Nature Does the Averaging—In-Situ Produced 10Be, 21Ne, and 26Al in a Very Young River Terrace
Abstract
:1. Introduction
2. Location and Geological Setting
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Von Suchodoletz, H.; Gärtner, A.; Hoth, S.; Umlauft, J.; Sukishvili, L.; Faust, D. Late Pleistocene river migrations in response to thrust belt advance and sediment-flux steering—The Kura River (southern Caucasus). Geomorphology 2016, 266, 53–65. [Google Scholar] [CrossRef]
- Gärtner, A.; Linnemann, U.; Hofmann, M. The provenance of northern Kalahari Basin sediments and growth history of the southern Congo Craton reconstructed by U-Pb ages of zircons from recent river sands. Int. J. Earth Sci. 2014, 103, 579–595. [Google Scholar] [CrossRef]
- Chmeleff, J.; von Blanckenburg, F.; Kossert, K.; Jakob, D. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl. Instr. Meth. Phys. Res. B 2010, 268, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Korschinek, G.; Bergmaier, A.; Faestermann, T.; Gerstmann, U.C.; Knie, K.; Rugel, G.; Wallner, A.; Dillmann, I.; Dollinger, G.; Lierse von Gostomski, C.; et al. A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting. Nucl. Instr. Meth. Phys. Res. B 2010, 268, 187–191. [Google Scholar] [CrossRef]
- Norris, T.L.; Gancarz, A.J.; Rokop, D.J.; Thomas, K.W. Half-life of 26Al. J. Geophys. Res. 1983, 88, B331–B333. [Google Scholar] [CrossRef]
- Zipf, L.; Merchel, S.; Bohleber, P.; Rugel, G.; Scharf, A. Exploring ice core drilling chips from a cold Alpine glacier for cosmogenic radionuclide (10Be) analysis. Results Phys. 2016, 6, 78–79. [Google Scholar] [CrossRef] [Green Version]
- Gosse, J.C.; Phillips, F.M. Terrestrial in situ cosmogenic nuclides: Theory and application. Quat. Sci. Rev. 2001, 20, 1475–1560. [Google Scholar] [CrossRef]
- Balco, G.; Stone, J.O.; Lifton, N.A.; Dunai, T.J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat. Geochron. 2008, 2, 174–195. [Google Scholar] [CrossRef]
- Kutschera, W. The Half-Life of 14C—Why is it so long? Radiocarbon 2019, 61, 1135–1142. [Google Scholar] [CrossRef]
- Lifton, N.A.; Jull, A.J.T.; Quade, J. A new extraction technique and production rate estimate for in situ cosmogenic 14C in quartz. Geochim. Cosmochim. Acta 2001, 65, 1953–1969. [Google Scholar] [CrossRef]
- Fenton, C.R.; Niedermann, S.; Dunai, T.; Binnie, S.A. The SPICE project: Production rates of cosmogenic 21Ne, 10Be, and 14C in quartz from the 72 ka SP basalt flow, Arizona, USA. Quat. Geochron. 2019, 54, 101019. [Google Scholar] [CrossRef]
- Wild, E.-M.; Gauss, W.; Forstenpointner, G.; Lindblom, M.; Smetana, R.; Steier, P.; Thanheiser, U.; Weninger, F. 14C dating of the Early to Late Bronze Age stratigraphic sequence of Aegina Kolonna, Greece. NIMB 2010, 268, 113–1021. [Google Scholar] [CrossRef]
- Von Suchodoletz, H.; Gärtner, A.; Zielhofer, C.; Faust, D. Eemian and post-Eemian fluvial dynamics in the Lesser Caucasus. Quat. Sci. Rev. 2018, 191, 189–203. [Google Scholar] [CrossRef]
- Laronne, J.B.; Reid, I. Very high rates of bedload sediment transport by ephemeral desert rivers. Nature 1993, 366, 148–150. [Google Scholar] [CrossRef]
- Ielpi, A.; Lapôtre, M.G.A.; Finotello, A.; Ghinassi, M.; D’Alpaos, A. Channel mobility drives a diverse stratigraphic architecture in the dryland Mojave River (California, USA). Earth Surf. Proc. Landf. 2020. [Google Scholar] [CrossRef]
- Krapf, C.B.E.; Stollhofen, H.; Stainstreet, I.G. Contrasting styles of ephemeral river systems and their interaction with dunes of the Skeleton Coast erg (Namibia). Quat. Int. 2003, 104, 41–52. [Google Scholar] [CrossRef]
