The Medicine Hat Block and the Early Paleoproterozoic Assembly of Western Laurentia
Abstract
:1. Introduction
Geologic Background and Previous Work
2. Materials and Methods
2.1. Location and Description of Samples
2.2. U-Pb Geochronology of Zircon
2.3. Lu-Hf Isotopic Analysis of Zircon
3. Results
3.1. U-Pb Zircon Geochronology
3.1.1. Home Pacific Knappen
3.1.2. Imperial Calstan Lake Newell
3.1.3. PCA Calstan Parkland
3.1.4. PCP Medicine Hat
3.1.5. DRA-93-26
3.1.6. DRA-93-01
3.1.7. DRA-93-20
3.2. Lu-Hf Zircon Isotope Geochemistry
3.2.1. Home Pacific Knappen (HPK)
3.2.2. Imperial Calstan Lake Newell (ICLN)
3.2.3. PCA Calstan Parkland (PCACP)
3.2.4. PCP Medicine Hat (PCPMH)
3.2.5. DRA-93-26
3.2.6. DRA-93-01
3.2.7. DRA-93-20
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- O’Neill, J.M.; Lopez, D.A. Character and regional significance of the Great Falls tectonic zone, east-central Idaho and west-central Montana. Am. Assoc. Pet. Geol. Bull. 1985, 69, 437–447. [Google Scholar]
- Ross, G.M. Precambrian basement in the Canadian Cordillera: An introduction. Can. J. Earth Sci. 1991, 28, 1133–1139. [Google Scholar] [CrossRef]
- Pilkington, M.; Grieve, R.A.F.; Rupert, J.D.; Halpenny, J.F. Gravity anomaly map with shaded relief of gradient of North America. Geol. Surv. Can. 1992. Map 1807A, scale 1:10,000,000. [Google Scholar] [CrossRef]
- Villeneuve, M.E.; Ross, G.M.; Thériault, R.J.; Miles, W.; Parrish, R.R.; Broome, J. Tectonic subdivision and U-Pb geochronology of the crystalline basement of the Alberta Basin, Western Canada. Geol. Surv. Can. Bull. 1993, 447, 86. [Google Scholar]
- Davis, W.J.; Berman, R.; Kjarsgaard, B. U-Pb Geochronology and Isotopic Studies of Crustal Xenoliths from the Archean Medicine Hat Block, Northern Montana and Southern Alberta: Paleoproterozoic Reworking of Archean Lower Crust. Lithoprobe 1995, 47, 329–334. [Google Scholar]
- Buhlmann, A.L.; Cavell, P.; Burwash, R.A.; Creaser, R.A.; Luth, R.W. Minette bodies and cognate mica-clinopyroxenite xenoliths from the Milk River area, southern Alberta: Records of a complex history of the northernmost part of the Archean Wyoming craton. Can. J. Earth Sci. 2000, 37, 1629–1650. [Google Scholar] [CrossRef]
- Collerson, K.D.; Hearne, B.C.; Macdonald, R.A.; Upton, B.G.J.; Park, J.G. Granulite xenoliths from the Bearpaw Mountains, Montana: Contraints on the character and evolution of lower continental crust. Terra Cogn. 1988, 8, 270. [Google Scholar]
- Ross, G.M. Introduction to special issue of Canadian Journal of Earth Sciences: The Alberta Basement Transect of Lithoprobe. Can. J. Earth Sci. 2002, 39, 287–288. [Google Scholar] [CrossRef]
- Ross, G.M.; Parrish, R.R.; Villeneuve, M.E.; Bowring, S.A. Geophysics and geochronology of the crystalline basement of the Alberta basin, western Canada. Can. J. Earth Sci. 1991, 28, 512–522. [Google Scholar] [CrossRef]
- Pilkington, M.; Miles, W.F.; Ross, G.M.; Roest, W.R. Potential-field signatures of buried Precambrian basement in the Western Canada Sedimentary Basin. Can. J. Earth Sci. 2000, 37, 1453–1471. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation. Am. Assoc. Pet. Geol. Bull. 2008, 92, 87–125. [Google Scholar] [CrossRef]
- Ross, G.M.; Milkereit, B.; Eaton, D.; White, D.; Kanasewich, E.R.; Burianyk, M.J.A. Paleoproterozoic collisional orogen beneath the Western Canada Sedimentary Basin imaged by Lithoprobe crustal seismic-reflection data. Geology 1995, 23, 195–199. [Google Scholar] [CrossRef]
