Linking Siberian Traps LIP Emplacement and End-Permian Mass Extinction: Evidence from Magnetic Stratigraphy of the Maymecha-Kotuy Volcanic Section
Abstract
:1. Introduction
Objects and Geological Background
2. Methods
3. Magnetic Mineralogy
4. Paleomagnetism
- Proximity of the most of obtained paleomagnetic directions to those expected for the P-T of the Siberian Traps [41].
- Positive “baked contact test”: Pravoboyarsky tuffs in the contact zone of the picritic dike are partially remagnetized, but the primary component of normal polarity is still preserved.
- Presence of the primary magmatic magnetites and titanomagnetites, often with the structures of the deuteric oxidation.
- Reliable determinations of the paleointensity for the Tyvankitsky and Delkansky formations [55], pointing to the thermoremanent origin of NRM.
5. Discussion
6. Conclusions
- The Permian–Triassic volcanic section of the Maymecha-Kotuy region comprises five intervals of magnetic polarity and corresponds to the most prolonged eruptive activity within the Siberian platform.
- The major part of the Maymecha-Kotuy volcanic section erupted in the beginning of Early Triassic and postdate came the onset of end-Permian mass extinction, as did the main volume of the Siberian Traps.
- The initial pulse of volcanic activity in the Maymecha-Kotuy region took place at the end of the Permian period and preceded the biotic crisis. Coeval explosive events are identified in other regions of the Siberian Traps LIP; however, their scale is still unclear.
- The most voluminous magmatic event of this initial stage occurred in the Norilsk region and corresponds to the emplacement of the thick Ivakinsky lava formation and sills of the Yergalakhsky complex intruding coal-bearing sediments of the Tunguska Group.
- The total duration of magmatic activity in the Maymecha-Kotuy region can be estimated as ~2 Myr. This lasted after the termination of eruptions in other parts of the Siberian platform.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vogt, P.R. Evidence for global synchronism in mantle plume convection, and possible significance for geology. Nature 1972, 240, 338–342. [Google Scholar] [CrossRef]
- Courtillot, V. Evolutionary Catastrophes: The Science of Mass Extinctions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Bond, D.P.G.; Wignall, P.B. Large igneous provinces and mass extinctions: An update. In Volcanism, Impacts and Mass Extinctions: Causes and Effects; Keller, G., Kerr, A.C., Eds.; Geological Society of America Special Paper: Boulder, CO, USA, 2014; pp. 29–55. [Google Scholar]
- Ernst, R.E.; Youbi, N. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr. Palaeoclim. Palaeoecol. 2017, 478, 30–52. [Google Scholar] [CrossRef]
- Raup, D.M.; Sepkoski, J.J. Mass extinctions in the marine fossil record. Science 1982, 215, 1501–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wignall, P.B. Large igneous provinces and mass extinctions. Earth Sci. Rev. 2001, 53, 1–33. [Google Scholar] [CrossRef]
- Courtillot, V.; Olson, P. Mantle plumes link magnetic superchrons to phanerozoic mass depletion events. Earth Planet. Sci. Lett. 2007, 260, 495–504. [Google Scholar] [CrossRef]
- Kravchinsky, V.A. Paleozoic large igneous provinces of Northern Eurasia: Correlation with mass extinction events. Glob. Planet. Chang. 2012, 86–87, 31–36. [Google Scholar] [CrossRef]
