Regional Flood Frequency Analysis Using an Artificial Neural Network Model
Abstract
:1. Introduction
2. Principle of ANN
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FitzGerald, G.; Du, W.; Jamal, A.; Clark, M.; Hou, X.Y. Flood fatalities in contemporary Australia (1997–2008). Emerg. Med. Australas. 2010, 22, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Loveridge, M.; Rahman, A. Monte Carlo simulation for design flood estimation: A review of Australian practice. Australas. J. Water Resour. 2018, 22, 52–70. [Google Scholar] [CrossRef]
- Wang, Z.; Chengguang, L.; Chen, X.; Yang, B.; Zhao, S.; Bai, X. Flood hazard risk assessment model based on random forest. J. Hydrol. 2015, 527, 1130–1141. [Google Scholar] [CrossRef]
- Myronidis, D.; Ioannou, K. Forecasting the Urban Expansion Effects on the Design Storm Hydrograph and Sediment Yield using Artificial Neural Networks. Water 2018, 11, 31. [Google Scholar] [CrossRef] [Green Version]
- Ouarda, T.B.; Girard, C.; Cavadias, G.S.; Bobée, B. Regional flood frequency estimation with canonical correlation analysis. J. Hydrol. 2001, 254, 157–173. [Google Scholar] [CrossRef]
- Ribatet, M.; Sauquet, E.; Gresillon, J.-M.; Ouarda, T.B.M.J. A regional Bayesian POT model for flood frequency analysis. Stoch. Environ. Res. Risk Assess. 2006, 21, 327–339. [Google Scholar] [CrossRef]
- Smith, J.; Eli, R.N. Neural-Network Models of Rainfall-Runoff Process. J. Water Resour. Plan. Manag. 1995, 121, 499–508. [Google Scholar] [CrossRef]
- Thorvat, A.R.; Mujumdar, M.M. Design flood estimation for Upper Krishna Basin through RFFA. Int. J. Eng. Sci. Technol. 2011, 3, 5252. [Google Scholar]
- Ouali, D.; Chebana, F.; Ouarda, T.B.M.J. Quantile Regression in Regional Frequency Analysis: A Better Exploitation of the Available Information. J. Hydrometeorol. 2016, 17, 1869–1883. [Google Scholar] [CrossRef]
- Haddad, K.; Rahman, A. Regional flood frequency analysis in eastern Australia: Bayesian GLS regression-based methods within fixed region and ROI framework – Quantile Regression vs. Parameter Regression Technique. J. Hydrol. 2012, 430, 142–161. [Google Scholar] [CrossRef]
- Ahn, K.-H.; Palmer, R.N. Regional flood frequency analysis using spatial proximity and basin characteristics: Quantile regression vs. parameter regression technique. J. Hydrol. 2016, 540, 515–526. [Google Scholar] [CrossRef]
- Srinivas, V.V.; Tripathi, S.; Rao, A.; Govindaraju, R. Regional flood frequency analysis by combining self-organizing feature map and fuzzy clustering. J. Hydrol. 2008, 348, 148–166. [Google Scholar] [CrossRef]
- Aziz, K.; Rahman, A.; Shamseldin, A.; Shoaib, M. Regional flood estimation in Australia: Application of gene expression programming and artificial neural network techniques. In Proceedings of the 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013. [Google Scholar]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Boil. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Baxt, W.G. Use of an Artificial Neural Network for Data Analysis in Clinical Decision-Making: The Diagnosis of Acute Coronary Occlusion. Neural Comput. 1990, 2, 480–489. [Google Scholar] [CrossRef]
