Silification of the Mesozoic Rocks Accompanying the Bełchatów Lignite Deposit, Central Poland
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Diffraction
4.2. Microscopy
5. Silification Pathway
- ichnofauna channels, as oxygen-rich water makes contact with the reducing sediment of the channel walls;
- the boundary of bioturbed, oxidized and nondisturbed sediment;
- the seabed, in places where erosion reaches the reduction zone;
- in the oxidative zone, where there are local concentrations of organic matter.
- interaction of volcanic fluids and rocks producing silica-rich fluids;
- high CO2 concentrations accelerating calcite dissolution;
- an increased geothermal gradient associated with fluid and heat transport;
- fast flow, for example, along faults or fault zones;
- cooling, for example, by infiltrating surface waters;
- the presence of silica in primary sediments.
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Haldar, S.K.; Tišljar, J. Introduction to Mineralogy and Petrology; Elsevier: Amsterdam, The Netherlands, 2014; eBook; ISBN 9780124167100. [Google Scholar]
- Butts, S.H. Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization; LaFlamme, M., Schiffbauer, J.D., Darroch, S.A.F., Eds.; Paleontological Society: Bethesda, MD, USA, 2014; pp. 15–34. Available online: https://www.researchgate.net/publication/283711238_Silicification (accessed on 11 April 2020).
- Lee, D.R. Characterisation and the Diagenetic Transformation of Non and Micro-crystalline Silica Minerals. University of Liverpool, UK. Mesci. Geol. 2007. Available online: https://www.scribd.com/document/261814378/Micro-Silica (accessed on 11 April 2020).
- Laschet, C. On the origin of cherts. Facies 1984, 10, 257–290. [Google Scholar] [CrossRef]
- Hesse, R. Diagenesis 13. Origin of chert: Diagenesis of biogenic siliceous sediments. Geosci. Can. 1988, 15, 171–192. [Google Scholar]
- Kwiatkowski, S. Diageneza nie detrytycznych osadów krzemionkowych. Przegląd Geol. 1996, 44, 612–618. [Google Scholar]
- Vine, M.; Dietrich, D.; Mustoe, G.; Link, P.; Lampke, T.; Götze, J.; Rößler, R. Multi-Stage Silicification of PlioceneWood: Re-Examination of an 1895 Discovery from Idaho, USA. Geosciences 2016, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Mustoe, G.E. Late Tertiary Petrified Wood from Nevada, USA: Evidence of Multiple Silicification Pathways. Geosciences 2015, 5, 286–309. [Google Scholar] [CrossRef] [Green Version]
- Mustoe, G.E. Wood Petrifaction: A New View of Permineralization and Replacement. Geosciences 2017, 7, 119. [Google Scholar] [CrossRef] [Green Version]
- Trümper, S.; Rößler, R.; Götze, J. Deciphering Silicification Pathways of Fossil Forests: Case Studies from the Late Paleozoic of Central Europe. Minerals 2018, 8, 432. [Google Scholar] [CrossRef] [Green Version]
- Kasiński, J.R. Resource lignite potential in Poland and its usability. Biul. Państw. Inst. Geol. 2010, 439, 87–98. [Google Scholar]
- Widera, M.; Kasztelewicz, Z.; Ptak, M. Lignite mining and electricity generation in Poland: The current state and future prospects. Energy Policy 2016, 92, 151–157. [Google Scholar] [CrossRef]
- Widera, M. An overview of lithotype associations of Miocene lignite seams exploited in Poland. Geologos 2016, 22, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Kasiński, J.R. Geological Atlas of the Tertiary Brown—Carbon Association in the Polish Part of the Żytawska Basin; 1:50 000; Polish Geological Institute: Warsaw, Poland, 2002. [Google Scholar]
- Widera, M. Changes of the lignite seam architecture—A case study from Polish lignite deposits. Int. J. Coal Geol. 2013, 114, 60–73. [Google Scholar] [CrossRef]
- Widera, M. Genetic classification of Polish lignite deposits: A review. Int. J. Coal Geol. 2016, 158, 107–118. [Google Scholar] [CrossRef]
