | 0.065 | 0.093 | [83] | ||
Baltic Sea nodules, POL (type T) | 57.96 | 0.96 | 8.31 | 2.33 | 0.44 | 1.44 | 18.89 | 0.31 | 0.050 | 0.052 | [83] | ||
Baltic Sea nodules, POL (type I) | 49.62 | 1.29 | 11.29 | 3.97 | 0.59 | 1.42 | 19.14 | 0.42 | 0.050 | 0.064 | [83] | ||
Baltic Sea nodules, POL (type D) | 47.62 | 1.32 | 10.86 | 5.22 | 0.73 | 1.30 | 14.88 | 0.56 | 0.053 | 0.067 | [83] | ||
Zalew Szczeciński (Szczecin Lagoon), POL (micronodules in lacustrine bog ore) | 37.70 | 3.40 | 16.44 | 0.47 | 4.31 | 0.20 | 0.40 | 3.81 | 21.55 | 0.090 | 41.1 | 0.169 | This study |
Dąbie Lake, POL (micronodules in lacustrine bog ore) | 7.90 | 2.64 | 48.84 | 3.34 | 4.12 | 3.50 | 1.12 | 11.85 | 1.18 | 0.024 | 43.6 | 1.466 | This study |
References
- Kotliński, R.; Maciąg, Ł.; Zawadzki, D. Potential and Recent Problems of the Possible Polymetallic Sources in the Oceanic Deposits. Geol. Miner. Resour. World Ocean 2015, 40, 65–80. [Google Scholar]
- Taylor, G.; Eggleton, R.A.; Foster, L.D.; Tilley, D.B.; Le Gleuher, M.; Morgan, C.M. Nature of the Weipa Bauxite deposit, northern Australia. Aust. J. Earth Sci. 2008, 55, 45–70. [Google Scholar] [CrossRef]
- Rzepa, G.; Ratajczak, T. Polskie Rudy Darniowe; Wydawnictwa AGH: Kraków, Poland, 2011; pp. 1–369. [Google Scholar]
- Bricker, O.P.; Newell, W.L.; Simon, N.S. Bog Iron Formation in the Nassawango Creek Watershed, Maryland, USA. In Geo-Environment: Monitoring and Remediation of the Geological Environment First International Conference on Monitoring, Simulation and Remediation of the Ecological Environment, GEO-ENVIRONMENT 2004; Martin Duque, J.F., Brebbia, C.A., Godfrey, A.E., Diaz de Teran, J.R., Eds.; USGS: Segovia, Spain, 2004; pp. 13–23. [Google Scholar] [CrossRef]
- Thorne, R.L.; Anand, R.R.; Suvorova, A. The formation of fluvio-lacustrine ferruginous pisoliths in the extensive palaeochannels of the Yilgarn Craton, Western Australia. Sediment. Geol. 2014, 313, 32–44. [Google Scholar] [CrossRef]
- Lascelles, D.F. The origin of terrestrial pisoliths and pisolitic iron ore deposits: Raindrops and sheetwash in a semi-arid environment. Sediment. Geol. 2016, 341, 232–244. [Google Scholar] [CrossRef]
- Halbach, P. Mineralogical and geochemical investigations on Finnish lake ores. Bull. Geol. Soc. Finl. 1975, 48, 33–42. [Google Scholar] [CrossRef]
- Szamałek, K. Badania izotopowe pizolitowych kaolinów z okolic Assuanu (Egipt). Przegląd Geologiczny 1991, 461, 420–422. [Google Scholar]
- Szamałek, K.; Barczuk, A.; El Sayed, A.A.Y. Genesis and mineralogy of lateritic kaolin at Aswan area (SW Egypt). Archiwum Mineralogiczne 1993, 49, 81–97. [Google Scholar]
- Singh, B.; Gilkes, R.J. Nature and properties of iron rich glaebules and mottles from some south-west Australian soils. Geoderma 1996, 71, 95–120. [Google Scholar] [CrossRef]
- Mukhopadhyay, J.; Gutzmer, J.; Beukes, N.J.; Bhattacharya, H.N. Geology and Genesis of the Major Banded Iron Formation-Hosted High-Grade Iron Ore Deposits of India. Rev. Econ. Geol. 2008, 15, 291–316. [Google Scholar] [CrossRef]
- Anand, R.R.; Verrall, M. Biological origin of minerals in pisoliths in the Darling Range of Western Australia. Aust. J. Earth Sci. 2011, 58, 823–833. [Google Scholar] [CrossRef]
- Kaczorek, D.; Sommer, M. Micromorphology, chemistry, and mineralogy of bog iron ores from Poland. Catena 2003, 54, 393–402. [Google Scholar] [CrossRef]