- Amato, F.; López, A.; Peña-Méndez, E.M.; Vanhara, P.; Hampl, A.; Havel, J. Artificial neural networks in medical diagnosis. J. Appl. Biomed. 2013, 11, 47–58. [Google Scholar] [CrossRef]
- Lapedes, A.; Farber, R. Nonlinear signal processing using neural networks: Prediction and system modelling. In Proceedings of the IEEE international conference on neural networks, San Diego, CA, USA, 21 June 1987; p. 52. [Google Scholar]
- Hsu, K.-L.; Gupta, H.; Sorooshian, S. Artificial Neural Network Modeling of the Rainfall-Runoff Process. Water Resour. Res. 1995, 31, 2517–2530. [Google Scholar] [CrossRef]
- El-Shafie, A.; Mukhlisin, M.; Najah, A.A.; Taha, M.R. Performance of artificial neural network and regression techniques for rainfall-runoff prediction. Int. J. Phys. Sci. 2011, 6, 1997–2003. [Google Scholar]
- Aziz, K.; Rahman, A.; Fang, G.; Shrestha, S. Comparison of artificial neural networks and adaptive neuro-fuzzy inference system for regional flood estimation in Australia. In Hydrology and Water Resources Symposium 2012; Engineers Australia: Sydney, Australia, 2012; pp. 954–961. [Google Scholar]
- Aziz, K.; Rahman, A.; Fang, G.; Shrestha, S. Application of artificial neural networks in regional flood frequency analysis: A case study for Australia. Stoch. Environ. Res. Risk Assess. 2013, 28, 541–554. [Google Scholar] [CrossRef]
- Araghinejad, S. Data-Driven Modeling: Using MATLAB® in Water Resources and Environmental Engineering; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2014; Volume 67. [Google Scholar]
- Ito, Y. Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory. Neural Networks 1991, 4, 385–394. [Google Scholar] [CrossRef]
- Maier, H.R.; Dandy, G. The Use of Artificial Neural Networks for the Prediction of Water Quality Parameters. Water Resour. Res. 1996, 32, 1013–1022. [Google Scholar] [CrossRef]
- Wu, C.; Chau, K.-W. Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis. J. Hydrol. 2011, 399, 394–409. [Google Scholar] [CrossRef] [Green Version]
- Taormina, R.; Chau, K.-W.; Sethi, R. Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng. Appl. Artif. Intell. 2012, 25, 1670–1676. [Google Scholar] [CrossRef] [Green Version]
- Zemzami, M.; Benaabidate, L. Improvement of artificial neural networks to predict daily streamflow in a semi arid area. Hydrol. Sci. J. 2016, 61, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, K.; Myronidis, D.; Lefakis, P.; Stathis, D. The use of artificial neural networks (ANNs) for the forecast of precipitation levels of lake Doirani (N. Greece). Fresenius Environ. Bull. 2010, 19, 1921–1927. [Google Scholar]
- Myronidis, D.; Ioannou, K.; Fotakis, D.; Dörflinger, G. Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus. Water Resour. Manag. 2018, 32, 1759–1776. [Google Scholar] [CrossRef]
- French, M.N.; Krajewski, W.F.; Cuykendall, R.R. Rainfall forecasting in space and time using a neural network. J. Hydrol. 1992, 137, 1–31. [Google Scholar] [CrossRef]
- Crespo, J.; Mora, E. Drought estimation with neural networks. Adv. Eng. Softw. 1993, 18, 167–170. [Google Scholar] [CrossRef]
- Allen, G.; le Marshall, J. An evaluation of neural networks and discriminant analysis methods for application in operational rain forecasting. Aust. Meteorol. Mag. 1994, 43, 17–28. [Google Scholar]