- Bierman, P.R.; Reuter, J.M.; Pavich, M.; Gellis, A.C.; Caffee, M.W.; Larsen, J. Using cosmogenic nuclides to contrast rates of erosion and sediment yield in a semi-arid, arroyo-dominated landscape, Rio Puerco Basin, New Mexico. Earth Surf. Proc. Landf. 2005, 30, 935–953. [Google Scholar] [CrossRef]
- Binnie, S.A.; Reicherter, K.R.; Victor, P.; González, G.; Binnie, A.; Niemann, K.; Stuart, F.M.; Lenting, C.; Heinze, S.; Freeman, S.P.H.T.; et al. The origins and implications of palaeochannels in hyperarid, tectonically active regions: The northern Atacama Desert, Chile. Glob. Planet Chang. 2020, 185, 103083. [Google Scholar] [CrossRef]
- Von Blanckenburg, F.; Hewawasam, T.; Kubik, P.W. Cosmogenic nuclide evidence for low weathering and denudation in wet tropical Highlands of Sri Lanka. J. Geophys. Res. 2004, 109, F03008. [Google Scholar] [CrossRef]
- Granger, D.E.; Riebe, C.E. Cosmogenic Nuclides in Weathering and Erosion. In Treatise on Geochemistry, 2nd ed.; Turekian, K., Holland, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 401–436. [Google Scholar] [CrossRef]
- Gray, H.J.; Owen, L.A.; Dietsch, C.; Beck, R.A.; Caffee, M.A.; Finkel, R.C.; Mahan, S.A. Quaternary landscape development, alluvial fan chronology and erosion of the Mecca Hills at the southern end of the San Andreas fault zone. Quat. Sci. Rev. 2014, 105, 66–85. [Google Scholar] [CrossRef]
- Hovius, N.; von Blanckenburg, F. Constraining the Denudational Response to Faulting. In Tectonic Faults: Agents of Change on a Dynamic Earth; Report of the 95th Dahlem Workshop on the Dynamics of Fault Zones, Berlin, 16–21 January 2005; Handy, M., Hirth, D., Hovius, N., Eds.; Dahlem Workshop Reports; MIT Press: Cambridge, MA, USA, 2007; Volume 95, pp. 231–272. ISBN 978-0-2620-8362-1. [Google Scholar]
- Aki, K. Seismic Coda Waves: A Stochastic Process in Earth’s Lithosphere. In Stochastic Models in Geosystems; Molchanov, S.A., Woyczynski, W.A., Eds.; The IMA Volumes in Mathematics and Its Applications; Springer: New York, NY, USA, 1997; Volume 85, pp. 1–24. ISBN 978-1-4613-8502-8. [Google Scholar]
- Finkel, R.C.; Schaefer, J.M.; Schwartz, R. Exposure dating meets history: Precise 10Be dating of very young surfaces. Geochim. Cosmochim. Acta 2008, 72 (Suppl. 12), A269. [Google Scholar] [CrossRef]
- Schwanghart, W.; Bernhardt, A.; Stolle, A.; Hoelzmann, P.; Andermann, C.; Tofelde, S.; Merchel, S.; Rugel, G.; Fort, M.; Korup, O. Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya. Science 2016, 351, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Heineke, C.; Niedermann, S.; Hetzel, R.; Akal, C. Surface exposure dating of Holocene basalt flows and cinder cones in the Kula volcanic field (Western Turkey) using cosmogenic 3He and 10Be. Quat. Geochron. 2016, 34, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Bierman, P.R.; Caffee, M. Slow Rates of Rock Surface Erosion and Sediment Production across the Namib Desert and Escarpment, Southern Africa. Am. J. Sci. 2001, 301, 326–358. [Google Scholar] [CrossRef]
- Bierman, P.R.; Nichols, K.K.; Matmon, A.; Enzel, Y.; Larsen, J.; Finkel, R.C. 10-Be shows that Namibian drainage basins are slowly, steadily and uniformly eroding. Quat. Intern. 2007, 167, 168. [Google Scholar]
- Miller, R.M.; Namib Group. The Geology of Namibia—Volume 3, Palaeozoic to Cenozoic; Miller, R.G., Ed.; Ministry of Mines and Energy, Geological Survey: Windhoek, Namibia, 2008; pp. 25-1–25-66. ISBN 978-0-86976-733-7.