- Ciuk, E.; Piwocki, M. Tertiary geology in the Kleszczów fault trench and its surroundings. In Guide of the LII Congress of the Polish Geological Society; Wydawnictwo Geologiczne: Warszawa, Poland, 1980. [Google Scholar]
- Czarnecki, L.; Frankowski, R.; Kuszneruk, J. Syntetyczny profil litostratygraficzny utworów trzeciorzędu złoża Bełchatów. In Sympozium: “Geologia Formacji Węglonośnych Polski”; Lipiarski, I., Ed.; Wydawnictwo Akademii Górniczo-Hutniczej: Kraków, Poland, 1992. [Google Scholar]
- Gotowała, R.; Hałuszczak, A. The Late Alpinie structural development of the Kleszczów Graben (Central Poland) as a result of a reactivation of the pre-existing, regional dislocation. Stephan Mueller Spec. Pub. Ser. (Egu) 2002, 1, 137–150. [Google Scholar] [CrossRef]
- Widera, M.; Hałuszczak, A. Stages of the Cenozoic tectonics in central Poland: Examples from selected grabens. Z. Der Dtsch. Ges. Für Geowiss. 2011, 162, 203–214. [Google Scholar] [CrossRef]
- Zadurski, Z. Occurrence of light opoka–rock in the Bełchatów area. Geol. Rev. 1971, 1, 8–9. [Google Scholar]
- Simczyjew, P.; Wiśniewski, W. Własności surowcowe węglanowych skał i zwietrzelin z odkrywki Bełchatów. Górnictwo Odkryw. 1997, 39, 1–2. [Google Scholar]
- Wyrwicki, R. Charact. Opoka–Rocks Kwb Bełchatów. Górnictwo Odkryw. 2001, 43, 2–3. [Google Scholar]
- Ratajczak, T.; Kosk, I.; Pabis, J. Weathered Sediments from the Mesozoic-Tertiary Contact Zone in the Bełchatów Lignite Deposit—Their Lithology, Raw Material Character and Possibility of Use; IGSMiE PAN: Kraków, Poland, 2002; Volume 56. [Google Scholar]
- Gilarska, A.; Stachura, E. Mineralogical and petrographic characteristic of the siliceous rocks of the Tertiary-Mesozoic contact zone in the Belchatów lignite deposit. Zesz. Nauk. Politech. ŚląskiejSer. Górnictwo 2005, 269, 97–107. [Google Scholar]
- Gilarska, A.; Hycnar, E. Influence weahtering processes over mineralogy and petrographic characteristic of rocks from the Teritiary—Mezosoic zone in the Bałchatów deposit. Górnictwo Odkryw. 2007, 49, 24–29. [Google Scholar]
- Hycnar, E.; Gilarska, A.; Wisła-Walsh, E.; Zych, Ł.; Sikorska, M. Wapienie ze strefy kontaktu trzeciorzęd—mezozoik w złożu węgla brunatnego „Bełchatów” i możliwości ich wykorzystania jako sorbentów do obniżania emisji SO2. [Limestone from the tertiary—Mesozoic contact zone in the Bełchatów lignite deposit and the possibility of their use as sorbents to reduce SO2 emission.]. Górnictwo Odkryw. 2007, 49, 30–36. [Google Scholar]
- Hycnar, E. Structural-textural nature and sorption properties of limestones from the Mesozoic-Neogene contact zone in the Bełchatów deposit. Miner. Resour. Manag. 2015, 3, 75–94. [Google Scholar] [CrossRef]
- Pękala, A. Mineralogical—geochemical study of the transitional rocks from the Mesozoic—Neogene contact zone in the “Bełchatów” lignite deposit. Min. Geol. 2012, 7, 187–205. [Google Scholar]
- Pękala, A. The mineral character and geomechanical properties of the transitional rocks from the Mesozoic —Neogene contact zone in the Bełchatów lignite. J. Sustain. Min. 2014, 13, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Hycnar, E.; Pękala, A. Opoka-rock from the Bełchatów lignite deposit and the possibilitoes of it’ s practical use. J. Civ. Eng. Environ. Arch. 2011, 58, 2–11. [Google Scholar]
- Pękala, A. The Opoka-Rock from the Mesozoic/Neogene Contact Zone in the Bełchatów Lignite Deposit—Characteristics of a Petrographic Nature and as a Raw Material. J. Ecol. Eng. 2019, 20, 232–237. [Google Scholar] [CrossRef]
- Dapples, E.C. Silica as an Agent in Diagenesis. In Diagenesis in Sediments; Larson, G., Chilingar, G.V., Eds.; Dev. Sedimentol.; Elsevier: Amsterdam, The Netherlands, 1967; Volume 8, pp. 323–342. [Google Scholar]