- Karunanithi, N.; Grenney, W.J.; Whitley, D.; Bovee, K. Neural Networks for River Flow Prediction. J. Comput. Civ. Eng. 1994, 8, 201–220. [Google Scholar] [CrossRef]
- Raman, H.; Sunilkumar, N. Multivariate modelling of water resources time series using artificial neural networks. Hydrol. Sci. J. 1995, 40, 145–163. [Google Scholar] [CrossRef]
- Clair, T.A.; Ehrman, J.M. Variations in discharge and dissolved organic carbon and nitrogen export from terrestrial basins with changes in climate: A neural network approach. Limnol. Oceanogr. 1996, 41, 921–927. [Google Scholar] [CrossRef]
- Minns, A.W.; Hall, M.J. Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 1996, 41, 399–417. [Google Scholar] [CrossRef]
- Poff, N.L.; Tokar, S.; Johnson, P. Stream hydrological and ecological responses to climate change assessed with an artificial neural network. Limnol. Oceanogr. 1996, 41, 857–863. [Google Scholar] [CrossRef]
- Chow, T.W.S.; Cho, S.Y. Development of a recurrent Sigma-Pi neural network rainfall forecasting system in Hong Kong. Neural Comput. Appl. 1997, 5, 66–75. [Google Scholar] [CrossRef]
- Hsu, K.-L.; Gupta, H.V.; Gao, X.; Sorooshian, S.; Imam, B. Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis. Water Resour. Res. 2002, 38, 38-1–38-17. [Google Scholar] [CrossRef] [Green Version]
- Loke, E.; Warnaars, E.; Jacobsen, P.; Nelen, F.; do Ceu Almeida, M. Artificial neural networks as a tool in urban storm drainage. Water Sci. Technol. 1997, 36, 101–109. [Google Scholar] [CrossRef]
- Shamseldin, A.Y. Application of a neural network technique to rainfall-runoff modelling. J. Hydrol. 1997, 199, 272–294. [Google Scholar] [CrossRef]
- Tawfik, M.; Ibrahim, A.; Fahmy, H. Hysteresis Sensitive Neural Network for Modeling Rating Curves. J. Comput. Civ. Eng. 1997, 11, 206–211. [Google Scholar] [CrossRef]
- Venkatesan, C.; Raskar, S.D.; Tambe, S.S.; Kulkarni, B.D.; Keshavamurty, R.N. Prediction of all India summer monsoon rainfall using error-back-propagation neural networks. Theor. Appl. Clim. 1997, 62, 225–240. [Google Scholar] [CrossRef]
- Xiao, R.; Chandrasekar, V. Development of a neural network based algorithm for rainfall estimation from radar observations. IEEE Trans. Geosci. Remote. Sens. 1997, 35, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Dawson, C.; Wilby, R. An artificial neural network approach to rainfall-runoff modelling. Hydrol. Sci. J. 1998, 43, 47–66. [Google Scholar] [CrossRef]
- Fernando, D.A.K.; Jayawardena, A.W. Runoff Forecasting Using RBF Networks with OLS Algorithm. J. Hydrol. Eng. 1998, 3, 203–209. [Google Scholar] [CrossRef]
- Golob, R.; Štokelj, T.; Grgič, D. Neural-network-based water inflow forecasting. Control. Eng. Pr. 1998, 6, 593–600. [Google Scholar] [CrossRef]
- Jayawardena, A.W.; Fernando, D.A.K. Use of Radial Basis Function Type Artificial Neural Networks for Runoff Simulation. Comput. Civ. Infrastruct. Eng. 1998, 13, 91–99. [Google Scholar] [CrossRef]
- Phien, H.N.; Sureerattanan, S. Neural networks for filtering and forecasting of daily and monthly streamflows. In Hydrologic Modeling, Proceedings of the International Conference On Water, Engineering, Ecology, Socio-Economics and Health Engineering, Seol National University, Seoul, Korea, 18–21 October 1999; Singh, V.P., Won Seo, I., Sonu, J.H., Eds.; Water Resources Publications: Highlands Ranch, CO, USA, 1999. [Google Scholar]