- Hartleb, J.W.O. The Langer Heinrich Uranium Deposit: Southwest Africa/Namibia. Ore Geol. Rev. 1988, 3, 277–287. [Google Scholar] [CrossRef]
- Wilkinson, M.J. Palaeoenvironments in the Namib Desert: The lower Tumas Basin in the late Cenozoic; U Chicago Geogr Res Papers; University of Chicago Press: Chicago, IL, USA, 1990; Volume 231, pp. 1–196. ISBN 0-89065-138-8. [Google Scholar]
- Pickford, M.; Senut, B. Geology and Palaeobiology of the Namib Desert, southwestern Africa. Mem. Geol. Surv. Namibia 1999, 18, 1–155. [Google Scholar]
- Heine, K.; Heine, J.T. A paleohydrologic reinterpretation of the Homeb Silts, Kuiseb River, central Namib Desert (Namibia) and paleoclimatic implications. Catena 2002, 48, 107–130. [Google Scholar] [CrossRef]
- Eitel, B.; Zöller, L. Die Beckensedimente von Dieprivier und Uitskot (NW-Namibia): Ein Beitrag zu ihrer paläoklimatischen Interpretation auf der Basis von Thermolumineszenzdatierungen. Mitteilungen der Österreichischen Geographischen Gesellschaft 1995, 137, 245–254. [Google Scholar]
- Ward, J.D. The Cenozoic Succession in the Kuiseb Valley, Central Namib Desert. Mem. Geol. Surv. S W Africa/Namibia 1987, 9, 1–124. [Google Scholar]
- Heine, K. Little Ice Age climatic fluctuations in the Namib Desert, Namibia, and adjacent areas: Evidence of exceptionally large floods from slack water deposits and desert soil sequences. In Paleoecology of Quaternary Drylands; Springer: Berlin, Heidelberg, 2004; Volume 102, pp. 137–165. [Google Scholar] [CrossRef]
- Gray, D.R.; Foster, D.A.; Meert, J.G.; Goscombe, B.D.; Armstrong, R.; Trouw, R.A.J.; Passchier, C.W. A Damara orogen perspective on the assembly of southwestern Gondwana. Geol. Soc. London SP 2008, 294, 257–278. [Google Scholar] [CrossRef] [Green Version]
- Toé, W.; Vanderhaege, O.; André-Mayer, A.-S.; Feybesse, J.-L.; Milési, J.-P. From migmatites to granites in the Pan-African Damara orogenic belt, Namibia. J. Afr. Earth. Sci. 2013, 85, 62–74. [Google Scholar] [CrossRef]
- Zieger, J.; Harazim, S.; Hofmann, M.; Gärtner, A.; Gerdes, A.; Marko, L.; Linnemann, U. Mesozoic deposits of SW Gondwana (Namibia): Unraveling Gondwanan sedimentary dispersion drivers by detrital zircon. Int. J. Earth Sci. 2020. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.G. Neoproterozoic and Early Palaeozoic rocks of the Damara orogen. In The Geology of Namibia—Volume 2, Neoproterozoic to Lower Palaeozoic; Miller, R.G., Ed.; Ministry of Mines and Energy, Geological Survey: Windhoek, Namibia, 2008; pp. 13-1–13-410. ISBN 978-0-86976-732-0. [Google Scholar]
- Passchier, C.; Trouw, R.; da Silva Schmitt, R. How to make a transverse triple junction—New evidence for the assemblage of Gondwana along the Kaoko-Damara belts, Namibia. Geology 2016, 44, 843–846. [Google Scholar] [CrossRef]
- Greenbaum, N.; Schwartz, U.; Benito, G.; Porat, N.; Cloete, G.C.; Enzel, Y. Paleohydrology of extraordinary floods along the Swakop River at the margin of the Namib Desert and their paleoclimate implications. Quat. Sci. Rev. 2014, 103, 153–169. [Google Scholar] [CrossRef]
- Woodborne, S.; Vogel, J.C.; Collett, G. The age of sediments in the Swakop River. Environ. Impact Assess. Propos. Khan Aquifer Recharg. Scheme 1997, Appendix 5, 1–10. [Google Scholar]
- Ministry of Mines and Energy. Simplified Geological Map of Namibia 1: 2000000; No Date, 1 Sheet; Geological Survey: Windhoek, Namibia, 2000.