- Werońska, A. Wpływ warunków środowiska na powstawanie holoceńskich złóż żelaza. Gospodarka Surowcami Mineralnymi 2009, 25, 23–36. [Google Scholar]
- Jóźwiak, K. Bogs iron ore in the marshy ground areas—E.g. Kampinoski National Park. Biuletyn Państwowego Instytutu Geologicznego 2011, 445, 237–244. [Google Scholar]
- Rzepa, G.; Bajda, T.; Gaweł, A.; Debiec, K.; Drewniak, L. Mineral transformations and textural evolution during roasting of bog iron ores. J. Therm. Anal. Calorim. 2016, 123, 615–630. [Google Scholar] [CrossRef] [Green Version]
- Fedoroff, N.; Courty, M.A.; Guo, Z. Palaeosoils and Relict Soils: A Conceptual Approach. In Interpretation of Micromorphological Features of Soils and Regoliths, 2nd ed.; Stoops, G., Marcelino, V., Mees, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 821–862. [Google Scholar] [CrossRef]
- Boulangé, B. Les Formations Bauxitiques Latéritiques de Côte d’Ivoire. In Les Facies, Leur Transformation, Leur Distribution et L’évolution du Modelt; Trav. Docum. 175; ORSTOM: Paris, France, 1984; pp. 1–365. [Google Scholar]
- Tardy, Y. Petrology of Laterites and Tropical Soils; A.A. Balkema Publishers: Rotterdam, The Netherlands, 1997; pp. 1–419. [Google Scholar]
- Łydka, K. Petrologia Skał Osadowych; Wydawnictwa Geologiczne: Warszawa, Poland, 1985; pp. 1–286.
- Horbe, A.M.; Anand, R.R. Bauxite on igneous rocks from Amazonia and Southwestern of Australia: Implication for weathering process. J. Geochem. Explor. 2011, 111, 1–12. [Google Scholar] [CrossRef]
- Nahon, D.B. Introduction to the Petrology of Soils and Chemical Weathering; John Wiley & Sons Inc.: New York, NY, USA, 1991; pp. 1–313. [Google Scholar]
- Anand, R.R.; Paine, M. Regolith geology of the Yilgarn Craton, Western Australia: Implications for exploration. Aust. J. Earth Sci. 2002, 49, 3–162. [Google Scholar] [CrossRef]
- Ryka, W.; Maliszewska, A. Słownik Petrograficzny; Wydawnictwa Geologiczne: Warszawa, Poland, 1991; pp. 1–413.
- Ljunggren, P. Differential thermal analysis and X-ray examination of Fe and Mn bog ores. Geologiska Foreningens i Stockholm Forhandlingar 1955, 77, 135–147. [Google Scholar] [CrossRef]
- De Geyter, G.; Vandenberghe, R.G.; Verdonck, L.; Stoops, G. Mineralogy of Holocene bog iron ore in northern Belgium. Neues Jahrb. Mineral. Abh. 1985, 163, 1–17. [Google Scholar]
- Landuydt, C.J. Micromorphology of Iron Minerals from Bog Ores of the Belgian Campine Area. Dev. Soil Sci. 1990, 19, 289–294. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides. Structure, Properties, Reactions, Occurrences and Uses; VCH: Weinheim, Germany, 1998; pp. 1–664. [Google Scholar] [CrossRef]
- Stoops, G. SEM and Light Microscopic Observations of Minerals in Bog-Ores of the Belgian Campine. Dev. Soil Sci. 1983, 12, 179–186. [Google Scholar] [CrossRef]
- Mermut, A.R.; Dasog, G.S. Nature and Micromorphology of Carbonate Glaebules in Some Vertisols of India. Soil Sci. Soc. Am. J. 1986, 50, 382–391. [Google Scholar] [CrossRef]
- Gallaher, R.N.; Perkins, H.F.; Tan, K.H. Chemical and mineralogical changes in glaebules and enclosing soil with depth in a plinthic soil. Soil Sci. 1974, 117, 336–342. [Google Scholar] [CrossRef]
- Piotrowski, S. Geochemical characteristics of bottom sediments in the Odra River estuary—Roztoka Odrzańska (north-west Poland). Geol. Q. 2004, 48, 61–76. [Google Scholar]
- Copernicus Sentinel Data 2016 & 2017. EOX IT Services GmBH. Available online: https://sentinel.esa.int (accessed on 1 May 2019).