- Peterman, Z.E. Dating of Archean basement in northeastern Wyoming and southern Montana. GSA Bull. 1981, 92, 139–146. [Google Scholar] [CrossRef]
- Hoffman, P.F. United plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. Annu. Rev. Earth Planet. Sci. 1988, 16. [Google Scholar] [CrossRef]
- Collerson, K.D.; Hearn, B.C.; Macdonald, R.A.; Upton, B.G.J.; Harmon, R.S. Composition and evolution of lower continental crust: Evidence from xenoliths in Eocene lavas from the Bearpaw Mountains, Montana. Abstr. Int. Assoc. Volcanol. Chem. Earth’s Inter. Gen. Assem. 1989, 131, 57. [Google Scholar]
- Condie, K.C. Introduction. In Developments in Precambrian Geology; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Doughty, P.T.; Price, R.A.; Parrish, R.R. Geology and U-Pb geochronology of Archean basement and Proterozoic cover in the Priest River complex, northwestern United States, and their implications for Cordilleran structure and Precambrian continent reconstructions. Can. J. Earth Sci. 1998, 35, 39–54. [Google Scholar] [CrossRef]
- Foster, D.A.; Mueller, P.A.; Mogk, D.W.; Wooden, J.L.; Vogl, J.J. Proterozoic evolution of the western margin of the Wyoming craton: Implications for the tectonic and magmatic evolution of the northern Rocky Mountains. Can. J. Earth Sci. 2006, 43, 1601–1619. [Google Scholar] [CrossRef] [Green Version]
- Foster, D.A.; Mueller, P.A.; Heatherington, A.; Gifford, J.N.; Kalakay, T.J. Lu-Hf systematics of magmatic zircons reveal a Proterozoic crustal boundary under the Cretaceous Pioneer batholith, Montana. Lithos 2012, 142–143, 216–225. [Google Scholar] [CrossRef]
- Klasner, J.S.; King, E.R. Precambrian basement geology of North and South Dakota. Can. J. Earth Sci. 1986, 23, 1083–1102. [Google Scholar] [CrossRef]
- Lewry, J.F.; Stauffer, M.R. The Early Proterozoic Trans-Hudson Orogen of North America. Geol. Assoc. Can. Spec. Pap. 1990, 37, 505. [Google Scholar]
- Baird, D.J.; Nelson, K.D.; Knapp, J.H.; Walters, J.J.; Brown, L.D. Crustal structure and evolution of the Trans-Hudson orogen: Results from seismic reflection profiling. Tectonics 1996, 15, 416–426. [Google Scholar] [CrossRef]
- Mueller, P.; Mogk, D.; Wooden, J.; Spake, D. U-Pb ages of zircons from the Lower Belt Supergroup and proximal crystalline basement: Implications for the early evolution of the Belt Basin. Spec. Pap. Geol. Soc. Am. 2016, 522, 283–303. [Google Scholar] [CrossRef]
- Mueller, P.A.; Burger, H.R.; Wooden, J.L.; Brady, J.B.; Cheney, J.T.; Harms, T.A.; Heatherington, A.L.; Mogk, D.W. Paleoproterozoic Metamorphism in the Northern Wyoming Province: Implications for the Assembly of Laurentia. J. Geol. 2005, 113, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Mueller, P.A.; Frost, C.D. The Wyoming Province: A distinctive Archean craton in Laurentian North America. Can. J. Earth Sci. 2006, 43, 1391–1397. [Google Scholar] [CrossRef]
- Henstock, T.J.; Levander, A.; Snelson, C.M.; Keller, G.R.; Miller, K.C.; Harder, S.H.; Gorman, A.R.; Clowes, R.M.; Burianyk, M.J.A.; Humphreys, E.D. Probing the Archean and Proterozoic lithosphere of western North America. GSA Today 1998. [Google Scholar]
- Boerner, D.E.; Craven, R.D.; Kurtz, R.D.; Ross, G.M.; Jones, F.W. The Great Falls Tectonic Zone: Suture or intracontinental shear zone? Can. J. Earth Sci. 1998, 35, 175–183. [Google Scholar] [CrossRef]
- Gorman, A.R.; Clowes, R.M.; Ellis, R.M.; Henstock, T.J.; Spence, G.D.; Keller, G.R.; Levander, A.; Snelson, C.M.; Burianyk, M.J.; Kanasewich, E.R.; et al. Deep Probe: Imaging the roots of western North America. Can. J. Earth Sci. 2002, 39, 375–398. [Google Scholar] [CrossRef]
