GIS Spatial Analysis Modeling for Land Use Change. A Bibliometric Analysis of the Intellectual Base and Trends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Methodology
- The portrayal of the evolution, including the dynamics and trends, in scientific publications over the last three decades.
- Analysis of the collaboration activities of authors, organizations, and countries.
- Presentation of the intellectual base for GIS-based land use change models, emerging problems, and research challenges.
2.2. Data Acquisition and Workflow
3. Results
3.1. Scientific Productivity in the Field of GIS Spatial Analysis Modeling for Land Use Change
3.2. Collaboration and Geographic Distribution
3.3. Main Research Areas, Intellectual Structure, and Emerging Trends
- land use change documentation, especially the analysis of land flows and trajectories, i.e., urban growth, deforestation, and agricultural intensification, as well as the causes of land use change.
- Land use changes in relation to environmental changes, including climate, soil, water, and ecosystem services.
- Prediction of future land use based on geographical and socio-economic factors.
3.3.1. Land Use Change Trajectories, Flow, and Causes
3.3.2. Consequences of Land Use Changes
3.3.3. Prediction of Future Land Use Software and Applications
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Chapin, F.S.; Matson, P.A.; Mooney, H.A. Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2002; pp. 305–330. [Google Scholar]
- Vitousek, P.M. Beyond Global Warming: Ecology and Global Change. Ecology 1994, 75, 1861–1876. [Google Scholar] [CrossRef]
- Lambin, E.F.; Rounsevell, M.D.A.; Geist, H.J. Are agricultural land-use model able to predict changes in land-use intensity. Agric. Ecosyst. Environ. 2000, 82, 321–331. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of Land-Use and Land-Cover Change in Tropical Regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Geist, H.J.; Lambin, E.F. Proximate Causes and Underlying Driving Forces of Tropical Deforestation Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. BioScience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Veldkamp, A.; Lambin, E. Predicting land-use change. Agric. Ecosyst. Environ. 2001, 85, 1–6. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L., II; Geist, H.; Agbola, S.; Angelsen, A.; Bruce, J.W.; Coomes, O.; Dirzo, R.; Fischer, G.; Folke, C.; et al. Our emerging understanding of the causes of land-use and—Cover change. Global Environ. Change 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Magliocca, N.R.; Rudel, T.K.; Verburg, P.H.; McConnell, W.J.; Mertz, O.; Gerstner, K.; Heinimann, A.; Ellis, E.C. Synthesis in land change science: Methodological patterns, challenges, and guidelines. Reg. Environ. Chang. 2014, 15, 211–226. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet, N.; Mertz, O.; Heinimann, A.; Langanke, T.; Pascual, U.; Schmook, B.; Adams, C.; Schmidt-Vogt, D.; Messerli, P.; Leisz, S.; et al. Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: A global assessment. Glob. Environ. Chang. 2012, 22, 418–429. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Dynamic Causal Patterns of Desertification. Bioscience 2004, 54, 817–829. [Google Scholar] [CrossRef] [Green Version]
- Keys, E.; McConnell, W.J. Global change and the intensification of agriculture in the tropics. Glob. Environ. Chang. 2005, 15, 320–337. [Google Scholar] [CrossRef]
- Van Vliet, J.; De Groot, H.L.; Rietveld, P.; Verburg, P.H. Manifestations and underlying drivers of agricultural land use change in Europe. Landsc. Urban Plan. 2015, 133, 24–36. [Google Scholar] [CrossRef]