- Blackburn, T.J.; Olsen, P.E.; Bowring, S.A.; McLean, N.M.; Kent, D.V.; Puffer, J.; McHone, G.; Rasbury, E.T.; Et-Touhami, M. Zircon U-Pb geochronology links the end-triassic extinction with the central Atlantic magmatic province. Science 2013, 340, 941–945. [Google Scholar] [CrossRef] [Green Version]
- Masaitis, V.L. Permian and Triassic volcanism of Siberia: Problems of dynamic reconstructions. Notes of the all-Union mineralogical society. Zap. Vseross. Miner. Obs. 1983, 112, 412–425. (In Russian) [Google Scholar]
- Reichow, M.K.; Saunders, A.D.; White, R.V.; Pringle, M.S.; Al’mukhamedov, A.I.; Medvedev, A.I.; Kirda, N.P. 40Ar/39Ar dates from the West Siberian Basin: Siberian flood basalt province doubled. Science 2002, 296, 1846–1849. [Google Scholar] [CrossRef] [Green Version]
- Ernst, R.E. Large Igneous Provinces; Cambridge University Press: Cambridge, UK, 2014; ISBN 9781139025300. [Google Scholar]
- Renne, P.R.; Basu, A.R. Rapid eruption of the Siberian traps flood basalts at the permo-triassic boundary. Science 1991, 253, 176–179. [Google Scholar] [CrossRef] [Green Version]
- Kamo, S.L.; Czamanske, G.K.; Krogh, T.E. A minimum U-Pb age for Siberian flood-basalt volcanism. Geochim. Cosmochim. Acta 1996, 60, 3505–3511. [Google Scholar] [CrossRef]
- Kamo, S.L.; Czamanske, G.K.; Amelin, Y.; Fedorenko, V.A.; Davis, D.W.; Trofimov, V.R. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth Planet. Sci. Lett. 2003, 214, 75–91. [Google Scholar] [CrossRef]
- Reichow, M.K.; Pringle, M.S.; Al’Mukhamedov, A.I.; Allen, M.B.; Andreichev, V.L.; Buslov, M.M.; Davies, C.E.; Fedoseev, G.S.; Fitton, J.G.; Inger, S.; et al. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. Earth Planet. Sci. Lett. 2009, 277, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Svensen, H.; Planke, S.; Polozov, A.G.; Schmidbauer, N.; Corfu, F.; Podladchikov, Y.Y.; Jamtveit, B. Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci. Lett. 2009, 277, 490–500. [Google Scholar] [CrossRef]
- Augland, L.E.; Ryabov, V.V.; Vernikovsky, V.A.; Planke, S.; Polozov, A.G.; Callegaro, S.; Jerram, D.A.; Svensen, H.H. The main pulse of the Siberian Traps expanded in size and composition. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zolotukhin, V.V.; Vilenskii, A.M.; Dyuzhikov, O.A. Basalts of Siberian platform. Novosib. Nauka 1986, 245, 289. (In Russian) [Google Scholar]
- Fedorenko, V.; Czamanske, G. Results of new field and geochemical studies of the volcanic and intrusive rocks of the Maymecha-Kotuy area, Siberian flood-basalt province, Russia. Int. Geol. Rev. 1997, 39, 479–531. [Google Scholar] [CrossRef]
- Ivanov, A.V.; He, H.; Yan, L.; Ryabov, V.V.; Shevko, A.Y.; Palesskii, S.V.; Nikolaeva, I.V. Siberian Traps large igneous province: Evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism. Earth-Sci. Rev. 2013, 122, 58–76. [Google Scholar] [CrossRef]
- Lyons, J.J.; Coe, R.S.; Zhao, X.; Renne, P.R.; Kazansky, A.Y.; Izokh, A.E.; Kungurtsev, L.V.; Mitrokhin, D.V. Paleomagnetism of the early Triassic Semeitau igneous series, eastern Kazakstan. J. Geophys. Res. Solid Earth 2002, 107. [Google Scholar] [CrossRef]
- Saunders, A.D.; England, R.W.; Reichow, M.K.; White, R.V. A mantle plume origin for the Siberian traps: Uplift and extension in the West Siberian Basin, Russia. Lithos 2005, 79, 407–424. [Google Scholar] [CrossRef]