- Buchholz, W.; Kreft, A.; Parzonka, W.; Coufal, R.; Meyer, Z. Warunki hydrologiczne estuarium Odry. In Regionalne Problemy Gospodarki Wodnej i Hydrotechniki; Wydawnictwo Uczelniane PS: Szczecin, Poland, 2004; pp. 11–20. [Google Scholar]
- Piotrowski, A. Objaśnienia do Szczegółowej Mapy Geologicznej Polski 1:50,000, Arkusz Police (190); Wyd. Państwowego Instytutu Geologicznego: Warszawa, Poland, 1982; pp. 1–82.
- Malinowski, R.; Niedźwiecki, E.; Kowalski, W.A.; Protasowicki, M. Charakterystyka wybranych elementów środowiska przyrodniczego Wyspy Chełminek. Cz. I. Różnicowanie się cech morfologicznych i właściwości gleb powstających z piaszczystych osadów dennych w wyniku ich zalesienia na wyspie Chełminek. Folia Pomer. Univ. Technol. Stetin. Ser. Agric. Aliment. Pisc. Zootech 2012, 300, 73–82. [Google Scholar]
- Kowalewska-Kalkowska, H. Rola Wezbrań Sztormowych w Kształtowaniu Ustroju Wodnego Układu Dolnej Odry i Zalewu Szczecińskiego; Wydawnictwo Naukowe US: Szczecin, Poland, 2012; pp. 1–258. [Google Scholar]
- Borówka, R. Krajobrazy Zalewu Szczecińskiego i jego otoczenia. Prace Komisji Paleogeografii Czwartorzędu Polskiej Akademii Umiejętności 2003, 1, 89–91. [Google Scholar]
- Duda, T. Sedymentacja osadów fluwialnych w Dolinie Dolnej Odry rozwijającej się pod wpływem długotrwałego wzrostu poziomu morza. In Rozprawy i Studia (945)871; Wydawnictwo Naukowe US: Szczecin, Poland, 2013; pp. 1–156. [Google Scholar]
- Poleszczuk, G.; Piesik, Z. On differences in chemical composition occurring between surface and near bottom water in the Szczecin Lagoon. Balt. Coast. Zone 2000, 4, 27–43. [Google Scholar]
- Landsberg-Uczciwek, M.; Złoczorska, I.; Kordas, A.; Wierzchowska, E.; Mazur-Chrzanowska, B.; Sroka, E.; Konon-Szatkowska, H.; Gajdecki, A. Ocena Jakości wód Powierzchniowych w Województwie Zachodniopomorskim za 2015 Rok; Archiwum WIOŚ w Szczecinie: Szczecin, Poland, 2016. [Google Scholar]
- Nałęcz, T. Geochemical Atlas of Szczecin Agglomeration, Part II; Ekologicznej, S.A., Ed.; Wydawnictwo Kartograficzne Polskiej Agencji: Warszawa, Poland, 1998; pp. 1–16. [Google Scholar]
- Romanowska-Duda, Z. Metale ciężkie jako specyficzne zanieczyszczenia środowiska wodnego. Acta Innov. 2015, 15, 1–18. [Google Scholar]
- Lis, J.; Pasieczna, A. Geochemical Atlas of Szczecin Agglomeration, Part I; Ekologicznej, S.A., Ed.; Wydawnictwo Kartograficzne Polskiej Agencji: Warszawa, Poland, 1998; pp. 1–18. [Google Scholar]
- Borówka, R.; Skowronek, A.; Osadczuk, A.; Witkowski, A.; Maciąg, Ł.; Tomkowiak, J.; Bieniek, B.; Kosińska, B. Litologia i geochemia osadów wschodniej części Zalewu Szczecińskiego (Zalew Wielki). In Budowa Geologiczna Południowego Bałtyku i Pomorza Środkowego Oraz Aktualne Problemy Geologii Morza w Perspektywie Polskich Badań Oceanicznych, Proceedings of the 85 Zjazd Naukowy Polskiego Towarzystwa Geologicznego, Koszalin, Poland, 18–21 September 2017; Państwowy Instytut Geologiczny-Państwowy Instytut Badawczy PGI-PIB: Warszawa, Poland, 2017; pp. 43–50. [Google Scholar]