- Mogk, D.W.; Henry, D.J. Metamorphic petrology of the northern Archean Wyoming province. southwestern Montana: Evidence for Archean collisional tectonics. In Metamorphism and Crustal Evolution in the Western U.S.; Ernst, W.G., Ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1988; pp. 363–382. [Google Scholar]
- Erslev, E.A.; Sutter, J.F. Evidence for Proterozoic mylonitization in the northwestern Wyoming province. Geol. Soc. Am. Bull. 1990, 102, 1681–1694. [Google Scholar] [CrossRef]
- Mogk, D.W.; Mueller, P.A.; Wooden, J.L. The nature of Archean terrane boundaries: An example from the northern Wyoming Province. Precambrian Res. 1992, 55, 155–168. [Google Scholar] [CrossRef]
- Mueller, P.A.; Shuster, R.D.; Wooden, J.L.; Erslev, E.A.; Bowes, D.R. Age and composition of Archean crystalline rocks from the southern Madison Range, Montana: Implications for crustal evolution in the Wyoming craton. Geol. Soc. Am. Bull. 1993, 105, 437–446. [Google Scholar] [CrossRef]
- Mueller, P.A.; Wooden, J.L.; Nutman, A.P.; Mogk, D.W. Early Archean crust in the northern Wyoming province Evidence from U-Pb ages of detrital zircons. Precambrian Res. 1998, 91, 295–307. [Google Scholar] [CrossRef]
- Wooden, J.L.; Mueller, P.A. Pb, Sr, and Nd isotopic compositions of a suite of Late Archean, igneous rocks, eastern Beartooth Mountains: Implications for crust-mantle evolution. Earth Planet. Sci. Lett. 1988, 87, 59–72. [Google Scholar] [CrossRef]
- Chamberlain, K.R.; Frost, C.D.; Frost, B.R. Early Archean to Mesoproterozoic evolution of the Wyoming Province: Archean origins to modern lithospheric architecture. Can. J. Earth Sci. 2003, 40, 1357–1374. [Google Scholar] [CrossRef]
- Harms, T.A.; Brady, J.B.; Burger, H.R.; Cheney, J.T. Advances in the geology of the Tobacco Root Mountains, Montana, and their implications for the history of the northern Wyoming province. Spec. Pap. Geol. Soc. Am. 2004, 377, 227–243. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.L. U-Pb Geochronology of Monazite and Zircon in Precambrian Metamorphic Rocks from the Ruby Range, SW Montana: Deciphering Geological Events that Shaped the NW Wyoming Province. Master’s Thesis, Kent State University, Kent, OH, USA, 2008; 131p. [Google Scholar]
- Alcock, J.; Mueller, P.A. A Paleoproterozoic sedimentary basin within the Wyoming Craton exposed in the Ruby Range, SW Montana. Northwest Geol. 2012, 41, 47–62. [Google Scholar]
- Condit, C.B.; Mahan, K.H.; Ault, A.K.; Flowers, R.M. Foreland-directed propagation of high-grade tectonism in the deep roots of a Paleoproterozoic collisional orogen, SW Montana, USA. Lithosphere 2015, 7, 625–645. [Google Scholar] [CrossRef] [Green Version]
- Mueller, P.A.; Wooden, J.L. Trace Element and Lu-Hf Systematics in Hadean-Archean Detrital Zircons: Implications for Crustal Evolution. J. Geol. 2012, 120, 15–29. [Google Scholar] [CrossRef]
- Mueller, P.A.; Cordua, W.S. Rb-Sr whole rock age of gneisses from the Horse Creek area, Tobacco Root Mountains, Montana. Isochron/West 1976, 16, 33–36. [Google Scholar]
- James, H.L.; Hedge, C.E. Age of the basement rocks of southwest Montana. Geol. Soc. Am. Bull. 1980, 91, 11–15. [Google Scholar] [CrossRef]
- Salt, K.J. Archean Geology of the Spanish Peaks Area, Southwestern Montana. Master’s Thesis, Montana State University, Bozeman, MT, USA, 1987; pp. 1–81. [Google Scholar]