- Vyssotski, A.V.; Vyssotski, V.N.; Nezhdanov, A.A. Evolution of the West Siberian Basin. Mar. Pet. Geol. 2006, 23, 93–126. [Google Scholar] [CrossRef]
- Buslov, M.M.; Safonova, I.Y.; Fedoseev, G.S.; Reichow, M.; Davies, K.; Babin, G.A. Permo-Triassic plume magmatism of the Kuznetsk Basin, Central Asia: Geology, geochronology, geochemistry, and geodynamic consequences. Russ. Geol. Geophys. 2010, 51, 322–327. [Google Scholar] [CrossRef]
- Fedorenko, V.A.; Lightfoot, P.C.; Naldrett, A.J.; Czamanske, G.K.; Hawkesworth, C.J.; Wooden, J.L.; Ebel, D.S. Petrogenesis of the flood-basalt sequence at Noril’sk, North Central Siberia. Int. Geol. Rev. 1996, 38, 99–135. [Google Scholar] [CrossRef]
- Vasil’ev, Y.R.; Zolotukhin, V.V.; Feoktistov, G.D.; Prusskaya, S.N. Evaluation of the volumes and genesis of Permo-Triassic Trap magmatism of the Siberian platform. Geol. Geofiz. 2000, 41, 1696–1705. [Google Scholar]
- Dobretsov, N.L. Mantle plumes and their role in the formation of anorogenic granitoids. Geol. Geofiz. 2003, 44, 1243–1261. [Google Scholar]
- Burgess, S.D.; Bowring, S.A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 2015, 1, e1500470. [Google Scholar] [CrossRef] [Green Version]
- Latyshev, A.V.; Rad’ko, V.A.; Veselovskiy, R.V.; Fetisova, A.M.; Pavlov, V.E. Correlation of the Permian-Triassic ore-bearing intrusions of the Norilsk region with the volcanic sequence of the Siberian Traps based on the paleomagnetic data. Econ. Geol. 2020. [Google Scholar] [CrossRef]
- Gurevitch, E.L.; Heunemann, C.; Rad’ko, V.; Westphal, M.; Bachtadse, V.; Pozzi, J.P.; Feinberg, H. Palaeomagnetism and magnetostratigraphy of the Permian-Triassic northwest central Siberian Trap Basalts. Tectonophysics 2004, 379, 211–226. [Google Scholar] [CrossRef]
- Steiner, M.B. The magnetic polarity time scale across the Permian-Triassic boundary. Geol. Soc. Spec. Publ. 2006, 265, 15–38. [Google Scholar] [CrossRef]
- Fetisova, A.M.; Veselovskii, R.V.; Latyshev, A.V.; Rad’ko, V.A.; Pavlov, V.E. Magnetic stratigraphy of the Permian-Triassic traps in the Kotui River valley (Siberian Platform): New paleomagnetic data. Stratigr. Geol. Correl. 2014, 22, 377–390. [Google Scholar] [CrossRef]
- Riisager, J.; Riisager, P.; Pedersen, A.K. Paleomagnetism of large igneous provinces: Case-study from West Greenland, North Atlantic igneous province. Earth Planet. Sci. Lett. 2003, 214, 409–425. [Google Scholar] [CrossRef]
- Chenet, A.L.; Fluteau, F.; Courtillot, V.; Gérard, M.; Subbarao, K.V. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar escarpment. J. Geophys. Res. Solid Earth 2008, 113, B04101. [Google Scholar] [CrossRef]
- Chenet, A.L.; Courtillot, V.; Fluteau, F.; Gérard, M.; Quidelleur, X.; Khadri, S.F.R.; Subbarao, K.V.; Thordarson, T. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section. J. Geophys. Res. Solid Earth 2009, 114, B06103. [Google Scholar] [CrossRef]
- Moulin, M.; Courtillot, V.; Fluteau, F.; Valet, J.P. The “Van Zijl” Jurassic geomagnetic reversal revisited. Geochem. Geophys. Geosyst. 2012, 13, Q03010. [Google Scholar] [CrossRef] [Green Version]
- Heunemann, C.; Krása, D.; Soffel, H.C.; Gurevitch, E.; Bachtadse, V. Directions and intensities of the Earth’s magnetic field during a reversal: Results from the Permo-Triassic Siberian trap basalts, Russia. Earth Planet. Sci. Lett. 2004, 218, 197–213. [Google Scholar] [CrossRef]