- Tokar, A.S.; Johnson, P.A. Rainfall-Runoff Modeling Using Artificial Neural Networks. J. Hydrol. Eng. 1999, 4, 232–239. [Google Scholar] [CrossRef]
- Zealand, C.M.; Burn, D.H.; Simonovic, S.P. Short term streamflow forecasting using artificial neural networks. J. Hydrol. 1999, 214, 32–48. [Google Scholar] [CrossRef] [Green Version]
- Luk, K.; Ball, J.; Sharma, A. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J. Hydrol. 2000, 227, 56–65. [Google Scholar] [CrossRef]
- Coulibaly, P.; Anctil, F.; Bobee, B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol. 2000, 230, 244–257. [Google Scholar] [CrossRef]
- Luk, K.C.; Ball, J.; Sharma, A. An application of artificial neural networks for rainfall forecasting. Math. Comput. Model. 2001, 33, 683–693. [Google Scholar] [CrossRef]
- Zhang, B.; Govindaraju, R. Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds. J. Hydrol. 2003, 273, 18–34. [Google Scholar] [CrossRef]
- Rajurkar, M.; Kothyari, U.; Chaube, U. Modeling of the daily rainfall-runoff relationship with artificial neural network. J. Hydrol. 2004, 285, 96–113. [Google Scholar] [CrossRef]
- Dawson, C.; Abrahart, R.; Shamseldin, A.Y.; Wilby, R. Flood estimation at ungauged sites using artificial neural networks. J. Hydrol. 2006, 319, 391–409. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Kumar, A. An evaluation of artificial neural network technique for the determination of infiltration model parameters. Appl. Soft Comput. 2006, 6, 272–282. [Google Scholar] [CrossRef]
- Riad, S.; Mania, J.; Bouchaou, L.; Najjar, Y. Rainfall-runoff model usingan artificial neural network approach. Math. Comput. Model. 2004, 40, 839–846. [Google Scholar] [CrossRef]
- Kisi, O.; Cigizoglu, H.K. Comparison of different ANN techniques in river flow prediction. Civ. Eng. Environ. Syst. 2007, 24, 211–231. [Google Scholar] [CrossRef]
- Chua, L.H.; Wong, T.S.; Sriramula, L. Comparison between kinematic wave and artificial neural network models in event-based runoff simulation for an overland plane. J. Hydrol. 2008, 357, 337–348. [Google Scholar] [CrossRef]
- Shu, C.; Ouarda, T.B.M.J. Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system. J. Hydrol. 2008, 349, 31–43. [Google Scholar] [CrossRef]
- Sciuto, G.; Bonaccorso, B.; Cancelliere, A.; Rossi, G. Quality control of daily rainfall data with neural networks. J. Hydrol. 2009, 364, 13–22. [Google Scholar] [CrossRef]
- Toth, E. Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting. Hydrol. Earth Syst. Sci. 2009, 13, 1555–1566. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-C.; Chau, K.-W.; Cheng, C.-T.; Qiu, L. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 2009, 374, 294–306. [Google Scholar] [CrossRef] [Green Version]
- Besaw, L.E.; Rizzo, D.M.; Bierman, P.; Hackett, W.R. Advances in ungauged streamflow prediction using artificial neural networks. J. Hydrol. 2010, 386, 27–37. [Google Scholar] [CrossRef]
- Shamseldin, A.Y. Artificial neural network model for river flow forecasting in a developing country. J. Hydroinformatics 2010, 12, 22–35. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Chau, K.-W.; Fan, C. Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J. Hydrol. 2010, 389, 146–167. [Google Scholar] [CrossRef] [Green Version]