- Steier, P.; Liebl, J.; Kutschera, W.; Wild, E.M.; Golser, R. Preparation Methods of μg Carbon Samples for 14C Measurements. Radiocarbon 2017, 59, 803–814. [Google Scholar] [CrossRef]
- Goodfriend, G.A. Radiocarbon age anomalies in shell carbonate of land snails from semi-arid areas. Radiocarbon 1987, 29, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Merchel, S.; Gärtner, A.; Beutner, S.; Bookhagen, B.; Chabilan, A. Attempts to understand potential deficiencies in chemical procedures for AMS: Cleaning and dissolving quartz. Nucl. Instr. Meth. Phys. Res. B 2019, 455, 293–299. [Google Scholar] [CrossRef]
- Merchel, S.; Arnold, M.; Aumaître, G.; Benedetti, L.; Bourlès, D.L.; Braucher, R.; Alfimov, V.; Freeman, S.P.H.T.; Steier, P.; Wallner, A. Towards more precise 10Be and 36Cl data from measurements at the 10−14 level: Influence of sample preparation. Nucl. Instr. Meth. Phys. Res. B 2008, 266, 4921–4926. [Google Scholar] [CrossRef]
- Merchel, S.; Herpers, U. An update on radiochemical separation techniques for the determination of long-lived radionuclides via accelerator mass spectrometry. Radiochim. Acta 1999, 84, 215–219. [Google Scholar] [CrossRef]
- Akhmadaliev, S.; Heller, R.; Hanf, D.; Rugel, G.; Merchel, S. The new 6 MV AMS-facility DREAMS at Dresden. Nucl. Instr. Meth. Phys. Res. B 2013, 294, 5–10. [Google Scholar] [CrossRef]
- Arnold, M.; Merchel, S.; Bourlès, D.L.; Braucher, R.; Benedetti, L.; Finkel, R.C.; Aumaître, G.; Gottdang, A.; Klein, M. The French accelerator mass spectrometry facility ASTER: Improved performance and developments. Nucl. Instr. Meth. Phys. Res. B 2010, 268, 1954–1959. [Google Scholar] [CrossRef]
- Rugel, G.; Pavetich, S.; Akhmadaliev, S.; Enamorado Baez, S.M.; Scharf, A.; Ziegenrücker, R.; Merchel, S. The first four years of the AMS-facility DREAMS: Status and developments for more accurate radionuclide data. Nucl. Instr. Meth. Phys. Res. B 2016, 370, 94–100. [Google Scholar] [CrossRef]
- Niedermann, S.; Bach, W.; Erzinger, J. Noble gas evidence for a lower mantle component in MORBs from the southern East Pacific Rise: Decoupling of He and Ne systematics. Geochim. Cosmochim. Acta 1997, 61, 2697–2715. [Google Scholar] [CrossRef]
- Hetzel, R.; Niedermann, S.; Ivy-Ochs, S.; Kubik, P.W.; Tao, M.; Gao, B. 21Ne versus 10Be and 26Al exposure ages of fluvial terraces: The influence of crustal Ne in quartz. Earth Planet Sci. Lett. 2002, 201, 575–591. [Google Scholar] [CrossRef]
- Niedermann, S. Cosmic-ray-produced noble gases in terrestrial rocks: Dating tools for surface processes. In Noble Gases in Geochemistry and Cosmochemistry; Geochemical Society; Reviews in Mineralogy and Geochemistry; Porcelli, D., Ballentine, C.J., Wieler, R., Eds.; Mineralogical Society of America: Boulder, CO, USA, 2002; Volume 47, pp. 731–784. ISBN 978-0-9399-5059-1. [Google Scholar]