- Pavlov, V.E.; Fluteau, F.; Veselovskiy, R.V.; Fetisova, A.M.; Latyshev, A.V. Secular geomagnetic variations and volcanic pulses in the Permian-Triassic traps of the Norilsk and Maimecha-Kotui provinces. Izv. Phys. Solid Earth 2011, 47, 402–417. [Google Scholar] [CrossRef]
- Pavlov, V.; Fluteau, F.; Veselovskiy, R.; Fetisova, A.; Latyshev, A.; Elkins-Tanton, L.T.; Sobolev, A.V.; Krivolutskaya, N.A. Volcanic pulses in the Siberian Traps as inferred from Permo-Triassic geomagnetic secular variations. In Volcanism and Global Environmental Change; Cambridge University Press: Cambridge, UK, 2015; pp. 63–78. [Google Scholar]
- Pavlov, V.E.; Fluteau, F.; Latyshev, A.V.; Fetisova, A.M.; Elkins-Tanton, L.T.; Black, B.A.; Burgess, S.D.; Veselovskiy, R.V. Geomagnetic Secular Variations at the Permian-Triassic Boundary and Pulsed Magmatism During Eruption of the Siberian Traps. Geochem. Geophys. Geosyst. 2019, 20, 773–791. [Google Scholar] [CrossRef]
- Latyshev, A.V.; Veselovskiy, R.V.; Ivanov, A.V. Paleomagnetism of the Permian-Triassic intrusions from the Tunguska syncline and the Angara-Taseeva depression, Siberian Traps Large Igneous Province: Evidence of contrasting styles of magmatism. Tectonophysics 2018, 723, 41–55. [Google Scholar] [CrossRef]
- Fedorenko, V.; Czamanske, G.; Zen’ko, T.; Budahn, J.; Siems, D. Field and geochemical studies of the melilite-bearing Arydzhangsky suite, and an overall perspective on the Siberian alkaline-ultramafic flood-volcanic rocks. Int. Geol. Rev. 2000, 42, 769–804. [Google Scholar] [CrossRef]
- Egorov, V.N. Dismemberment and correlation of the Triassic volcanic rocks of the Maymecha-Kotuy province. Nedra Taymyra Collect. Artic. 1995, 1, 141–154. (In Russian) [Google Scholar]
- Shihorina, K.M. Volcanic formations of the Maimecha-Kotuy province. In SB. Carbonatites and Alkaline Rocks of the North of Siberia (Collection of Articles); Leningrad State University: Leningrad, Russia, 1970; pp. 5–14. (In Russian) [Google Scholar]
- Ivanov, A.I.; Pirozhnikov, L.P. The age of alkaline ultramafic volcanic rocks of the north of the Siberian Platform. Dokl. Akad. Nauk. SSSR 1959, 127, 1078–1080. [Google Scholar]
- Burgess, S.D.; Bowring, S.; Shen, S.Z. High-precision timeline for Earth’s most severe extinction. Proc. Natl. Acad. Sci. USA 2014, 111, 3316–3321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gusev, B.V.; Metallova, V.V.; Fainberg, F.S. Magnetizm porod trappovoi formatsii zapadnoi chasti Sibirskoi platformy (Magnetism of Traps in the Western Siberian Craton). Len Ingrad Nedra 1967, 1, 129. (In Russian) [Google Scholar]
- Sidoras, S.D. Magnetism of volcanogenic rocks of the Tunguska syneclise and its significance for the geological studies. Ext. Abstr. Cand. Sci. (Geol. Min.) Diss. Leningr. 1984, 1, 204. (In Russian) [Google Scholar]
- Lopatin, G.G.; Nechaev, P.S.; Trofimov, V.R.; Drobotenko, E.A. State Geological Map 1:200,000 Scale, Sheet R-47-XI,XII. Explanatory Note; VSEGEI: Saint-Petersburg, Russia, 1996; p. 281. [Google Scholar]
- Enkin, R.J. A computer program package for analysis and presentation of paleomagnetic data. Pac. Geosci. Cent. Geol. Surv. Can. 1994, 4, 16. [Google Scholar]
- Chadima, M.; Hrouda, F. Remasoft 3.0 a user-friendly paleomagnetic data browser and analyzer. Trav. Geophys. 2006, 27, 20–21. [Google Scholar]
- Kirschvink, J.L. The least-square line and plane and the analysis of paleomagnetic data. Geophys. J. R. Astron. Soc. 1980, 62, 699–718. [Google Scholar] [CrossRef]