- Aziz, K.; Rahman, A.; Fang, G.; Shrestha, S. Application of Artificial Neural Networks for Regional Flood Estimation in Australia: Formation of Regions Based on Catchment Attributes. In Proceedings of the The Second International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, Chania, Crete, Greece, 6–9 September 2011; Volume 97. [Google Scholar]
- Yilmaz, A.G.; Imteaz, M.; Jenkins, G. Catchment flow estimation using Artificial Neural Networks in the mountainous Euphrates Basin. J. Hydrol. 2011, 410, 134–140. [Google Scholar] [CrossRef]
- Kia, M.B.; Pirasteh, S.; Pradhan, B.; Mahmud, A.R.; Sulaiman, W.N.A.; Moradi, A. An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environ. Earth Sci. 2011, 67, 251–264. [Google Scholar] [CrossRef]
- Isik, S.; Kalin, L.; Schoonover, J.E.; Srivastava, P.; Lockaby, B.G. Modeling effects of changing land use/cover on daily streamflow: An Artificial Neural Network and curve number based hybrid approach. J. Hydrol. 2013, 485, 103–112. [Google Scholar] [CrossRef]
- Kalteh, A.M. Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Comput. Geosci. 2013, 54, 1–8. [Google Scholar] [CrossRef]
- Nourani, V.; Baghanam, A.H.; Adamowski, J.; Gebremichael, M. Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling. J. Hydrol. 2013, 476, 228–243. [Google Scholar] [CrossRef]
- Ramana, R.V.; Budu, K.; Kumar, S.R.; Pandey, N.G. Monthly Rainfall Prediction Using Wavelet Neural Network Analysis. Water Resour. Manag. 2013, 27, 3697–3711. [Google Scholar] [CrossRef] [Green Version]
- Aziz, K.; Rai, S.; Rahman, A. Application of artificial neural networks and genetic algorithm for regional flood estimation in Eastern Australia. In Hydrology and Water Resources Symposium 2014; Engineers Australia: Perth, Australia, 2014. [Google Scholar]
- Makwana, J.J.; Tiwari, M.K. Intermittent Streamflow Forecasting and Extreme Event Modelling using Wavelet based Artificial Neural Networks. Water Resour. Manag. 2014, 28, 4857–4873. [Google Scholar] [CrossRef]
- Aziz, K.; Rai, S.; Rahman, A. Design flood estimation in ungauged catchments using genetic algorithm-based artificial neural network (GAANN) technique for Australia. Nat. Hazards 2015, 77, 805–821. [Google Scholar] [CrossRef]
- Aziz, K.; Rahman, A.; Shamseldin, A.Y. Development of Artificial Intelligence Based Regional Flood Estimation Techniques for Eastern Australia. In Advanced Computational Intelligence in Healthcare-7; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; Volume 628, pp. 307–323. [Google Scholar]
- Tao, Y.; Gao, X.; Ihler, A.; Hsu, K.; Sorooshian, S. Deep neural networks for precipitation estimation from remotely sensed information. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 1349–1355. [Google Scholar]
- Aziz, K.; Haque, M.M.; Rahman, A.; Shamseldin, A.Y.; Shoaib, M. Flood estimation in ungauged catchments: Application of artificial intelligence based methods for Eastern Australia. Stoch. Environ. Res. Risk Assess. 2016, 31, 1499–1514. [Google Scholar] [CrossRef]