- Weyand, E.L. U-Pb Zircon Geochronology of Archean Rocks from the Spanish Peaks Area, Madison Range, Montana. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 1989. [Google Scholar]
- Kellogg, K.S.; Mogk, D.W. Structural development of high-temperature mylonites in the Archean Wyoming province, northwestern Madison Range, Montana. Rocky Mt. Geol. 2009, 44, 85–102. [Google Scholar] [CrossRef]
- Mueller, P.A.; Wooden, J.L. Evidence for Archean subduction and crustal recycling, Wyoming province. Geology 1988, 16, 871–874. [Google Scholar] [CrossRef]
- Roberts, H.; Dahl, P.; Kelley, S.; Frei, R. New 207Pb-206Pb and 40Ar-39Ar ages from SW Montana, USA: Constraints on the Proterozoic and Archæan tectonic and depositional history of the Wyoming province. Precambrian Res. 2002, 117, 119–143. [Google Scholar] [CrossRef]
- Cheney, J.T.; Webb, A.A.G.; Coath, C.D.; McKeegan, K.D. In situ ion microprobe 207Pb/206Pb dating of monazite from Precambrian metamorphic suites, Tobacco Root Mountains, Montana. Spec. Pap. Geol. Soc. Am. 2004, 377, 151–179. [Google Scholar] [CrossRef] [Green Version]
- Mueller, P.A.; Burger, H.R.; Wooden, J.L.; Heatherington, A.L.; Mogk, D.W.; D’Arcy, K. Age and evolution of the Precambrian crust of the Tobacco Root Mountains, Montana. Spec. Pap. Geol. Soc. Am. 2004, 377, 181–202. [Google Scholar] [CrossRef]
- Harlan, S.S.; Geissman, J.W.; Snee, L.W.; Reynolds, R.L. Late Cretaceous remagnetization of Proterozoic mafic dikes, southern Highland Mountains, southwestern Montana: A paleomagnetic and 40Ar/39Ar study. Bull. Geol. Soc. Am. 1996, 108, 653–668. [Google Scholar] [CrossRef]
- O’Neill, J.M. The Great Falls Tectonic Zone, Montana-Idaho: An Early Proterozoic collisional orogen beneath and south of the Belt Basin. In Belt Symposium III; Montana Bureau of Mines and Geology: Butte, MT, USA, 1998; Volume 112, pp. 222–228. [Google Scholar]
- Condit, C.B.; Mahan, K.H.; Curtis, K.C.; Möller, A. Dating metasomatism: Monazite and zircon growth during amphibolite facies albitization. Minerals 2018, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- Ault, A.K.; Flowers, R.M.; Mahan, K.H. Quartz shielding of sub-10μm zircons from radiation damage-enhanced Pb loss: An example from a metamorphosed mafic dike, northwestern Wyoming craton. Earth Planet. Sci. Lett. 2012, 339–340, 57–66. [Google Scholar] [CrossRef]
- Spencer, E.W.; Kozak, S.J. Precambrian evolution of the Spanish Peaks Area, Montana. Bull. Geol. Soc. Am. 1975, 86, 785–792. [Google Scholar] [CrossRef]
- Alcock, J.; Muller, P.D.; Jercinovic, M.J. Monazite ages and pressure-temperature-time paths from anatectites in the southern Ruby Range, Montana, USA: Evidence for delamination, ultramafic magmatism, and rapid uplift at ca. 1780 Ma. Can. J. Earth Sci. 2013, 50, 1069–1084. [Google Scholar] [CrossRef]
- Gifford, J.N.; Mueller, P.A.; Foster, D.A.; Mogk, D.W. Precambrian Crustal Evolution in the Great Falls Tectonic Zone: Insights from Xenoliths from the Montana Alkali Province. J. Geol. 2014, 122, 531–548. [Google Scholar] [CrossRef]
- Gifford, J.N.; Mueller, P.A.; Foster, D.A.; Mogk, D.W. Extending the realm of Archean crust in the Great Falls tectonic zone: Evidence from the Little Rocky Mountains, Montana. Precambrian Res. 2018, 315, 264–281. [Google Scholar] [CrossRef]
- Mueller, P.A.; Heatherington, A.L.; Kelly, D.M.; Wooden, J.L.; Mogk, D.W. Paleoproterozoic crust within the Great Falls tectonic zone: Implications for the assembly of southern Laurentia. Geology 2002, 30, 127–130. [Google Scholar] [CrossRef]