- Niedermann, S.; Graf, T.; Marti, K. Mass spectrometric identification of cosmic-ray-produced neon in terrestrial rocks with multiple neon components. Earth Planet Sci. Lett. 1993, 118, 65–73. [Google Scholar] [CrossRef]
- Heine, K. Holocene Climate of Namibia: A Review based on Geoarchives. Afr. Study Monogr. 2005, 30, 119–133. [Google Scholar]
- Chase, B.M.; Meadows, M.E.; Scott, L.; Thomas, D.S.G.; Marais, E.; Sealy, J.; Reimer, P.J. A record of rapid Holocene climate change preserved in hyrax middens from southwestern Africa. Geology 2009, 37, 703–706. [Google Scholar] [CrossRef]
- Grodek, T.; Benito, G.; Botero, B.A.; Jacoby, Y.; Porat, N.; Haviv, I.; Cloete, G.; Enzel, Y. The last millennium largest floods in the hyperarid Kuiseb River basin, Namib Desert. J. Quat. Sci. 2013, 28, 258–270. [Google Scholar] [CrossRef]
- Heine, K.; Völkel, J. Extreme floods around AD 1700 in the northern Namib desert, Namibia, and in the Orange River catchment, South Africa—Were they forced by a decrease of solar irradiance during the Little Ice Age? Geogr. Pol. 2011, 84, 61–80. [Google Scholar] [CrossRef]
- Voarintosa, N.R.G.; Brook, G.A.; Liang, F.; Marais, E.; Hardt, B.; Cheng, H.; Edwards, R.L.; Railsback, L.B. Stalagmite multi-proxy evidence of wet and dry intervals in northeastern Namibia: Linkage to latitudinal shifts of the Inter-Tropical Convergence Zone and changing solar activity from AD 1400 to 1950. Holocene 2016, 27, 384–396. [Google Scholar] [CrossRef]
- Heyns, P.S. Episodic Flood Events of Rivers crossing the Desert; Episodic Events and Natural Resources Workshop: Windhoek, Namibia, 1990; p. 4. [Google Scholar]
- Brázdil, R.; Kiss, A.; Luterbacher, J.; Nash, D.J.; Řezníčková, L. Documentary data and the study of past droughts: A global state of the art. Clim. Past 2018, 14, 1915–1960. [Google Scholar] [CrossRef] [Green Version]
- Borchers, B.; Marrero, S.; Balco, G.; Caffee, M.; Goehring, B.; Lifton, N.; Nishiizumi, K.; Phillips, F.; Schaefer, J.; Stone, J. Geological calibration of spallation production rates in the CRONUS-Earth project. Quat. Geochron. 2016, 31, 188–198. [Google Scholar] [CrossRef] [Green Version]
- Stone, J.O. Air pressure and cosmogenic isotope production. J. Geophys. Res. 2000, 105, 23753–23759. [Google Scholar] [CrossRef]
- Braucher, R.; Merchel, S.; Borgomano, J.; Bourlès, D.L. Production of cosmogenic radionuclides at great depth: A multi element approach. Earth Planet Sci. Lett. 2011, 301, 1–9. [Google Scholar] [CrossRef]
- Merchel, S.; Ott, U.; Herrmann, S.; Spettel, B.; Faestermann, T.; Knie, K.; Korschinek, G.; Rugel, G.; Wallner, A. Presolar nanodiamonds: Faster, cleaner, and limits on Platinum-HL. Geochim. Cosmochim. Acta 2003, 67, 4949–4960. [Google Scholar] [CrossRef]