- Piotrowski, S. Zawartość metali ciężkich (Cu, Zn, Pb, Co, Cd, Hg) w wybranych elementach ekosystemu estuarium Odry. Przegląd Geologiczny 2007, 55, 193–197. [Google Scholar]
- Lithogenetic Map of Poland. Available online: www.geolog.gov.pgi.pl (accessed on 1 June 2019).
- Grazulis, S.; Chateigner, D.; Downs, R.T.; Yokochi, A.T.; Quiros, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A. Crystallography Open Database—An open-access collection of crystal structures. J. Appl. Cryst. 2009, 42, 726–729. [Google Scholar] [CrossRef]
- Alvarez, M.; Sileo, E.E.; Rueda, E.H. Structure and reactivity of synthetic Co-substituted goethites. Am. Mineral. 2008, 93, 584–590. [Google Scholar] [CrossRef]
- Gualtieri, A.; Venturelli, P. In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction. Am. Mineral. 1999, 84, 895–904. [Google Scholar] [CrossRef]
- Patrat, G.; de Bergevin, F.; Pernet, M.; Joubert, J.C. Structure locale de δ-FeOOH. Acta Crystallogr. Sect. B Struct. Sci. 1983, 39, 165–170. [Google Scholar] [CrossRef]
- Goldsztaub, M. Etude de quelques derives de l’oxyde ferrique (FeOOH, FeO2Na, FeOCl) determination de leurs structures. Bulletin de la Societe Francaise de Mineralogie 1935, 58, 6. [Google Scholar]
- Jansen, E.; Kyek, A.; Schafer, W.; Schwertmann, U. The structure of six-line ferrihydrite. Appl. Phys. A 2002, 74, 1004–1006. [Google Scholar] [CrossRef]
- Zhang, J.; Guyot, F. Thermal equation of iron and Fe0.91Si0.09. Phys. Chem. Mineral. 1999, 26, 206–211. [Google Scholar] [CrossRef]
- Mori, H.; Ito, T. The structure of vivianite and symplesite. Acta Crystallogr. 1950, 3, 1–6. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Scholz, R.; Aksenov, S.M.; Rastsvetaeva, R.K.; Pekov, I.V.; Belakovskiy, D.I.; Krambrock, K.; Paniago, R.M.; Righi, A.; Martins, R.F.; et al. Metavivianite, Fe2+Fe3+2(PO4)2(OH)2·6H2O: New data and formula revision. Mineral. Mag. 2012, 76, 725–741. [Google Scholar] [CrossRef]
- Lavina, B.; Dera, P.; Downs, R.T.; Yang, W.; Sinogeikin, S.; Meng, Y.; Shen, G.; Schiferl, D. Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Phys. Rev. B 2010, 82, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Gualtieri, A.F. Accuracy of XRPD QPA using the combined Rietveld-RIR method. J. Appl. Crystallogr. 2000, 33, 267–278. [Google Scholar] [CrossRef]
- Gournis, D.; Lappas, A.; Karakassides, M.A.; Tobbens, D.; Moukarika, A. A neutron diffraction study of alkali cation migration in montmorillonites. Phys. Chem. Mineral. 2008, 35, 49–58. [Google Scholar] [CrossRef]
- Nickel, E.H. New data on woodwardite. Mineral. Mag. 1976, 43, 644–647. [Google Scholar] [CrossRef]
- Witzke, T.; Raade, G. Zincowoodwardite, [Zn1-xAlx(OH)2][(SO4)x/2(H2O)n], a new mineral of the hydrotalcite group. Neues Jahrbuch für Mineralogie Monatshefte 2000, 10, 455–465. [Google Scholar]