- Mueller, P.A.; Heatherington, A.L.; Mogk, D.W.; Wooden, J.L. Paleoproterozoic tectonothermal activity along the NW margin of the Archean Wyoming province. Geol. Soc. Am. Abstr. Programs 1999, 31, A107. [Google Scholar]
- Ansdell, K.M. Tectonic evolution of the Manitoba-Saskatchewan segment of the Paleoproterozoic Trans-Hudson Orogen, Canada. Can. J. Earth Sci. 2005, 42, 741–759. [Google Scholar] [CrossRef]
- Ansdell, K.M.; Lucas, S.B.; Connors, K.; Stern, R.A. Kisseynew metasedimentary gneiss belt, Trans-Hudson orogen (Canada): Back-arc origin and collisional inversion. Geology 1995, 23, 1039–1043. [Google Scholar] [CrossRef]
- Ansdell, K.M.; Kyser, T.K. Plutonism, deformation, and metamorphism in the Proterozoic Flin Flon greenstone belt, Canada: Limits on timing provided by the single-zircon Pb-evaporation technique. Geology 1991, 19, 518–521. [Google Scholar] [CrossRef]
- Ashton, K.E.; Heaman, L.M.; Lewry, J.F.; Hartlaub, R.P.; Shi, R. Age and origin of the Jan Lake Complex: A glimpse at the buried Archean craton of the Trans-Hudson Orogen. Can. J. Earth Sci. 1999, 36, 185–208. [Google Scholar] [CrossRef]
- Bickford, M.E.; Hamilton, M.A.; Wortman, G.L.; Hill, B.M. Archean rocks in the southern Rottenstone Domain: Significance for the evolution of the Trans-Hudson Orogen. Can. J. Earth Sci. 2001, 38, 1017–1025. [Google Scholar] [CrossRef]
- Chiarenzelli, J.; Aspler, L.; Villeneuve, M.; Lewry, J. Early proterozoic evolution of the saskatchewan craton and its allochthonous coyer, trans-hudson Orogen. J. Geol. 1998, 106, 247–267. [Google Scholar] [CrossRef]
- Collerson, K.D.; Lewry, J.F.; Bickford, M.E.; Van Schmus, W.R. Crustal evolution of the buried Precambrian of southern Saskatchewan: Implications for diamond exploration. Saskatchewan Geol. Soc. Spec. Publ. 1990, 10, 150–165. [Google Scholar]
- Gandhi, S.S.; Mortensen, J.K.; Prasad, N.; van Breemen, O. Magmatic evolution of the Southern Great Bear continental arc, Northwestern Canadian Shield: Geochronological constraints. Can. J. Earth Sci. 2001, 38, 767–785. [Google Scholar] [CrossRef]
- Davis, W.J.; Kjarsgaard, B.A. A Rb-Sr phlogopite-whole rock isochron age for olivine minette from the Milk River area, southern Alberta. Geol. Surv. Can. 1994, 1994-F, 11–14. [Google Scholar] [CrossRef]
- Kjarsgaard, B.A. Potassic magmatism in the Milk River area, southern Alberta: Petrology and economic potential. Geol. Surv. Can. 1994, 1994, 59–68. [Google Scholar]
- Paces, J.B.; Miller, J.D. Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. J. Geophys. Res. 1993, 98, 13997. [Google Scholar] [CrossRef]
- Black, L.P.; Kamo, S.L.; Williams, I.S.; Mundil, R.; Davis, D.W.; Korsch, R.J.; Foudoulis, C. The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards. Chem. Geol. 2003. [Google Scholar] [CrossRef]
- Mattinson, J.M. Analysis of the relative decay constants of235U and238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chem. Geol. 2010, 275, 186–198. [Google Scholar] [CrossRef]
- Mueller, P.A.; Kamenov, G.D.; Heatherington, A.L.; Richards, J. Crustal Evolution in the Southern Appalachian Orogen: Evidence from Hf Isotopes in Detrital Zircons. J. Geol. 2008, 116, 414–422. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot 3.00, a Geochronological Toolkit for Microsoft Excel.; Berkeley Geochronology Center Special Publication No. 4; Berkeley Geochronological Center: Berkeley, CA, USA, 2003. [Google Scholar]