- Fisher, R. Dispersion on a Sphere. Proc. R. Soc. A Math. Phys. Eng. Sci. 1953, 217, 295–305. [Google Scholar] [CrossRef]
- Shcherbakova, V.V.; Zhidkov, G.V.; Shcherbakov, V.P.; Latyshev, A.V.; Fetisova, A.M. Verifying the mesozoic dipole low hypothesis by the Siberian trap data. Izv. Phys. Solid Earth 2015, 51, 362–382. [Google Scholar] [CrossRef]
- McFadden, P.L.; McElhinny, M.W. Classification of the reversal test in palaeomagnetism. Geophys. J. Int. 1990, 103, 725–729. [Google Scholar] [CrossRef] [Green Version]
- Veselovsky, R.V.; Gallet, Y.; Pavlov, V.E. Paleomagnetism of traps in the Podkamennaya Tunguska and Kotui River Valleys: Implications for the post-Paleozoic relative movements of the Siberian and East European platforms. Izv. Phys. Solid Earth 2003, 39, 78. [Google Scholar]
- Gapeev, A.K.; Gribov, S.K. Magnetic properties of intrusive traps of the Siberian platform: Evidence for a self-reversal of the natural remanent magnetization. Izv. Phys. Solid Earth 2008, 44, 822–838. [Google Scholar] [CrossRef]
- Shcherbakov, V.P.; Latyshev, A.V.; Veselovskiy, R.V.; Tselmovich, V.A. Origin of false components of NRM during conventional stepwise thermal demagnetization. Russ. Geol. Geophys. 2017, 58, 1118–1128. [Google Scholar] [CrossRef]
- Mel’nikov, B.N.; Khisina, N.R. Spinodal Decomposition and the Related Partial Self-Reversal of Magnetization in Titanomagnetites of African Rift Zones. Izv. Akad. Nauk. SSSR Fiz. Zemli 1976, 10, 84–92. [Google Scholar]
- Krása, D.; Shcherbakov, V.P.; Kunzmann, T.; Petersen, N. Self-reversal of remanent magnetization in basalts due to partially oxidized titanomagnetites. Geophys. J. Int. 2005, 162, 115–136. [Google Scholar] [CrossRef]
- Mikhaltsov, N.E.; Kazansky, A.Y.; Ryabov, V.V.; Shevko, A.Y.; Kuprish, O.V.; Bragin, V.Y. Paleomagnetism of trap basalts in the northwestern Siberian craton, from core data. Russ. Geol. Geophys. 2012, 53, 1228–1242. [Google Scholar] [CrossRef]
- Latyshev, A.V.; Ulyakhina, P.S.; Krivolutskaya, N.A. Signs of the Record of Geomagnetic Reversal in Permian—Triassic Trap Intrusions of the Ergalakhsky Complex, Norilsk Region. Izv. Phys. Solid Earth 2019, 55, 270–286. [Google Scholar] [CrossRef]
- Lind, E.N.; Kropotov, S.V.; Czamanske, G.K.; GrommÉ, S.C.; Fedorenko, V.A. Paleomagnetism of the Siberian Flood Basalts of the Noril’k Area: A Constraint on Eruption Duration. Int. Geol. Rev. 1994, 36, 1139–1150. [Google Scholar] [CrossRef]
- Veselovskiy, R.V.; Konstantinov, K.M.; Latyshev, A.V.; Fetisova, A.M. Paleomagnetism of the trap intrusive bodies in arctic Siberia: Geological and methodical implications. Izv. Phys. Solid Earth 2012, 48, 738–750. [Google Scholar] [CrossRef]
- Hounslow, M.W.; Muttoni, G. The geomagnetic polarity timescale for the Triassic: Linkage to stage boundary definitions. Geol. Soc. Spec. Publ. 2010, 334, 61–102. [Google Scholar] [CrossRef]
- Hounslow, M.W.; Balabanov, Y.P. A geomagnetic polarity timescale for the Permian, calibrated to stage boundaries. Geol. Soc. Lond. Spec. Publ. 2018, 450, 61–103. [Google Scholar] [CrossRef] [Green Version]
- Ogg, J.; Ogg, G.; Gradstein, F. A Concise Geologic Time Scale; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Hounslow, M.W. Geomagnetic reversal rates following Palaeozoic superchrons have a fast restart mechanism. Nat. Commun. 2016, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.S.; Matzel, J.E.P.; Miller, C.F.; Burgess, S.D.; Miller, R.B. Zircon growth and recycling during the assembly of large, composite arc plutons. J. Volcanol. Geotherm. Res. 2007, 167, 282–299. [Google Scholar] [CrossRef]