- Lee, J.; Kim, C.; Lee, J.E.; Kim, N.W.; Kim, H. Application of Artificial Neural Networks to Rainfall Forecasting in the Geum River Basin, Korea. Water 2018, 10, 1448. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, M.; Asanjan, A.A.; Faridzad, M.; Nguyen, P.; Hsu, K.; Sorooshian, S.; Braithwaite, D. PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks. J. Hydrometeorol. 2019, 20, 2273–2289. [Google Scholar] [CrossRef]
- Water NSW. Available online: https://realtimedata.waternsw.com.au/water.stm (accessed on 21 May 2018).
- Australian Bureau of Meteorology. Available online: http://www.bom.gov.au/. (accessed on 21 May 2018).
- Zaman, M.A.; Rahman, A.; Haddad, K. Regional flood frequency analysis in arid regions: A case study for Australia. J. Hydrol. 2012, 475, 74–83. [Google Scholar] [CrossRef]
- Rahman, A.; Haddad, K.; Kuczera, G.; Weinmann, P.E. Regional flood methods, Chapter 3 in Book 3. In Australian Rainfall and Runoff—A Guide to Flood Estimation; Commonwealth of Australia: Canberra, Australia, 2019. [Google Scholar]
- Ball, J.; Babister, M.; Nathan, R.; Weeks, W.; Weinmann, E.; Retallick, M.; Testoni, I. (Eds.) Australian Rainfall and Runoff—A Guide to Flood Estimation; Commonwealth of Australia: Canberra, Australia, 2019. [Google Scholar]
- Kuczera, G.; Franks, S. At-site flood frequency analysis, Chapter 2 in Book 3. In Australian Rainfall and Runoff—A Guide to Flood Estimation; Commonwealth of Australia: Canberra, Australia, 2019. [Google Scholar]
- Kuczera, G. Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference. Water Resour. Res. 1999, 35, 1551–1557. [Google Scholar] [CrossRef]
- Blöschl, G.; Sivapalan, M.; Savenije, H.; Wagener, T.; Viglione, A. Runoff prediction in Ungauged Basins: Synthesis Across Processes, Places and Scales; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
Author(s) and Year | Variable | Time Step | Architecture | Optimization | T-Function |
---|---|---|---|---|---|
French et al., 1992 [31] | Rainfall | Hour | FF | BP | Log |
Crespo and Mora, 1993 [32] | Flow | Day | FF | BP | HT |
Allen and le Marshall, 1994 [33] | Rainfall | Day | FF | BP | Log |
Karunanithi et al., 1994 [34] | Flow | Day | FF | QP | Log |
Hsu et al., 1995 [19] | Flow | Day | FF | BP | Log |
Raman and Sunilkumar, 1995 [35] | Flow | Month | FF | BP | Log |
Smith and Eli, 1995 [7] | Flow | N/A | FF | BP | Log |
Clair and Ehrman, 1996 [36] | Flow | Year | FF | BP | N/A |
Minns and Hall, 1996 [37] | Flow | Hour | FF | BP | Log |
Poff et al., 1996 [38] | Flow | Day | FF | BP | HT |
Chow and Cho, 1997 [39] | Rainfall | Hour | RC | Mod BP | HT |
Hsu et al., 1997 [40] | Rainfall | Hour | HYB | MCP | N/A |
Loke et al., 1997 [41] | Rainfall | Min | FF | Mod BP | N/A |
Shamseldin, A.Y., 1997 [42] | Rainfall-Runoff | Day | FF | BP | Log |
Tawfik et al., 1997 [43] | Flow | Day | FF | BP | Lin |
Venkatesan et al., 1997 [44] | Rainfall | Year | FF | BP | Log |
Xiao and Chandrasekar, 1997 [45] | Rainfall | Min | FF | RSL | TL |
Dawson and Wilby, 1998 [46] | Rainfall-Runoff | 15 min | FF | BP | Log |
Fernando and Jayawardena, 1998 [47] | Flow | Hour | FF | BP | N/A |
Golob et al., 1998 [48] | Flow | Hour | FF | BP | Log |
Jayawardena and Fernando, 1998 [49] | Flow | Hour | FF | BP | N/A |
Phien And Sureerattanan, 1999 [50] | Flow | Day | FF | BP | Log |