- Ludwig, K.R. User ’s Manual for Isoplot 3.70; Berkeley Geochronological Center: Berkeley, CA, USA, 2008. [Google Scholar]
- Fisher, C.M.; Vervoort, J.D.; Hanchar, J.M. Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data. Chem. Geol. 2014, 363, 125–133. [Google Scholar] [CrossRef]
- Vervoort, J.D.; Patehett, P.J.; Söderlund, U.; Baker, M. Isotopie composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS. Geochem. Geophys. Geosyst. 2004, 5, 1–15. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Hergt, J.M. A Preliminary Appraisal of Seven Natural Zircon Reference Materials for In Situ Hf Isotope Determination. Geostand. Geoanal. Res. 2005, 29, 183–195. [Google Scholar] [CrossRef]
- Söderlund, U.; Patchett, P.J.; Vervoort, J.D.; Isachsen, C.E. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
- Scherer, E.E.; Munker, C.; Mezger, K. Calibration of the Lutetium-Hafnium Clock. Science 2001, 293, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; Van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.; Zhou, X. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
- DePaolo, D.J.; Wasserburg, G.J. Nd isotopic variations and petrogenetic models. Geophys. Res. Lett. 1976. [Google Scholar] [CrossRef] [Green Version]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Jones, R.E.; van Keken, P.E.; Hauri, E.H.; Tucker, J.M.; Vervoort, J.; Ballentine, C.J. Origins of the terrestrial Hf-Nd mantle array: Evidence from a combined geodynamical-geochemical approach. Earth Planet. Sci. Lett. 2019. [Google Scholar] [CrossRef]
- Sanfilippo, A.; Salters, V.; Tribuzio, R.; Zanetti, A. Role of ancient, ultra-depleted mantle in Mid-Ocean-Ridge magmatism. Earth Planet. Sci. Lett. 2019, 511, 89–98. [Google Scholar] [CrossRef]
- Staffenberg, J.; Mueller, P.A.; Mogk, D.W.; Henry, D.J.; Wooden, J.L. Testing a model of 2.8 Ga arc genesis with trace elements. Geol. Soc. Am. Abstr. Programs 2011, 43, 435. [Google Scholar]
- Weiss, R.A.; Vogl, J.J.; Mueller, P.A.; Foster, D.A.; Kamenov, G.D.; Wooden, J.L. Lu-Hf Analysis of Zircons in the Little Belt Mountains Suggest Paleoproterozoic Subduction in the Great Falls Tectonic Zone. In Proceedings of the American Geophysical Union (AGU) Fall 2009 Meeting, San Francisco, CA, USA, 13–18 December 2009. V43E-2321. [Google Scholar]
- Joswiak, D.J. Composition and evolution of the lower crust, central Montana: Evidence from granulite xenoliths. Master’s Thesis, University of Washington, Seattle, WA, USA, 1992. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. Treatise Geochem. 2003, 3, 1–64. [Google Scholar]
- Frost, C.D.; Burwash, R.A. Nd evidence for extensive Archean basement in the western Churchill province, Canada. Can. J. Earth Sci. 1986, 23, 1433–1437. [Google Scholar] [CrossRef]
- Stevenson, R.K.; Patchett, P.J. Implications for the evolution of continental crust from Hf isotope systematics of Archean detrital zircons. Geochim. Cosmochim. Acta 1990. [Google Scholar] [CrossRef]
- Mogk, D.W.; Burger, H.R.; Mueller, P.A.; D’Arcy, K.; Heatherington, A.L.; Wooden, J.L.; Abeyta, R.L.; Martin, J.; Jacob, L.J. Geochemistry of quartzofeldspathic gneisses and metamorphic mafic rocks of the indian creek and pony-middle mountain Metamorphic suites, Tobacco root Mountains, Montana. In Precambrian Geology of the Tobacco Root Mountains, Montana; Geological Society of America: Boulder, CO, USA, 2004; Volume 377, ISBN 0813723779. [Google Scholar]