- Van Asselen, S.; Verburg, P.H.; Vermaat, J.E.; Janse, J.H. Drivers of Wetland Conversion: A Global Meta-Analysis. PLoS ONE 2013, 8, e81292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Vliet, J.; Magliocca, N.R.; Büchner, B.; Cook, E.; Benayas, J.M.R.; Ellis, E.C.; Heinimann, A.; Keys, E.; Lee, T.M.; Liu, J.; et al. Meta-studies in land use science: Current coverage and prospects. Ambio 2015, 45, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Mas, J.-F.; Kolb, M.; Paegelow, M.; Olmedo, M.T.C.; Houet, T. Inductive pattern-based land use/cover change models: A comparison of four software packages. Environ. Model. Softw. 2014, 51, 94–111. [Google Scholar] [CrossRef] [Green Version]
- Michetti, M.; Zampieri, M. Climate–Human–Land Interactions: A Review of Major Modelling Approaches. Land 2014, 3, 793–833. [Google Scholar] [CrossRef]
- Dang, A.N.; Kawasaki, A. A Review of Methodological Integration in Land-Use Change Models. Int. J. Agric. Environ. Inf. Syst. 2016, 7, 1–25. [Google Scholar] [CrossRef]
- Santé, I.; García, A.M.; Miranda, D.; Crecente, R. Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landsc. Urban Plan. 2010, 96, 108–122. [Google Scholar] [CrossRef]
- Parker, D.C.; Manson, S.M.; Janssen, M.A.; Hoffmann, M.J.; Deadman, P. Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: A Review. Ann. Assoc. Am. Geogr. 2003, 93, 314–337. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Garfield, E. Citation Indexing: Its Theory and Application in Science, Technology, and Humanities, 1st ed.; Wiley: New York, NY, USA, 1979; ISBN 978-0471025597. [Google Scholar]
- Bar-Ilan, J. Citations to the “Introduction to informetrics” indexed by WOS, Scopus and Google Scholar. Science 2010, 82, 495–506. [Google Scholar] [CrossRef]
- Callon, M.; Courtial, J.P.; Laville, F. Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemistry. Science 1991, 22, 155–205. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2009, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- InCites. Available online: https://clarivate.libguides.com/ld.php?content_id=25246846 (accessed on 12 June 2020).
- Perianes-Rodriguez, A.; Waltman, L.; Van Eck, N.J. Constructing bibliometric networks: A comparison between full and fractional counting. J. Inf. 2016, 10, 1178–1195. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, L.; Fath, B.D.; Yang, Z.; Yin, X.; Su, M.; Liu, G.; Li, Y. Development of a spatially explicit network model of urban metabolism and analysis of the distribution of ecological relationships: Case study of Beijing, China. J. Clean. Prod. 2016, 112, 4304–4317. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, C.; Wang, G.; Bao, S. An integrated sustainable development approach to modeling the eco-environmental effects from urbanization. Ecol. Indic. 2011, 11, 1599–1608. [Google Scholar] [CrossRef]
- Lambin, E.F. Modelling and monitoring land-cover change processes in tropical regions. Prog. Phys. Geogr. Earth Environ. 1997, 21, 375–393. [Google Scholar] [CrossRef]
- De Vente, J.; Poesen, J.; Verstraeten, G.; Govers, G.; Vanmaercke, M.; Van Rompaey, A.; Arabkhedri, M.; Boix-Fayos, C. Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth Sci. Rev. 2013, 127, 16–29. [Google Scholar] [CrossRef]
- Liu, J.; Deng, X. Progress of the research methodologies on the temporal and spatial process of LUCC. Chin. Sci. Bull. 2010, 55, 1354–1362. [Google Scholar] [CrossRef]
- Serra, P.; Vera, A.; Tulla, A.F.; Salvati, L. Beyond urban–rural dichotomy: Exploring socioeconomic and land-use processes of change in Spain (1991–2011). Appl. Geogr. 2014, 55, 71–81. [Google Scholar] [CrossRef]
- Bakker, M.M.; Govers, G.; Van Doorn, A.; Quetier, F.; Chouvardas, D.; Rounsevell, M. The response of soil erosion and sediment export to land-use change in four areas of Europe: The importance of landscape pattern. Geomorphology 2008, 98, 213–226. [Google Scholar] [CrossRef]