- Gärtner, A.; Linnemann, U.; Hofmann, M.; Zieger, J.; Sagawe, A.; Krause, R.; Gerdes, A.; Marko, L.; Lana, C. The modern Sands of Namibia—Implications for Sedimentary Transport Processes in Southwestern Africa. In Preparation for Submission to Quaternary Science Reviews; ELSEVIER: Amsterdam, The Netherlands, 2020. [Google Scholar]
Sample | Sample Material | VERA ID | Fraction Modern | Calendar Age (BC/AD) | ||
---|---|---|---|---|---|---|
F14C ± 1 sigma | from | to | % | |||
R1 | driftwood | VERA-51821 | 1.271 ± 0.012 | 1978 | 1983 | 68.2 |
R2 | driftwood | VERA-51822 | 1.415 ± 0.017 | 1973 | 1978 | 68.2 |
R3 | driftwood | VERA-51823 | 1.128 ± 0.008 | 1992 | 1998 | 68.2 |
R4 | massive log of a tree | VERA-51824 | 0.984 ± 0.010 | 1680 | 1763 | 26.8 |
1802 | 1893 | 30.8 | ||||
1906 | 1938 | 10.6 | ||||
R5 | snail | VERA-51825 | 0.441 ± 0.004 | −5611 | −5591 | 10.7 |
−5565 | −5478 | 57.5 |
Sample Name | Sample Depth [cm] | Sample Thickness [cm] | Mean Depth [cm] | 10Be/9Be [10−13] | 10Be [105 at/g] | 26Al/27Al [10−13] | 27Al (by ICP-MS) [µg/g] | 26Al [106 at/g] | 26Al/10Be |
---|---|---|---|---|---|---|---|---|---|
NAMA031a | 0–5 | 5 | 2.5 | 7.55 ± 0.24 | 5.66 ± 0.18 | 1.82 ± 0.11 | 466 ± 14 2 | 2.03 ± 0.14 | 3.59 ± 0.27 |
NAMA031b | 87–93 | 6 | 90 | 13.89 ± 0.29 | 5.65 ± 0.12 | 7.75 ± 0.26 | 142.4 ± 4.3 | 2.77 ± 0.12 | 4.90 ± 0.24 |
NAMA031c | 158–162 | 4 | 160 | 13.02 ± 0.71 | 6.03 ± 0.33 | 3.94 ± 0.14 | 166.3 ± 5.0 2 | 1.46 ± 0.07 | 2.42 ± 0.18 |
NAMA031d | 237–243 | 6 | 240 | 11.80 ± 0.56 | 5.44 ± 0.26 | 7.92 ± 0.30 | 175.9 ± 5.3 | 3.11 ± 0.15 | 5.72 ± 0.39 |
NAMA031e | 318–322 | 4 | 320 | 13.66 ± 0.30 | 5.64 ± 0.12 | 5.36 ± 0.21 | 230.6 ± 6.9 | 2.98 ± 0.15 | 5.28 ± 0.29 |
Blank NAMA031a,b,e | 0.0159 ± 0.0039 | 0.067 ± 0.049 | not measured (carrier) | ||||||
Blank NAMA031c,d | 0.0179 ± 0.0046 | 0.012 ± 0.012 | not measured (carrier) |
Sample Name/ Weight [g] | T [°C] | 4He [10−8 cm3 STP/g] | 20Ne [10−12 cm3 STP/g] | 3He/4He [10−6] | 22Ne/20Ne [10−2] | 21Ne/20Ne [10−2] | 21Neexa [106 at/g] |
---|---|---|---|---|---|---|---|
NAMA031a 0.70486 | 400 | 3.73 ± 0.19 | 26.0 ± 1.5 | 0.019 +0.042–0.019 | 10.26 ± 0.16 | 0.478 ± 0.043 | 0.80 ±0.33 |
600 | 126.6 ± 6.3 | 30.7 ± 1.8 | 0.0069 ± 0.0029 | 10.74 ± 0.16 | 0.869 ± 0.029 | 4.17 ±0.34 | |
800 | 323 ± 16 | 24.6 ± 1.5 | 0.0018 ± 0.0018 | 10.34 ± 0.24 | 0.620 ± 0.028 | 1.67 ±0.23 | |
1200 | 235 ± 12 | 3.55 ± 0.53 | 0.0016+0.0026–0.0016 | 10.90 ± 0.25 | 6.59 ± 0.82 | 5.941 ± 0.45 | |
Total | 688 ± 21 | 84.9 ± 2.8 | 0.0028 ± 0.0014 | 10.48 ± 0.10 | 0.916 ± 0.054 | 6.66 b ± 0.53 | |
NAMA031c 0.71046 | 400 | 11.97 ± 0.84 | 44.6 ± 5.7 | 0.019 +0.023–0.019 | 10.51 ± 0.23 | 0.585 ± 0.041 | 2.65 ± 0.61 |
600 | 129.8 ± 9.1 | 24.8 ± 3.3 | 0.0045 +0.0065–0.0045 | 10.44 ± 0.42 | 0.749 ± 0.065 | 2.56 ± 0.54 | |
800 | 223 ± 11 | 30.9 ± 2.1 | <0.0037 | 10.61 ± 0.24 | 0.569 ± 0.044 | 1.70 ± 0.40 | |