- Schaltegger, U.; Davies, J.H.F.L. Petrochronology of Zircon and Baddeleyite in Igneous Rocks: Reconstructing Magmatic Processes at High Temporal Resolution. Rev. Miner. Geochem. 2017, 83, 297–328. [Google Scholar] [CrossRef]
- Distler, V.V.; Kunilov, V.E. Geology and ore deposits of the Noril’sk region. In VII International Platinum Symposium Guidebook; Moskovskiy Contact: Moscow, Russia, 1994; p. 67. [Google Scholar]
- Rad’ko, V.A. Model of dynamic differentiation of Intrusive traps of the North-West Siberian platform. Geol. Geophys. 1991, 11, 19–27. [Google Scholar]
- Naldrett, A.J. Magmatic Sulfide Deposits of Nickel-Copper and Platinum-Metal Ores; St. Petersburg University: St. Petersburg, Russia, 2003; p. 487. [Google Scholar]
- Lightfoot, P.C.; Hawkesworth, C.J.; Hergt, J.; Naldrett, A.J.; Gorbachev, N.S.; Fedorenko, V.A.; Doherty, W. Remobilisation of the continental lithosphere by mantle plumes: Major-/trace-element and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril’sk district, Siberian Trap, Russia. Contrib. Miner. Petrol. 1993, 114, 171–188. [Google Scholar] [CrossRef]
- Al’mukhamedov, A.I.; Medvedev, A.Y.; Zolotukhin, V.V. Chemical evolution of the permian-triassic basalts of the siberian platform in space and time. Petrology 2004, 12, 297–311. [Google Scholar]
- Westphal, M.; Gurevitch, E.L.; Samsonov, B.V.; Feinberg, H.; Pozzi, J.P. Magnetostratigraphy of the lower Triassic volcanics from deep drill SG6 in western Siberia: Evidence for long-lasting Permo-Triassic volcanic activity. Geophys. J. Int. 1998, 134, 254–266. [Google Scholar] [CrossRef] [Green Version]
- Glen, J.M.G.; Nomade, S.; Lyons, J.J.; Metcalfe, I.; Mundil, R.; Renne, P.R. Magnetostratigraphic correlations of Permian-Triassic marine-to-terrestrial sections from China. J. Asian Earth Sci. 2009, 36, 521–540. [Google Scholar] [CrossRef]
- Naumov, V.A.; Ankudimova, L.A. Palynocomplexes and age of volcanogenic deposits of the Angara Katanga Area (Middle Angara Region). Geol. Geofiz. 1995, 36, 39–45. [Google Scholar]
- Latyshev, A.V.; Veselovskiy, R.V.; Ivanov, A.V.; Fetisova, A.M.; Pavlov, V.E. Short Intense Bursts in Magmatic Activity in the South of Siberian Platform (Angara Taseeva Depression): The Paleomagnetic Evidence. Izv. Phys. Solid Earth 2013, 49, 823–835. [Google Scholar] [CrossRef]
- Gurevitch, E.; Westphal, M.; Daragan-Suchov, J.; Feinberg, H.; Pozzi, J.P.; Khramov, A.N. Paleomagnetism and magnetostratigraphy of the traps from Western Taimyr (northern Siberia) and the Permo-Triassic crisis. Earth Planet. Sci. Lett. 1995, 136, 461–473. [Google Scholar] [CrossRef]
- Kazansky, A.Y.; Metelkin, D.V.; Bragin, V.Y.; Kungurtsev, L.V. Paleomagnetism of the Permian and Triassic traps from the Kuznetsk Basin (southern Siberia). Geol. Geofiz. 2005, 46, 1107–1120. [Google Scholar]
- Ross, P.S.; Ukstins Peate, I.; McClintock, M.K.; Xu, Y.G.; Skilling, I.P.; White, J.D.L.; Houghton, B.F. Mafic volcaniclastic deposits in flood basalt provinces: A review. J. Volcanol. Geother. Res. 2005, 145, 281–314. [Google Scholar] [CrossRef] [Green Version]