- Yao, X.; Wang, Z.; Wang, H. Impact of Urbanization and Land-Use Change on Surface Climate in Middle and Lower Reaches of the Yangtze River, 1988–2008. Adv. Meteorol. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- De Groot, R.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- McGuire, A.D.; Sitch, S.; Clein, J.S.; Dargaville, R.; Esser, G.; Foley, J.; Heimann, M.; Joos, F.; Kaplan, J.; Kicklighter, D.W.; et al. Carbon balance of the terrestrial biosphere in the Twentieth Century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Glob. Biogeochem. Cycles 2001, 15, 183–206. [Google Scholar] [CrossRef] [Green Version]
- Luck, M.; Wu, J. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 2002, 17, 327–339. [Google Scholar] [CrossRef]
- Metternicht, G.; Zinck, J. Remote sensing of soil salinity: Potentials and constraints. Remote. Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Weng, Q. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J. Environ. Manag. 2002, 64, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Zomer, R.J.; Trabucco, A.; Bossio, D.A.; Verchot, L.V. Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 2008, 126, 67–80. [Google Scholar] [CrossRef]
- Stow, D.A.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houston, S.; Racine, C.; Sturm, M.; Tape, K.; et al. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote. Sens. Environ. 2004, 89, 281–308. [Google Scholar] [CrossRef] [Green Version]
- Antrop, M.; Van Eetvelde, V. Holistic aspects of suburban landscapes: Visual image interpretation and landscape metrics. Landsc. Urban Plan. 2000, 50, 43–58. [Google Scholar] [CrossRef]
- Gerten, C.; Fina, S.; Rusche, K. The Sprawling Planet: Simplifying the Measurement of Global Urbanization Trends. Front. Environ. Sci. 2019, 7, 140. [Google Scholar] [CrossRef]
- Keil, R. Suburban Planet. Making the World Urban From the Outside; Polity Press: Medforg, MA, USA, 2018. [Google Scholar]
- EEA. European Environmental Agency, Land Take 2000–2018. Available online: https://www.eea.europa.eu/data-and-maps/dashboards/land-take-statistics (accessed on 3 June 2020).
- Henderson, J.V.; Turner, M.A. Urbanization in the Developing World: Too Fast, Too Slow or Just Right? Available online: https://www.brown.edu/Departments/Economics/Faculty/Matthew_Turner/ec2410/readings/Henderson_Turner_unp_2020.pdf (accessed on 12 August 2020).
- Yang, Y.; Liu, Y.; Li, Y.; Du, G. Quantifying spatio-temporal patterns of urban expansion in Beijing during 1985–2013 with rural-urban development transformation. Land Use Policy 2018, 74, 220–230. [Google Scholar] [CrossRef]
- Luo, J.; Wei, Y.D. Modeling spatial variations of urban growth patterns in Chinese cities: The case of Nanjing. Landsc. Urban Plan. 2009, 91, 51–64. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Helbich, M. Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Appl. Geogr. 2013, 40, 140–149. [Google Scholar] [CrossRef]
- Rega, C. A Closer Look to Processes of Territorial Transformations in Europe: Urbanization, Agricultural Intensification and Land Abandonment. In The Emergence of Biophilic Design; Springer: Cham, Switzerland, 2020; pp. 111–139. [Google Scholar]
- Delbecq, B.A.; Florax, R. Farmland allocation along the rural-urban gradient: The impacts of urbanization and urban spraw. In Proceedings of the Agricultural & Applied Economics Association 2010 AAEA, CAES, & WAEA, Joint Annual Annual Meeting, Denver, CO, USA, 25–27 July 2010; pp. 25–27. [Google Scholar]
- Nuissl, H.; Rink, D. The ‘production’ of urban sprawl in eastern Germany as a phenomenon of post-socialist transformation. Cities 2005, 22, 123–134. [Google Scholar] [CrossRef]
- Easterlin, R.A.; Angelescu, L.; Zweig, J.S. The Impact of Modern Economic Growth on Urban–Rural Differences in Subjective Well-Being. World Dev. 2011, 39, 2187–2198. [Google Scholar] [CrossRef]
- Navarro, M.; D’Agostino, A.; Neri, L. The effect of urbanization on subjective well-being: Explaining cross-regional differences. Socio-Econ. Plan. Sci. 2020, 71, 100824. [Google Scholar] [CrossRef]