- Krogh, T.E.; Kamo, S.L.; Hanley, T.B.; Hess, D.F.; Dahl, P.S.; Johnson, R.E. Geochronology and geochemistry of Precambrian gneisses, metabasites, and pegmatite from the Tobacco Root Mountains, northwestern Wyoming craton, Montana. Can. J. Earth Sci. 2011, 48, 161–185. [Google Scholar] [CrossRef]
- Mueller, P.A.; Heatherington, A.L.; D’Arcy, K.A.; Wooden, J.L.; Nutman, A.P. Contrasts between Sm-Nd whole-rock and U-Pb zircon systematics in the Tobacco Root batholith, Montana: Implications for the determination of crustal age provinces. Tectonophysics 1996, 265, 169–179. [Google Scholar] [CrossRef]
- Brewer, R.A.; Vervoort, J.D.; Lewis, R.S.; Gaschnig, R.M.; Hart, G. New constraints on the extent of Paleoproterozoic and Archean basement in the Northwest U.S. cordillera. In Proceedings of the American Geophysical Union (AGU) Fall 2008 Meeting, San Francisco, CA, USA, 15–19 December 2009; Volume 89. Abstract T23C-2066. [Google Scholar]
- Jansen, A.C.; Vervoort, J.D.; Lewis, R.S. Precambrian basement rocks of the Clearwater metamorphic complex: A new piercing point along the western margin of Laurentia. GSA Abstr. Programs 2011, 43, 491. [Google Scholar]
- Lewis, R.S.; Brewer, R.A.; Jansen, A.C.; Guevara, V.E.; Vervoort, J.D.; Baldwin, J.A. Below the Belt: A road log in the eastern Clearwater Complex, Idaho. Northwest Geol. 2011, 40, 143–158. [Google Scholar]
- Vervoort, J.D.; Lewis, R.S.; Fisher, C.; Gaschnig, R.M.; Jansen, A.C.; Brewer, R. Neoarchean and Paleoproterozoic crystalline basement rocks of north-central Idaho: Constraints on the formation of western Laurentia. Bull. Geol. Soc. Am. 2015, 128, 94–109. [Google Scholar] [CrossRef]
- Burrett, C.; Berry, R. Proterozoic Australia-Western United States (AUSWUS) fit between Laurentia and Australia. Geology 2000, 28, 103–106. [Google Scholar] [CrossRef]
- Thorkelson, D.J.; Laughton, J.R. Paleoproterozoic closure of an Australia-Laurentia seaway revealed by megaclasts of an obducted volcanic arc in Yukon, Canada. Gondwana Res. 2016, 33, 115–133. [Google Scholar] [CrossRef]
- Ross, G.M.; Eaton, D.W.; Boerner, D.E.; Miles, W. Tectonic entrapment and its role in the evolution of continental lithosphere: An example from the Precambrian of western Canada. Tectonics 2000, 19, 116–134. [Google Scholar] [CrossRef]
- Karlstrom, K.E.; Harlan, S.S.; Williams, M.L.; McLelland, J.; Geissman, J.W.; Åhäll, K.I. Refining Rodinia: Geologic evidence for the Australia-Western U.S. Connection in the Proterozoic. GSA Today 1999, 9, 2–7. [Google Scholar] [CrossRef]
- Thorkelson, D.J.; Mortensen, J.K.; Creaser, R.A.; Davidson, G.J.; Abbott, J.G. Early proterozoic magmatism in Yukon, Canada: Constraints on the evolution of Northwestern Laurentia. Can. J. Earth Sci. 2001, 38, 1479–1494. [Google Scholar] [CrossRef]
- Medig, K.P.R.; Thorkelson, D.J.; Davis, W.J.; Rainbird, R.H.; Gibson, H.D.; Turner, E.C.; Marshall, D.D. Pinning northeastern Australia to northwestern Laurentia in the Mesoproterozoic. Precambrian Res. 2014, 249, 88–99. [Google Scholar] [CrossRef]
- O’Neill, J.M.; Duncan, M.S.; Zartman, R.E. An Early Proterozoic gneiss dome in the Highland Mountains, southwestern Montana. Mont. Bur. Mines Geol. Spec. Publ. 1988, 96, 81–88. [Google Scholar]
- Mueller, P.A.; Wooden, J.L.; Mogk, D.W.; Nutman, A.P.; Williams, I.S. Extended history of a 3.5 Ga trondhjemitic gneiss, Wyoming Province, USA: Evidence from U-Pb systematics in zircon. Precambrian Res. 1996, 78, 41–52. [Google Scholar] [CrossRef]
- Krogh, T.E.; Kamo, S.L.; Hess, D.F. Wyoming province 3300+ Ma gneiss with 2400 Ma metamorphism, northwestern Tobacco Root Mountains, Madison County, Montana. Geol. Soc. Am. Abstr. Programs 1997, 29, A408. [Google Scholar]