- Effenberger, H.; Mereiter, K.; Zemann, J. Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates. Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie 1981, 156, 233–243. [Google Scholar]
- Fjellvag, H.; Hauback, B.C.; Vogt, T.; Stolen, S. Monoclinic nearly stoichiometric wüstite at low temperatures. Am. Mineral. 2002, 87, 347–349. [Google Scholar] [CrossRef]
- Virtanen, K. Geological control of iron and phosphorous precipitates in mires of the Ruukki-Vihanti area, Central Finland. Bull. Geol. Surv. Finl. 1994, 375, 1–69. [Google Scholar]
- Postma, D. Formation of siderite and vivianite and the porewater composition of a recent bog sediment in Denmark. Chem. Geol. 1981, 31, 225–244. [Google Scholar] [CrossRef]
- Postma, D. Pyrite and siderite formation in brackish and freshwater swamp sediments. Am. J. Sci. 1982, 282, 1151–1183. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Guo, J.; Sun, Q.; Yang, H. Combined Fe/P and Fe/S ratios as a practicable index for estimating the release potential of internal-P in freshwater sediment. Environ. Sci. Pollut. Res. 2018, 25, 10740–10751. [Google Scholar] [CrossRef]
- Jensen, H.S.; Kristensen, P.; Jeppesen, E.; Skytthe, A. Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 1992, 235, 731–743. [Google Scholar] [CrossRef]
- Migaszewski, Z.M.; Gałuszka, A. Geochemia Środowiska; Wydawnictwa Naukowe PWN: Warszawa, Poland, 2007; pp. 1–574. [Google Scholar]
- Jones, B.F.; Bowser, C.J. The mineralogy and related chemistry of lake sediments. In Lakes, Chemistry, Geology, Physics; Lerman, A., Ed.; Springer: New York, NY, USA, 1978; pp. 179–236. [Google Scholar]
- Mozley, P.S. The internal structure of carbonate concretions in mudrocks: A critical evaluation of the conventional concentric model of concretion growth. Sedim. Geol. 1996, 103, 85–91. [Google Scholar] [CrossRef]
- Clarke, J.D.A.; Chenoweth, L. Classification, genesis and evolution of ferruginous surface grains. AGSO J. Aust. Geol. Geophys. 1996, 16, 213–221. [Google Scholar]
- Depowski, S.; Kotliński, R.; Rühle, E.; Szamałek, K. Surowce Mineralne Mórz i Oceanów; Wydawnictwo Naukowe SCHOLAR: Warszawa, Poland, 1998; pp. 1–384. [Google Scholar]
- Szamałek, K.; Uścinowicz, S.; Zglinicki, K. Rare earth elements in Fe-Mn nodules from southern Baltic Sea—A preliminary study. Biuletyn Państwowego Instytutu Geologicznego 2018, 472, 199–212. [Google Scholar] [CrossRef]
- Kraczkowska, I.; Ratajczak, T.; Rzepa, G. Skład mineralny oraz właściwości fizykomechaniczne kawałkowych odmian rud darniowych stosowanych w historycznym budownictwie na ziemiach polskich. Przegląd Geologiczny 2001, 49, 1147–1156. [Google Scholar]
- Scott, P.W.; Ealey, P.J.; Rollinson, G.K. Bog iron ore from Lowland Point, St Keverne, Lizard, Cornwall. Geosci. South-West Engl. 2011, 12, 260–268. [Google Scholar]
- Kociszewska-Musiał, G. Surowce Mineralne Czwartorzędu; Wydawnictwa Geologiczne: Warszawa, Poland, 1988; pp. 1–280.