- Verburg, P.H.; Veldkamp, T.; Bouma, J. Land use change under conditions of high population pressure: The case of Java. Glob. Environ. Chang. 1999, 9, 303–312. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Müller, D.; Dubinin, M.; Baumann, M.; Radeloff, V.C. Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy 2013, 30, 873–884. [Google Scholar] [CrossRef] [Green Version]
- Bielecka, E.; Jenerowicz, A. Intellectual Structure of CORINE Land Cover Research Applications in Web of Science: A Europe-Wide Review. Remote. Sens. 2019, 11, 2017. [Google Scholar] [CrossRef] [Green Version]
- Senetra, A.; Szczepanska, A.; Veteikis, D.; Wasilewicz-Pszczółkowska, M.; Šimanauskienė, R.; Volungevicius, J. Changes of the land use patterns in Polish and Lithuanian trans-border rural area. Baltica 2013, 26, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Bielecka, E.; Jenerowicz, A.; Pokonieczny, K.; Borkowska, S. Land Cover Changes and Flows in the Polish Baltic Coastal Zone: A Qualitative and Quantitative Approach. Remote. Sens. 2020, 12, 2088. [Google Scholar] [CrossRef]
- Serneels, S.; Lambin, E.F. Proximate causes of land-use change in Narok District, Kenya: A spatial statistical model. Agric. Ecosyst. Environ. 2001, 85, 65–81. [Google Scholar] [CrossRef] [Green Version]
- Goga, T.; Feranec, J.; Bucha, T.; Rusnák, M.; Sačkov, I.; Barka, I.; Kopecka, M.; Papčo, J.; Oťaheľ, J.; Szatmári, D.; et al. A Review of the Application of Remote Sensing Data for Abandoned Agricultural Land Identification with Focus on Central and Eastern Europe. Remote. Sens. 2019, 11, 2759. [Google Scholar] [CrossRef] [Green Version]
- Hoyos, L.; Cabido, M.; Cingolani, A.M. A Multivariate Approach to Study Drivers of Land-Cover Changes through Remote Sensing in the Dry Chaco of Argentina. ISPRS Int. J. Geo-Information 2018, 7, 170. [Google Scholar] [CrossRef] [Green Version]
- Noszczyk, T. A review of approaches to land use changes modeling. Hum. Ecol. Risk Assess. Int. J. 2018, 25, 1377–1405. [Google Scholar] [CrossRef]
- Maes, J.; Egoh, B.; Willemen, L.; Liquete, C.; Vihervaara, P.; Schägner, J.P.; Grizzetti, B.; Drakou, E.G.; La Notte, A.; Zulian, G.; et al. Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst. Serv. 2012, 1, 31–39. [Google Scholar] [CrossRef]
- Kozak, J.; Estreguil, C.; Troll, M. Forest cover changes in the northern Carpathians in the 20th century: A slow transition. J. Land Use Sci. 2007, 2, 127–146. [Google Scholar] [CrossRef]
- Pazúr, R.; Lieskovský, J.; Feranec, J.; Oťaheľ, J. Spatial determinants of abandonment of large-scale arable lands and managed grasslands in Slovakia during the periods of post-socialist transition and European Union accession. Appl. Geogr. 2014, 54, 118–128. [Google Scholar] [CrossRef]
- Estel, S.; Kuemmerle, T.; Alcántara, C.; Levers, C.; Prishchepov, A.; Hostert, P. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote. Sens. Environ. 2015, 163, 312–325. [Google Scholar] [CrossRef]
- Statuto, D.; Cillis, G.; Picuno, P. Analysis of the effects of agricultural land use change on rural environment and landscape through historical cartography and GIS tools. J. Agric. Eng. 2016, 47, 28. [Google Scholar] [CrossRef] [Green Version]
- Statuto, D.; Cillis, G.; Picuno, P. Using Historical Maps within a GIS to Analyze Two Centuries of Rural Landscape Changes in Southern Italy. Land 2017, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Cillis, G.; Statuto, D.; Picuno, P. Historical maps processed into a GIS for the assessment of forest landscape dynamics. In Proceedings of the Public Recreation and Landscape Protection—With Man and Hand in Hand, Brno, Czech Republic, 3—5 May 2019; Fialová, J., Pernicová, D., Eds.; Mendel University: Brno, Czech Republic, 2019; pp. 68–74. [Google Scholar]
- NOAA. Historical Land-Cover Change and Land-Use Conversions Global Dataset. Available online: https://data.noaa.gov/dataset/dataset/historical-land-cover-change-and-land-use-conversions-global-dataset (accessed on 28 August 2020).