- Whitmeyer, S.J.; Karlstrom, K.E. Tectonic model for the Proterozoic growth of North America. Geosphere 2007, 3, 220–259. [Google Scholar] [CrossRef]
207Pb/206Pb | Analysis Type | Descriptions | |
---|---|---|---|
Age (Ga) | |||
Drill Core Samples [4] | |||
Home Pacific Knappen | 3.278 | single zircon core analysis | Banded greenish colored gneiss composed of quartz and feldspar with 20% biotite |
Imperial Calstan Lake Newell | 2.714 | single zircon core analysis | Moderately fresh pegmatitic granodioritic gneiss composed of quartz, alkali feldspar, plagioclase, and hornblende with subordinate epidote and biotite |
PCA Calstan Parkland | 2.627 | single zircon core analysis | Homogenous fresh medium- to fine-grained metabasite gneiss composed of biotite and plagioclase with subordinate hornblende |
PCP Medicine Hat | 2.7–2.8 | single zircon core analysis | Massive, weakly foliated granitic gneiss that ranges in texture from medium-grained equigranular to pegmatitic and is cross-cut by chlorite-covered fractures |
Xenolith Samples [5] | |||
DRA-93-26 | 2.65 | not specified | Hornblende-biotite tonalite |
DRA-93-01 | 1.72 | multi-grain zircon U-Pb | Mafic granulite with a high-pressure assemblage (garnet–clinopyroxene–pigeonite–rutile +/− hornblende +/− quartz) |
DRA-93-20 | 1.81 | single zircon core analyses | Quartzo-feldspathic mesoperthite-rich granulite |
207Pb/206Pb | Error | z/d/c a | 176Hf/177Hf | εHf(0) | εHf(0) | εHf(T) c | εHf(T) c | Hf Model Age | |
---|---|---|---|---|---|---|---|---|---|
Age (Ga) | 2σ | (T) b | Range | Mean | Range | Mean | (Ga) (DM) d | ||
Drill Core Samples | |||||||||
Home Pacific Knappen | 3.28 | 0.01 | 90/7/11 | 0.28054 | −76.6 to −81.5 | −78.2 ± 0.95 | −3.1 to −8.7 | −4.6 ± 1.1 | 3.62 |
Imperial Calstan Lake Newell | 2.74 | 0.03 | 68/20/16 | 0.28112 | −53.1 to −60.0 | −58.3 ± 0.62 | 8.1 to 1.6 | 3.1 ± 0.61 | 2.86 |
PCA Calstan Parkland | 2.64 | 0.02 | 60/16/13 | 0.28117 | −51.0 to −58.5 | −56.8 ± 0.83 | 8.5 to 1.1 | 2.5 ± 0.76 | 2.79 |
PCP Medicine Hat | N/A | N/A | 70/NA/15 | 0.28103 | −54.6 to −60.9 | N/A | 5.3 to −2.9 e | N/A | 2.84 to 3.22 |
Xenolith Samples | |||||||||
DRA-93-26 | 2.84 | 0.02 | 70/22/22 | 0.28101 | −55.9 to −63.2 | −61.4 ± 0.67 | 7.9 to 0.1 | 1.6 ± 0.64 | 3.01 |
DRA-93-01 | 1.81 | 0.05 | 59/16/16 | 0.28114 | −56.5 to −63.9 | −59.5 ± 1.0 | −15.7 to −23.3 | −17.0 ± 2.3 | 2.89 |
DRA-93-20 | 1.76 | 0.06 | 31/8/13 | 0.28125 | −49.8 to −58.6 | −53.6 ± 1.6 | −10.1 to −20.1 | −14.4 ± 1.8 | 2.69 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gifford, J.N.; Malone, S.J.; Mueller, P.A. The Medicine Hat Block and the Early Paleoproterozoic Assembly of Western Laurentia. Geosciences 2020, 10, 271. https://doi.org/10.3390/geosciences10070271
Gifford JN, Malone SJ, Mueller PA. The Medicine Hat Block and the Early Paleoproterozoic Assembly of Western Laurentia. Geosciences. 2020; 10(7):271. https://doi.org/10.3390/geosciences10070271
Chicago/Turabian StyleGifford, Jennifer N., Shawn J. Malone, and Paul A. Mueller. 2020. "The Medicine Hat Block and the Early Paleoproterozoic Assembly of Western Laurentia" Geosciences 10, no. 7: 271. https://doi.org/10.3390/geosciences10070271
APA StyleGifford, J. N., Malone, S. J., & Mueller, P. A. (2020). The Medicine Hat Block and the Early Paleoproterozoic Assembly of Western Laurentia. Geosciences, 10(7), 271. https://doi.org/10.3390/geosciences10070271