Tokar and Johnson, 1999 [51] | Rainfall-Runoff | Day | FF | BP | N/A |
Zealand et al., 1999 [52] | Flow | Week | FF | BP | Log |
Luk et al., 2000 [53] | Rainfall | day | FF | BP | Log |
Coulibaly et al., 2000 [54] | Inflow | Day | FF | BP | Log |
Luk et at., 2001 [55] | Rainfall | Day | FF-PR 1-TD 2 | BP | log |
Zhang and Govindaraju, 2003 [56] | Runoff | Hour | FF | BP | Log |
Rajurkar et al., 2004 [57] | Rainfall-Runoff | Day | FF | BP | Log |
Dawson et al., 2006 [58] | RFFA | Year | FF | BP | Log |
Jain and Kumar, 2006 [59] | Infiltration | N/A | FF | BP | N/A |
Riad et al., 2004 [60] | Rainfall-Runoff | Day | FF | BP | Log |
Kisi and Kerem, 2007 [61] | Flow | Day | FF-GRNN-RBF | BP-N/A-N/A | N/A |
Chua et al., 2008 [62] | Runoff | Min | FF | BP | Log |
Shu and Ouarda, 2008 [63] | RFFA | Year | ANFIS | BP | Tan-sig |
Sciuto et al., 2009 [64] | Rainfall | Day | FF | BP | Sig |
Toth, E., 2009 [65] | Flow | Day | FF | BP | Tan-sig |
Wang et al., 2009 [66] | Flow | Month | FF | BP | Tan-sig |
Besaw et al., 2010 [67] | RFFA | Day | CPN, GRNN | RF | WTA |
Shamseldin, 2010 [68] | Flow | Day | FF | N/A | Log |
Wu t al., 2010 [69] | Rainfall | Month – Day | FF | BP | HT |
Aziz et al., 2011 [70] | RFFA | N/A | N/A | N/A | N/A |
Wu and Chau, 2011 [26] | Rainfall-Runoff | Day | FF | BP | HT |
Yilmaz et al., 2011 [71] | Flow | Day | FF | BP | Log |
Aziz et al., 2012 [21] | RFFA | N/A | N/A | N/A | N/A |
Kia et al., 2012 [72] | Food | Year | FF | BP | Log |
Aziz et al., 2013 [13] | RFFA | Year | FF | BP | HT |
Isik et al., 2013 [73] | Flow | Day | FF | BP | Log |
Kalteh, A.M., 2013 [74] | Flow | Month | FF | BP | N/A |
Nourani et al., 2013 [75] | Rainfall-Runoff | Day | FF | BP | N/A |
Ramana et al., 2013 [76] | Rainfall | Month | FF | BP | Log |
Aziz et al., 2014 [77] | RFFA | Year | FF | BP | Log |
Aziz et al., 2014 [22] | RFFA | Year | FF | N/A | HT |
Makwana and Tiwari, 2014 [78] | Flow | Day | FF | BP | Log |
Aziz et al., 2015 [79] | RFFA | Year | FF | BP | Log |
Aziz et al., 2016 [80] | RFFA | Year | FF | N/A | HT |
Zemzami and Benaabidate, 2016 [28] | Flow | Day | (ANN-WH)-(ANN-RDF)-(ANN-OPDF)) | N/A | N/A |
Tao et al., 2016 [81] | Rainfall | Hour | FF | BP | Log |
Aziz et al., 2017 [82] | RFFA | N/A | FF | BP | HT |
Lee et al., 2018 [83] | Rainfall | Month | FF | BP | Log |
Sadeghi et al., 2019) [84] | Rainfall | Hour | FF | BP | Log |
Input Factors | Units | Min | Max | Median |
---|---|---|---|---|
Drainage area (AREA) | km2 | 8.00 | 1010.00 | 260.00 |
Rainfall intencity (I62) | mm/h | 31.30 | 87.30 | 43.10 |
Mean annual rainfall (MAR) | mm | 626.17 | 1953.23 | 909.92 |
Shape factor (SF) | - | 0.25 | 1.62 | 0.76 |
Mean annual areal potential evapo-transpiration (MAE) | mm | 980.40 | 1543.30 | 1185.55 |
Stream density (SDEN) | km/km2 | 0.51 | 5.47 | 2.71 |
River slope (S1085) | m/km | 1.53 | 49.85 | 9.07 |
Proportion of forest (FOREST) | - | 0.010 | 0.99 | 0.51 |
Predictor Variable | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | ||||
---|---|---|---|---|---|---|---|---|---|
Area | |||||||||
I62 | |||||||||
MAR | |||||||||
SF | |||||||||
MAE | |||||||||
SDEN | |||||||||
S1085 | |||||||||
Forest | |||||||||
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