- Warencow, I.; Błaszczyszyn, A. Konkrecje manganowe w dnie Morza Bałtyckiego. In Geologia Morza Bałtyckiego; Gudelis, W.K., Jemielianow, J.M., Eds.; Wydawnictwa Geologiczne: Warszawa, Poland, 1982; pp. 307–345. [Google Scholar]
- Białaczewski, A. Rudy darniowe. In Budowa Geologiczna Polski, Złoża Surowców Mineralnych; Osika, R., Ed.; Wydawnictwa Geologiczne: Warszawa, Poland, 2007; Volume 6, pp. 278–282. [Google Scholar]
- Kotlarczyk, J.; Ratajczak, T. Ochra Karpacka z Czerwonek Hermanowskich koło Tyczyna; Wydawnictwo IGSMiE PAN: Kraków, Poland, 2002; pp. 1–120. [Google Scholar]
- Wyderko-Delekta, M.; Bolewski, A. Mineralogia Spieków i Grudek Rudnych; Wydawnictwa AGH: Kraków, Poland, 1995; pp. 1–280. [Google Scholar]
- Mineral Data Publishing, Version I. Available online: www.webmineral.com (accessed on 1 June 2019).
- Zglinicki, K.; Szamałek, K.; Uścinowicz, S.; Damrat, M.; Szefler, K.; Nowak, J.; Zhamoida, V.; Krek, A.; Bubnova, E. Metale w konkrecjach Fe-Mn z polskiego sektora Morza Bałtyckiego. In Proceedings of the II Konferencja Naukowa Polskich Badaczy Morza, Gdynia, Poland, 24–25 September 2019. [Google Scholar] [CrossRef]
Surface Sediments | Al | Ca | Mg | Fe | P | S | Mn | Cr | Zn | pH/cond. |
(%) | (ppm) | (mS/cm) | ||||||||
Gunica | 0.12 | 1.23 | 0.08 | 0.87 | 0.085 | 0.047 | 283 | 2 | 33 | - |
Gowienica | 0.14 | 0.60 | 0.04 | 0.95 | 0.080 | 0.073 | 1287 | 2 | 28 | - |
Krępa | 0.19 | 0.79 | 0.03 | 0.96 | 0.100 | 0.193 | 229 | 2 | 37 | - |
Odra | 0.28 | 1.27 | 0.09 | 1.38 | 0.101 | 0.134 | 634 | 10 | 152 | - |
Szczecin Lagoon | 0.08 | 0.94 | 0.05 | 0.28 | 0.027 | 0.041 | 212 | 2 | 60 | - |
Surface Water | Al | Ca | Mg | Fe | SiO2 | SO4 | Mn | Cr | Zn | pH/cond. |
(ppm) | (ppb) | (mS/cm) | ||||||||
Gunica | <0.05 | 116 | 9.7 | 0.26 | 12.5 | 142 | 369 | <4 | <5 | 7.5/1.54 |
Gowienica | <0.05 | 75 | 5.2 | 0.36 | 9.6 | 65 | 217 | <4 | <5 | 7.2/0.51 |
Krępa | 0.11 | 51 | 3.2 | 0.44 | 11.0 | 59 | 172 | <4 | <5 | 4.1/0.44 |
Odra | <0.05 | 75 | 12.1 | 0.04 | 3.5 | 105 | 75 | <4 | 6 | 7.9/0.78 |
Szczecin Lagoon | <0.05 | 92 | 14.8 | 1.00 | 13.1 | 86 | 247 | <4 | <5 | 8.4/2.05 |
Identified Minerals with Theoretical Chemical Formula | Content (%) | ||
---|---|---|---|
Roztoka O. (FEO8) | Dąbie Lake | Szczecin Lagoon | |
quartz β-SiO2 | 7.0 | 10.0 | 78.9 |
goethite α-FeO(OH) | 29.8 | - | - |
hematite Fe2O3 | 6.5 | - | - |
wüstite FeO | - | 1.5 | traces 1 |
proto-hematite Fe1.9H0.06O3 | 6.4 | - | - |
lepidocrocite γ-FeO(OH) | 2.7 | - | - |
ferrihydrite (Fe3+)2O3·0.5H2O | 5.5 | - | - |