- Manakos, I.; Tomaszewska, M.; Gkinis, I.; Brovkina, O.; Filchev, L.; Genc, L.; Gitas, I.Z.; Halabuk, A.; Inalpulat, M.; Irimescu, A.; et al. Comparison of Global and Continental Land Cover Products for Selected Study Areas in South Central and Eastern European Region. Remote. Sens. 2018, 10, 1967. [Google Scholar] [CrossRef] [Green Version]
- Houghton, R.A. Releases of carbon to the atmosphere from degradation of forests in tropical Asia. Can. J. For. Res. 1991, 21, 132–142. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Hong, N.-M.; Wu, P.-J.; Wu, C.-F.; Verburg, P.H. Impacts of land use change scenarios on hydrology and land use patterns in the Wu-Tu watershed in Northern Taiwan. Landsc. Urban Plan. 2007, 80, 111–126. [Google Scholar] [CrossRef]
- Sun, G.; McNulty, S.G.; Myers, J.A.M.; Cohen, E.C. Impacts of Multiple Stresses on Water Demand and Supply across the Southeastern United States. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 1441–1457. [Google Scholar] [CrossRef]
- Du, J.; Qian, L.; Rui, H.; Zuo, T.; Zheng, D.; Xu, Y.; Xu, C.-Y. Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China. J. Hydrol. 2012, 464, 127–139. [Google Scholar] [CrossRef]
- Tang, Z.; Engel, B.; Pijanowski, B.; Lim, K. Forecasting land use change and its environmental impact at a watershed scale. J. Environ. Manag. 2005, 76, 35–45. [Google Scholar] [CrossRef]
- Solecki, W.D.; Oliveri, C. Downscaling climate change scenarios in an urban land use change model. J. Environ. Manag. 2004, 72, 105–115. [Google Scholar] [CrossRef]
- Verburg, P.H.; Eickhout, B.; Van Meijl, H. A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Ann. Reg. Sci. 2007, 42, 57–77. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; Schulp, C.; De Witte, N.; Veldkamp, A. Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agric. Ecosyst. Environ. 2006, 114, 39–56. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Chen, L.; Cheng, L.; Zhou, X.; Cui, Y.; Li, H.; Liu, W. Urban growth simulation in different scenarios using the SLEUTH model: A case study of Hefei, East China. PLoS ONE 2019, 14, e0224998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herold, M.; Goldstein, N.C.; Clarke, K.C. The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote. Sens. Environ. 2003, 86, 286–302. [Google Scholar] [CrossRef]
- Soares-Filho, B.S.; Cerqueira, G.C.; Pennachin, C.L. Dinamica—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol. Model. 2002, 154, 217–235. [Google Scholar] [CrossRef]
- Cheng, L.-L.; Liu, M.; Zhan, J.-Q. Land use scenario simulation of mountainous districts based on Dinamica EGO model. J. Mt. Sci. 2020, 17, 289–303. [Google Scholar] [CrossRef]
- Alcamo, J.; Kreileman, E.; Krol, M.; Leemans, R.; Bollen, J.; van Minnen, J.; Schaeffer, M.; Toet, S.; de Vries, H.J.M. Global modelling of environmental change: An overview of IMAGE 2. In Global Change Scenarios of the 21st Century—Results from the IMAGE 2.1 Model; Alcamo, J., Leemans, R., Kreileman, E., Eds.; Elseviers Science: Oxford, UK, 1999; pp. 3–94. [Google Scholar]
- Van Vuuren, D.P.; Bayer, L.B.; Chuwah, C.; Ganzeveld, L.; Hazeleger, W.; Hurk, B.V.D.; Van Noije, T.; O’Neill, B.; Strengers, B.J. A comprehensive view on climate change: Coupling of earth system and integrated assessment models. Environ. Res. Lett. 2012, 7, 024012. [Google Scholar] [CrossRef]
- GEMET, General Multilingual Environmental Thesaurus. Available online: https://www.eionet.europa.eu/gemet/en/concept (accessed on 31 August 2020).