- Black, B.A.; Weiss, B.P.; Elkins-Tanton, L.T.; Veselovskiy, R.V.; Latyshev, A. Siberian Traps volcaniclastic rocks and the role of magma-water interactions. Bull. Geol. Soc. Am. 2015, 127, 1437–1452. [Google Scholar] [CrossRef] [Green Version]
- Jerram, D.A.; Svensen, H.H.; Planke, S.; Polozov, A.G.; Torsvik, T.H. The onset of flood volcanism in the north-western part of the Siberian Traps: Explosive volcanism versus effusive lava flows. Palaeogeogr. Palaeoclim. Palaeoecol. 2016, 441, 38–50. [Google Scholar] [CrossRef]
- Ganino, C.; Arndt, N.T. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 2009, 37, 323–326. [Google Scholar] [CrossRef]
- Burgess, S.D.; Muirhead, J.D.; Bowring, S.A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 2017, 8, 164. [Google Scholar] [CrossRef] [Green Version]
- Elkins-Tanton, L.T.; Grasby, S.E.; Black, B.A.; Veselovskiy, R.V.; Ardakani, O.H.; Goodarzi, F. Field evidence for coal combustion links the 252 Ma Siberian Traps with global carbon disruption. Geology 2020. [Google Scholar] [CrossRef]
- Xie, S.C.; Pancost, R.D.; Yin, H.F.; Wang, H.M.; Evershed, R.P. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature 2005, 434, 494–497. [Google Scholar] [CrossRef]
- Song, H.J.; Wignall, P.B.; Tong, J.N.; Yin, H.F. Two pulses of extinction during the Permian—Triassic crisis. Nat. Geosci. 2013, 6, 52–56. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.-Q.; Algeo, T.J.; Zhao, L.; Baud, A.; Bhat, G.M.; Zhang, L.; Guo, Z. Two-stage marine anoxia and biotic response during the Permian-Triassic transition in Kashmir, northern India; pyrite framboid evidence. Glob. Planet. Chang. 2019, 172, 124–139. [Google Scholar] [CrossRef]
- Martindale, R.C.; Foster, W.J.; Velledits, F. The survival, recovery, and diversification of metazoan reef ecosystems following the end-Permian mass extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 513, 100–115. [Google Scholar] [CrossRef]
- Szurlies, M.; Geluk, M.C.; Krijgsman, W.; Kürschner, W.M. The continental Permian-Triassic boundary in the Netherlands: Implications for the geomagnetic polarity time scale. Earth Planet Sci. Lett. 2012, 317318, 165–176. [Google Scholar] [CrossRef]
- Szurlies, M. Late Permian (Zechstein) magnetostratigraphy in Western and Central Europe. Geol. Soc. Spec. Publ. 2013, 376, 73. [Google Scholar] [CrossRef]
- Mundil, R.; Ludwig, K.R.; Metcalfe, I.; Renne, P.R. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science 2004, 305, 1760–1763. [Google Scholar] [CrossRef]
- Shen, S.Z.; Crowley, J.L.; Wang, Y.; Bowring, S.A.; Erwin, D.H.; Sadler, P.M.; Cao, C.Q.; Rothman, D.H.; Henderson, C.M.; Ramezani, J.; et al. Calibrating the end-Permian mass extinction. Science 2011, 334, 1367. [Google Scholar] [CrossRef] [Green Version]
Site/Flow | N | Dg | Ig | Kg | a95g | Ds | Is | Ks | a95s |
---|---|---|---|---|---|---|---|---|---|
Pravoboyarsky Formation (sample-level mean): | |||||||||
29 | 95.6 | 81.6 | 45.8 | 4.0 | - | - | - | - | |
Mean pole: Slat = 70.7°, Slong = 101.2°, Plat = 63.7°, Plong = 140.7°, A95 = 7.6°, paleolatitude = 73.5° | |||||||||
Picritic dyke, cutting Pravoboyarsky tuffs: | |||||||||
pb8 | 4 | 282.5 | −66.6 | 23.1 | 19.5 | - | - | - | - |
Onkuchaksky Formation (high-temperature component): | |||||||||
on1 (the bottom) | 4 | 107.0 | 60.5 | 63.0 | 11.7 | 79.2 | 67.6 | 63.3 | 11.6 |
on2 | 4 | 96.8 | 53.8 | 145.5 | 7.6 | 75.4 | 59.1 | 145.6 | 7.6 |
on3 | 5 | 96.9 | 59.8 | 84.7 | 8.4 | 69.4 | 64.4 | 84.6 | 8.4 |