T | Median absRE(%) | R2 | Median absRE(%) | R2 | Median absRE(%) | R2 | Median absRE(%) | R2 | Median absRE(%) | R2 |
Q2 | 61.31 | 0.63 | 36.13 | 0.71 | 29.48 | 0.77 | 38.28 | 0.74 | 319.61 | 0.42 |
Q5 | 23.39 | 0.73 | 32.93 | 0.74 | 52.24 | 0.48 | 79.96 | 0.51 | 84.89 | 0.47 |
Q10 | 10.25 | 0.76 | 34.19 | 0.69 | 33.23 | 0.73 | 29.84 | 0.62 | 44.94 | 0.49 |
Q20 | 34.06 | 0.71 | 39.50 | 0.57 | 33.43 | 0.69 | 46.99 | 0.39 | 38.44 | 0.21 |
Q50 | 33.99 | 0.74 | 38.09 | 0.59 | 38.90 | 0.37 | 30.69 | 0.55 | 46.69 | 0.52 |
Q100 | 33.09 | 0.57 | 47.72 | 0.16 | 38.32 | 0.42 | 35.42 | 0.51 | 67.21 | 0.05 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
T | RMSNE | RRMSE | RMSNE | RRMSE | RMSNE | RRMSE | RMSNE | RRMSE | RMSNE | RRMSE |
Q2 | 5.28 | 0.76 | 0.89 | 0.54 | 1.18 | 0.48 | 3.29 | 0.53 | 27.88 | 3.29 |
Q5 | 1.51 | 0.50 | 1.23 | 0.48 | 0.98 | 0.82 | 5.90 | 1.19 | 7.67 | 0.91 |
Q10 | 1.17 | 0.46 | 1.79 | 0.51 | 0.75 | 0.48 | 3.25 | 0.56 | 1.49 | 0.67 |
Q20 | 2.25 | 0.52 | 1.30 | 0.58 | 1.30 | 0.49 | 5.27 | 0.74 | 1.89 | 0.89 |
Q50 | 1.65 | 0.45 | 1.87 | 0.55 | 2.25 | 0.69 | 2.07 | 0.58 | 4.84 | 0.67 |
Q100 | 2.05 | 0.61 | 2.47 | 0.85 | 3.50 | 0.69 | 4.86 | 0.68 | 7.60 | 0.96 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
T | BIAS | rBIAS | BIAS | rBIAS | BIAS | rBIAS | BIAS | rBIAS | BIAS | rBIAS |
Q2 | −20.08 | −125.13 | 2.26 | −22.09 | −0.91 | −40.08 | −97.66 | 329.24 | −174.27 | 53.26 |
Q5 | −5.89 | −2.67 | 10.63 | −40.19 | 110.80 | 12.49 | −12.04 | 590.09 | −8.30 | 73.48 |
Q10 | 13.66 | 18.83 | 3.44 | −59.29 | 26.56 | −7.02 | −59.87 | 1057.57 | 48.93 | −15.29 |
Q20 | −102.98 | −26.97 | −16.63 | −30.76 | 21.09 | −24.73 | −122.62 | 2777.88 | 109.56 | −20.44 |
Q50 | 5.10 | 29.04 | −2.96 | −56.57 | 44.02 | −68.93 | −66.57 | 429.41 | 213.44 | 112.79 |
Q100 | 3.32 | 29.22 | 311.68 | −54.28 | 187.66 | 46.73 | −62.77 | 2366.70 | 164.90 | −170.32 |
Quantile | RE (%) | R2 | ||||
---|---|---|---|---|---|---|
Present Work | Aziz et al. [22] | Present Work | Dawson et al. [58] | |||
Model 1 | Model 3 | Model 1 | Model 3 | |||
Q2 | 61.31 | 29.48 | 37.56 | *N/A | N/A | N/A |
Q5 | 23.39 | 52.24 | 40.39 | N/A | N/A | N/A |
Q10 | 10.25 | 33.23 | 44.63 | 76 | 73 | 66 |
Q20 | 34.06 | 33.43 | 35.62 | 71 | 69 | 65 |
Q50 | 33.99 | 38.90 | 39.09 | N/A | N/A | N/A |
Q100 | 33.09 | 38.32 | 44.53 | N/A | N/A | N/A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kordrostami, S.; Alim, M.A.; Karim, F.; Rahman, A. Regional Flood Frequency Analysis Using an Artificial Neural Network Model. Geosciences 2020, 10, 127. https://doi.org/10.3390/geosciences10040127
Kordrostami S, Alim MA, Karim F, Rahman A. Regional Flood Frequency Analysis Using an Artificial Neural Network Model. Geosciences. 2020; 10(4):127. https://doi.org/10.3390/geosciences10040127
Chicago/Turabian StyleKordrostami, Sasan, Mohammad A Alim, Fazlul Karim, and Ataur Rahman. 2020. "Regional Flood Frequency Analysis Using an Artificial Neural Network Model" Geosciences 10, no. 4: 127. https://doi.org/10.3390/geosciences10040127
APA StyleKordrostami, S., Alim, M. A., Karim, F., & Rahman, A. (2020). Regional Flood Frequency Analysis Using an Artificial Neural Network Model. Geosciences, 10(4), 127. https://doi.org/10.3390/geosciences10040127