- Fisher, P.; Comber, A.J.; Wadsworth, R. Land Use and Land Cover: Contradiction or Complement. In Re-Presenting GIS; Fisher, P., Unwin, D., Eds.; John Wiley & Sons, Ltd.: West Sussex, UK, 2005; pp. 85–98. [Google Scholar]
- Rossiter, D.G. ALES: A framework for land evaluation using a microcomputer. Soil Use Manag. 1990, 6, 7–20. [Google Scholar] [CrossRef]
- Bielecka, E.; Dukaczewski, D.; Janczar, E. Spatial Data Infrastructure in Poland—Lessons learnt from so far achievements. Geod. Cartogr. 2018, 67, 3–20. [Google Scholar] [CrossRef]
- Briassoulis, H. Analysis of Land Use Change: Theoretical and Modeling Approaches. In Web Book of Regional Science; Loveridge, S., Ed.; West Virginia University: Morgantown, WV, USA, 2019. [Google Scholar]
- ISO. ISO 19101-1:2014(en) Geographic Information—Reference Model.—Part. 1; ISO: Geneva, Switzerland, 2014. [Google Scholar]
- Miller, H.J.; Goodchild, M.F. Data-driven geography. GeoJournal 2014, 80, 449–461. [Google Scholar] [CrossRef]
Criteria | Details |
---|---|
Terms searched | TOPIC: (land use NEAR change Near spatial NEAR analysis) OR TOPIC: (land use NEAR change Near model NEAR spatial NEAR analysis) OR TOPIC: (land use NEAR change Near model GIS NEAR spatial NEAR analysis) OR TOPIC: (land cover NEAR change Near spatial NEAR analysis) OR TOPIC: (land cover NEAR change Near spatial NEAR analysis) |
Publication period | 1960–2020 (October) |
Language | English |
Document type | articles, book chapters, conference proceedings |
Objectives | Method | Indicator | Software |
---|---|---|---|
Dynamics and trends in research publication | Citation analysis | Number of publications and citations per year, most productive authors, and journals, statistical indicators (i.e., std. dev., relative standard deviation (RSD), variance-to-mean ratio (VMR), R-squared) | InCite, MS Excel |
Collaboration between authors, organizations, and countries | Co-occurrence network | Links (L), total link strength (TLS), number of publications | VOSviewer |
Intellectual base, research problems and challenges | Citation, co-citation, bibliographic coupling | Links (L), total link strength (TLS), number of publications/citations | VOSviewer InCite, |
Author | Institution, Country | TP 1 | %ISI 2 | TP ISI 3 | h-Index 4 (R) | Main Research Topics Using CLC Data | Highly Cited Paper in the Field; TC 5 |
---|---|---|---|---|---|---|---|
Verburg, Peter H. | Vrije Universiteit Amsterdam, The Netherlands | 20 | 6.13% | 326 | 79 (1) | Environmental sciences, ecology, geography | [28], 780 |
Veldkamp, Tom, A. | University of Twente, The Netherlands | 11 | 6.71% | 164 | 48 (4) | Environmental sciences, ecology, geography | [28] 780 |
Zhang, Yan | Beijing Normal University, China | 12 | 5.48% | 219 | 33 (7) | Environmental sciences, engineering environmental | [29], 74 |
Liu, Yaolin | Wuhan University, China | 8 | 8.51% | 94 | 19 (9) | Environmental sciences, remote sensing | [30], 67 |
Lambin, Eric F. | Stanford University, USA | 7 | 3.66% | 191 | 64 (3) | Environmental studies, ecology, remote sensing, geography | [31], 315 |
Poesen, Jean | Katholieke Universiteit Leuven, Belgium | 7 | 3.59% | 195 | 37 (5) | Geosciences multidisciplinary, geography | [32], 171 |
Deng, Xiangzheng | Chinese Academy of Sciences, China | 7 | 3.70% | 189 | 31 (7) | Environmental sciences, meteorology | [33], 57 |
Salvati, Luca | Italian Council of Agricultural Research and Economics, Italy | 6 | 1.99 | 301 | 36 (6) | Environmental sciences, geography, green sustainable science technology | [34], 133 |
Govers, Gerard | Katholieke Universiteit Leuven, Belgium | 6 | 2.01% | 299 | 75 (2) | Geosciences multidisciplinary, soil, geography | [35], 183 |
Zhanqi, Wang | China University of Geosciences, Wuhan, China | 6 | 2.4% | 125 | 7 (10) | Environmental studies, green sustainable science technology | [36], 19 |