1200 | 120.5 ± 6.0 | 4.44 ± 0.68 | 0.0015 +0.0057–0.0015 | 13.38 ± 0.90 | 5.02 ± 0.93 | 5.55 ± 0.89 | |
Total | 485 ± 16 | 104.7 ± 6.9 | 0.0020 +0.0057–0.0020 | 10.64 ± 0.16 | 0.807 ± 0.056 | 6.91 b ± 0.91 | |
NAMA031d 0.70614 | 400 | 3.57 ± 0.21 | 23.2 ± 1.5 | 0.022 +0.009–0.022 | 10.68 ± 0.26 | 0.457 v 0.045 | 0.58 ± 0.30 |
600 | 109.0 ± 6.5 | 32.5 ± 2.0 | 0.0083 ± 0.0064 | 10.66 ± 0.26 | 0.887 ± 0.061 | 4.56 ± 0.60 | |
800 | 334 ± 20 | 35.1 ± 2.3 | 0.0011 +0.0040–0.0011 | 10.60 ± 0.23 | 0.525 ± 0.050 | 1.51 ± 0.50 | |
1200 | 160.2 ± 9.6 | 3.71 ± 0.72 | 0.0039 +0.0068–0.0039 | 12.80 ± 0.99 | 4.1 ± 1.0 | 3.73 ± 0.84 | |
Total | 607 ± 23 | 94.5 ± 3.5 | 0.0033 ± 0.0031 | 10.70 ± 0.14 | 0.773 ± 0.056 | 6.65 b ± 0.84 | |
NAMA031e 0.70594 | 400 | 17.27 ± 0.87 | 39.9 ± 2.5 | 0.007 +0.011–0.007 | 10.65 ± 0.15 | 0.779 ± 0.011 | 4.46 ± 0.32 |
600 | 116.4 ± 5.8 | 23.4 ± 1.6 | 0.0005 +0.0022–0.0005 | 10.26 ± 0.19 | 0.762 ± 0.029 | 2.50 ± 0.25 | |
800 | 174.3 ± 8.8 | 16.7 ± 1.3 | 0.0010 +0.0055–0.0010 | 10.02 ± 0.24 | 0.602 ± 0.035 | 1.07 ± 0.18 | |
1200 | 84.9 ± 4.2 | 1.22 ± 0.46 | 0.0004 +0.0020–0.0004 | 10.0 ± 4.0 | 10.0 ± 3.7 | 3.15 ± 0.43 | |
Total | 393 ± 11 | 81.2 ± 3.3 | 0.0010 +0.0026–0.0010 | 10.40 ± 0.12 | 0.876 ± 0.077 | 8.03 b ± 0.44 | |
NAMA031a 1.00426 | Crush | 1.435 ± 0.072 | 98.0 ± 7.2 | 0.16 ± 0.11 | 10.20 ± 0.13 | 0.363 ± 0.018 | - |
NAMA031d 1.00680 | Crush | 2.33 ± 0.12 | 62.0 ± 4.6 | 0.051 +0.066–0.051 | 10.28 ± 0.19 | 0.407 ± 0.029 | - |
NAMA031e 1.07402 | Crush | 2.23 ± 0.11 | 66.6 ± 3.5 | 0.058 ± 0.046 | 10.19 ± 0.11 | 0.3607 ± 0.0084 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gärtner, A.; Merchel, S.; Niedermann, S.; Braucher, R.; ASTER-Team; Steier, P.; Rugel, G.; Scharf, A.; Le Bras, L.; Linnemann, U. Nature Does the Averaging—In-Situ Produced 10Be, 21Ne, and 26Al in a Very Young River Terrace. Geosciences 2020, 10, 237. https://doi.org/10.3390/geosciences10060237
Gärtner A, Merchel S, Niedermann S, Braucher R, ASTER-Team, Steier P, Rugel G, Scharf A, Le Bras L, Linnemann U. Nature Does the Averaging—In-Situ Produced 10Be, 21Ne, and 26Al in a Very Young River Terrace. Geosciences. 2020; 10(6):237. https://doi.org/10.3390/geosciences10060237
Chicago/Turabian StyleGärtner, Andreas, Silke Merchel, Samuel Niedermann, Régis Braucher, ASTER-Team, Peter Steier, Georg Rugel, Andreas Scharf, Loic Le Bras, and Ulf Linnemann. 2020. "Nature Does the Averaging—In-Situ Produced 10Be, 21Ne, and 26Al in a Very Young River Terrace" Geosciences 10, no. 6: 237. https://doi.org/10.3390/geosciences10060237
APA StyleGärtner, A., Merchel, S., Niedermann, S., Braucher, R., ASTER-Team, Steier, P., Rugel, G., Scharf, A., Le Bras, L., & Linnemann, U. (2020). Nature Does the Averaging—In-Situ Produced 10Be, 21Ne, and 26Al in a Very Young River Terrace. Geosciences, 10(6), 237. https://doi.org/10.3390/geosciences10060237