native iron Fe | traces 1 | traces 1 | - |
vivianite-metavivianite Fe2+Fe2+2(PO4)2·8H2O Fe3+2(PO4)2(OH)2∙6H2O | 9.7 | - | 1.8 |
siderite FeCO3 | 4.3 | 88.4 2 | 18.5 |
illite K0.6-0.85Al2(Si,Al)4O10(OH)2 | 26.1 | - | - |
montmorillonite (Fe-smectite) (CaO0.5,Na)0.3Fe3+2(Si,Al)4O10(OH)2·nH2O | 1.4 | - | - |
woodwardite-zincwoodwardite Cu4Al2(SO4)(OH)12·2–4(H2O) [Zn1-x Alx(OH)2][(SO4)x/2(H2O)n] | traces 1 | - | - |
Fe-hydroxides | Hematite | K-Feldspar | Zircon | Wdw/Zn-Wdw 2 | NI 3 | NI 3 | |
---|---|---|---|---|---|---|---|
Fe3+-H2O− | Fe3+-O2− | Zn2+-CO-H2O− | Fe-Cr | Si-Cr-Fe | |||
N = 43 | N = 3 | N = 2 | N = 1 | N = 2 | N = 3 | N = 2 | |
SiO2 | 4.95 | 7.93 | 57.69 | 23.15 | 4.97 | 10.06 | 53.18 |
Al2O3 | 0.76 | 0.69 | 18.27 | - | 0.73 | 0.19 | - |
MgO | 0.18 | - | - | - | - | - | - |
CaO | 2.35 | 2.91 | - | - | 1.73 | 1.54 | - |
Na2O | traces 1 | - | - | - | - | - | - |
K2O | - | - | 20.04 | - | - | - | - |
MnO | 0.35 | - | - | - | - | 0.52 | - |
FeOt | - | - | 4.01 | 5.03 | 24.58 | 72.17 | 3.61 |
Fe2O3 | 80.89 | 84.90 | - | - | - | - | - |
Cr2O3 | - | traces 1 | - | - | - | 4.68 | 15.60 |
V2O5 | traces 1 | - | - | - | - | - | - |
ZnO | traces 1 | - | - | - | 11.94 | - | - |
P2O5 | 4.79 | 3.22 | - | - | 2.30 | 3.33 | 0.48 |
ZrO2 | - | - | - | 71.81 | - | - | - |
SO2− | 0.23 | 0.35 | - | - | 9.27 | - | - |
CO2− | - | - | - | - | 22.67 | - | 23.13 |
F− | traces 1 | - | - | - | - | - | - |
H2O− | 13.83 | - | - | - | 21.81 | 7.50 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciąg, Ł.; Rydzewska, U.; Skowronek, A.; Salwa, S. Mineralogy and Geochemistry of Fluvial-Lacustrine Pisolith Micronodules from the Roztoka Odrzańska, Odra River, NW Poland. Geosciences 2020, 10, 3. https://doi.org/10.3390/geosciences10010003
Maciąg Ł, Rydzewska U, Skowronek A, Salwa S. Mineralogy and Geochemistry of Fluvial-Lacustrine Pisolith Micronodules from the Roztoka Odrzańska, Odra River, NW Poland. Geosciences. 2020; 10(1):3. https://doi.org/10.3390/geosciences10010003
Chicago/Turabian StyleMaciąg, Łukasz, Urszula Rydzewska, Artur Skowronek, and Sylwester Salwa. 2020. "Mineralogy and Geochemistry of Fluvial-Lacustrine Pisolith Micronodules from the Roztoka Odrzańska, Odra River, NW Poland" Geosciences 10, no. 1: 3. https://doi.org/10.3390/geosciences10010003
APA StyleMaciąg, Ł., Rydzewska, U., Skowronek, A., & Salwa, S. (2020). Mineralogy and Geochemistry of Fluvial-Lacustrine Pisolith Micronodules from the Roztoka Odrzańska, Odra River, NW Poland. Geosciences, 10(1), 3. https://doi.org/10.3390/geosciences10010003