Authors | Publication Title | Journal Name; JRC Journal Category; IF (2019) | Pub. Date | Total Citati-ons | Av. Cit./Year |
---|---|---|---|---|---|
De Groot, R. S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. | Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making [37] | Ecological Complexity; Ecology; 1.571 | Sep. 2010 | 1443 | 130.91 |
Verburg, P.H.; Soepboer, W.; Veldkamp, A.; et al. | Modeling the spatial dynamics of regional land use: The CLUE-S model [28] | Environmental Management; Environmental sciences; 2.561 | Sep. 2002 | 780 | 43.33 |
McGuire, A.D.; Sitch, S.; Clein, J.S.; et al. | Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models [38] | Global Biogeochemical Cycles; Environmental sciences; 5.74 | Mar. 2001 | 545 | 28.68 |
Luck, M.; Wu, J.G. | A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA [39] | Landscape Ecology; Ecology, geography physical; 4.354 | 2002 | 509 | 26.79 |
Metternicht, G.I.; Zinck, J.A. | Remote sensing of soil salinity: potentials and constraints [40] | Remote Sensing of Environment; Environmental sciences, Imaging science; 9.626 | April 2003 | 491 | 28.78 |
Weng, Q.H. | Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modeling [41] | Journal of Environmental Management; Environmental sciences; 5.708 | Mar. 2002 | 480 | 26.67 |
Zorner, R.J.; Trabucco, A.; Bossio, D.A.; Verchot, L.V. | Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation [42] | Agriculture Ecosystems & Environment; Agriculture, Ecology, Environmental Sciences; 4.241 | Jun. 2008 | 469 | 39.08 |
Seto, K.C.; Fragkias, M. | Quantifying spatiotemporal patterns of urban land-use change in four cities of China with time series landscape metrics [6] | Landscape Ecology; Ecology, geography physical; 4.354 | Nov. 2005 | 411 | 27.4 |
Stow, D.A.; Hope, A.; McGuire, D.; et al. | Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems [43] | Remote Sensing of Environment; Environmental sciences, Imaging science; 9.626 | Feb. 2004 | 406 | 25.38 |
Serra, P.; Pons, X.; Sauri, D. | Land-cover and land-use change in a Mediterranean landscape: A spatial analysis of driving forces integrating biophysical and human factors [34] | Applied Geography; Geography; 4.241 | July 2008 | 337 | 28.08 |
Journal | TP 1 | IF 2 | IF 5-Year (R) 3 | TC 4 | CPP 5 |
---|---|---|---|---|---|
Sustainability | 38 | 2.576 | 2.798 (9) | 229 | 6.0 |
Science of the Total Environment | 36 | 6.551 | 6.419 (2) | 712 | 19.8 |
Landscape Ecology | 31 | 3.385 | 4.354 (6) | 2409 | 77.7 |
Ecological Indicators | 28 | 4.229 | 4.968 (4) | 745 | 26.6 |
Land Use Policy | 27 | 3.682 | 4.151 (8) | 660 | 24.4 |
Agriculture Ecosystems & Environment | 25 | 4.241 | 4.825 (5) | 2405 | 96.2 |
Applied GEOGRAPHY | 23 | 3.508 | 4.241 (7) | 1163 | 50.6 |
Remote SENSING | 22 | 5.509 | 5.001 (3) | 364 | 16.5 |
Landscape and Urban Planning | 20 | 5.441 | 7.185 (1) | 1396 | 69.8 |
International Journal of Remote Sensing | 20 | 1.903 | 2.273 (10) | 1484 | 74.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielecka, E. GIS Spatial Analysis Modeling for Land Use Change. A Bibliometric Analysis of the Intellectual Base and Trends. Geosciences 2020, 10, 421. https://doi.org/10.3390/geosciences10110421
Bielecka E. GIS Spatial Analysis Modeling for Land Use Change. A Bibliometric Analysis of the Intellectual Base and Trends. Geosciences. 2020; 10(11):421. https://doi.org/10.3390/geosciences10110421
Chicago/Turabian StyleBielecka, Elzbieta. 2020. "GIS Spatial Analysis Modeling for Land Use Change. A Bibliometric Analysis of the Intellectual Base and Trends" Geosciences 10, no. 11: 421. https://doi.org/10.3390/geosciences10110421
APA StyleBielecka, E. (2020). GIS Spatial Analysis Modeling for Land Use Change. A Bibliometric Analysis of the Intellectual Base and Trends. Geosciences, 10(11), 421. https://doi.org/10.3390/geosciences10110421