- Bąk, M.; Górny, Z.; Bąk, K.; Stożek, B.M. Successive stages of calcitization and silicification of Cenomanian spicule-bearing turbidites based on microfacies analysis, Polish Outer Carpathians. Ann. Soc. Geol. Pol. 2015, 85, 187–203. [Google Scholar] [CrossRef] [Green Version]
- Jurkowska, A.; Bąk, M.; Kowalik, S. The role of biogenic silica in the formation of Upper Cretaceous pelagic carbonates and its palaeoecological implications. Cretac. Res. 2019, 93, 170–187. [Google Scholar] [CrossRef]
- Götz, A.E.; Montenari, M.; Costin, G. Silicification and organic matter preservation in the Anisian Muschelkalk: Implications for the basin dynamics of the central European Muschelkalk Sea. Cent. Eur. Geol. 2017, 60, 35–52. [Google Scholar] [CrossRef] [Green Version]
- Flörke, O.W.; Graetsch, H.; Martin, B.; Röller, K.; Wirth, R. Nomenclature of micro- and non-crystalline silica minerals, based on structure and microstructure. Neues Jahrbuch für Mineralogie, Abhandlungen 1991, 163, 4–19. [Google Scholar]
- Dόdony, I.; Nemeth, T.; Kovács, K. Crystal—chemical study of smectite—tridymite/cristobalite association in chloropal. In Proceedings of the Mid-European Clay Conference, Stará Lesná, Slovakia, 9–14 September 2001. Book of Abstracts. [Google Scholar]
- Pękala, A. The influence of siliceous mineral phases on the mechanical properties of transitional rocks in the Bełchatów lignite deposit. Arch. Civ. Eng. 2015, 61, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Murata, K.J.; Norman, M.B. An index of crystallinity for quartz. Am. J. Sci. 1976, 276, 1120–1130. [Google Scholar] [CrossRef]
- Zijlstra, H.J.P. Early diagenetic silica precipitation, in relation to redox boundaries and bacterial metabolism in late Cretaceous chalk of the Maastrichtian type locality. Geol. En Mijnb. 1987, 66, 345–355. [Google Scholar]
- Machajová, Z.; Verbich, F.; Sýkorová, I. The geology, petrography and mineralogy composition of coal from the Nováky deposit. Acta Montan. Slovaca 2002, 7, 28–33. [Google Scholar]
- Carson, G.A. Silicification of fossils. In Taphonomy: Releasing the Data Locked in the Fossil Record; Allison, P.A., Briggs, D.E.G., Eds.; Kluwer Academic; Plenum Press Publishers: New York, NY, USA, 1991; Volume 9, pp. 455–499. [Google Scholar]
- Tucker, M.E. Sedimentary Petrology. An Introduction to the Origin of Sedimentary Rocks; Blackwell Science: Hoboken, NJ, USA, 1991; p. 260. [Google Scholar]
- Garcia-Fresca, B.; Gabellone, T.; Whitake, F.F. Reactive Transport Modeling Approach to Studying Silicification of Carbonates. In Proceedings of the AAPG Annual Convention and Exhibition, San Antonio, TX, USA, 19–22 May 2019. [Google Scholar] [CrossRef]
Parameters | Opoka-rocks (Opal Type A and CT) | Silicified Opoka-rocks (Opal Type CT Relative to Opal Type C) | Gaize (Chalcedony–Quartz) |
---|---|---|---|
Porosity (vol.%) DECREASE | 44.5 | 24.3 | 10 |
Density (g/cm3) INCREASE | 1.32–1.41 | 1.9 | n.d. |
Compressive strength (MPa) INCREASE | 31.9 | 52 | 55 |
Crystallinity index* INCREASE | 1.8 | 2.17 | 7.8 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pękala, A. Silification of the Mesozoic Rocks Accompanying the Bełchatów Lignite Deposit, Central Poland. Geosciences 2020, 10, 141. https://doi.org/10.3390/geosciences10040141
Pękala A. Silification of the Mesozoic Rocks Accompanying the Bełchatów Lignite Deposit, Central Poland. Geosciences. 2020; 10(4):141. https://doi.org/10.3390/geosciences10040141
Chicago/Turabian StylePękala, Agnieszka. 2020. "Silification of the Mesozoic Rocks Accompanying the Bełchatów Lignite Deposit, Central Poland" Geosciences 10, no. 4: 141. https://doi.org/10.3390/geosciences10040141
APA StylePękala, A. (2020). Silification of the Mesozoic Rocks Accompanying the Bełchatów Lignite Deposit, Central Poland. Geosciences, 10(4), 141. https://doi.org/10.3390/geosciences10040141