on4 | 6 | 107.6 | 51.5 | 153.7 | 5.4 | 88.9 | 59.7 | 153.0 | 5.4 |
on5 | 3 | 92.0 | 38.7 | 40.9 | 19.5 | 79.5 | 43.9 | 40.9 | 19.5 |
on6 | 3 | 279.6 | −57.2 | 20.3 | 28.1 | 255.0 | −62.9 | 20.3 | 28.1 |
on8(N) | 2 | 115.7 | 51.5 | - | - | 98.4 | 61.6 | - | - |
on8(R) | 2 | 286.3 | −65.0 | - | - | 251.2 | −71.2 | - | - |
on9 | 4 | 109.7 | 53.9 | 153.5 | 7.4 | 89.4 | 62.4 | 153.6 | 7.4 |
on10 | 3 | 103.6 | 51.1 | 40.1 | 19.7 | 84.8 | 58.3 | 40.1 | 19.7 |
on11 | 3 | 105.9 | 63.1 | 101.5 | 12.3 | 74.1 | 69.5 | 101.9 | 12.3 |
on12 | 2 | 135.3 | 57.7 | - | - | 120.5 | 71.1 | - | - |
on13 | 4 | 122.8 | 60.7 | 26.5 | 18.2 | 98.5 | 71.6 | 26.5 | 18.2 |
on14 | 2 | 125.3 | 61.1 | - | - | 101.5 | 72.4 | - | - |
on15 | 2 | 168.4 | 74.4 | - | - | 242.0 | 86.6 | - | - |
on16 | 4 | 325.1 | −46.5 | 36.4 | 15.4 | 320.4 | −61.2 | 36.4 | 15.4 |
on17 | 3 | 313.3 | −63.9 | 30.5 | 22.7 | 289.2 | −76.6 | 30.5 | 22.7 |
on18 | 5 | 120.6 | 41.8 | 22.8 | 16.4 | 109.9 | 53.3 | 22.8 | 16.4 |
on19 | 3 | 127.4 | 61.6 | 4.9 | 63.2 | 103.7 | 73.4 | 4.9 | 63.2 |
on20 | 3 | 122.4 | 48.5 | 59.3 | 16.1 | 108.8 | 60.0 | 59.6 | 16.1 |
on21 | 3 | 287.4 | −46.9 | 44.7 | 18.7 | 271.9 | −55.4 | 44.5 | 18.7 |
on22 | 4 | 273.3 | −67.4 | 7.9 | 35.0 | 234.7 | −69.6 | 7.9 | 35.0 |
on23 | 4 | 287.4 | −42.0 | 91.6 | 9.7 | 274.5 | −50.8 | 92.1 | 9.6 |
on24 | 4 | 112.1 | 33.6 | 8.3 | 33.9 | 103.1 | 43.7 | 8.3 | 33.9 |
on25 | 4 | 114.7 | 48.2 | 40.0 | 14.7 | 99.5 | 58.2 | 40.2 | 14.7 |
on26 | 4 | 295.1 | −71.8 | 83.5 | 10.1 | 240.8 | −78.2 | 83.6 | 10.1 |
on27 | 4 | 97.7 | 39.8 | 21.7 | 20.2 | 84.9 | 46.4 | 21.7 | 20.2 |
on28 | 6 | 118.2 | 48.0 | 44.1 | 10.2 | 103.8 | 58.8 | 44.3 | 10.2 |
on29 | 3 | 94.5 | 43.8 | 55.4 | 16.7 | 79.6 | 49.4 | 55.3 | 16.7 |
on30 | 4 | 106.4 | 34.6 | 12.9 | 26.6 | 96.5 | 43.4 | 12.9 | 26.6 |
on31 | 3 | 308.9 | −48.1 | 71.4 | 14.7 | 297.4 | −60.8 | 71.7 | 14.7 |
on32 | 4 | 93.0 | 47.0 | 17.2 | 22.8 | 76.3 | 52.0 | 17.2 | 22.8 |
on33 | 3 | 111.1 | 51.6 | 109.4 | 11.8 | 92.9 | 60.6 | 108.8 | 11.9 |
on34 | 4 | 104.9 | 45.4 | 103.1 | 9.1 | 89.9 | 53.3 | 103.5 | 9.1 |
on35(N) | 2 | 98.7 | 42.0 | - | - | 79.4 | 46.6 | - | - |
on35(R) | 2 | 303.0 | −69.3 | - | - | 238.5 | −75.4 | - | - |
on36 | 5 | 108.4 | 49.8 | 80.7 | 8.6 | 82.7 | 56.8 | 80.8 | 8.6 |
on37(N) | 2 | 96.6 | 42.5 | - | - | 77.1 | 46.4 | - | - |
on37(R) | 2 | 292.2 | −57.3 | - | - | 257.5 | −64.2 | - | - |
on38 | 4 | 107.4 | 49.7 | 15.3 | 24.3 | 81.8 | 56.4 | 15.3 | 24.3 |
on39 | 4 | 100.1 | 46.9 | 19.6 | 21.3 | 77.1 | 51.5 | 19.6 | 21.3 |
on40 | 3 | 317.1 | −50.4 | 44.4 | 18.7 | 296.4 | −66.2 | 44.5 | 18.7 |
on41 | 3 | 106.0 | 55.2 | 29.1 | 23.3 | 74.4 | 60.5 | 29.0 | 23.3 |
on42 | 4 | 101.6 | 35.1 | 6.1 | 40.8 | 86.4 | 41.5 | 6.1 | 40.8 |
on43 | 4 | 113.7 | 60.3 | 75.0 | 10.7 | 74.2 | 67.0 | 75.0 | 10.7 |
on44 (the top) | 3 | 137.5 | 62.1 | 6.3 | 54.1 | 96.7 | 76.3 | 6.3 | 54.1 |
Mean (N polarity): | 34 | 109.1 | 51.4 | 42.4 | 3.8 | 88.3 | 59.6 | 40.1 | 3.9 |
Mean (R polarity): | 12 | 298.4 | −58.1 | 36.4 | 7.3 | 272.2 | −68.1 | 37.0 | 7.2 |
Mean MTC (R): | (42) | 313.4 | −57.8 | 14.0 | 6.1 | 293.5 | −71.3 | 14.4 | 6.0 |
Mean pole (HTC N): Slat = 70.8°, Slong = 101.0°, Plat = 38.3°, Plong = 176.8°, A95 = 5.1°, paleolatitude = 40.4° | |||||||||
Tyvankitsky Formation: | |||||||||
Location 4: | |||||||||
s1 | 4 | 288.5 | −67.0 | 69.5 | 11.1 | - | - | - | - |
s3 | 3 | 301.1 | −27.9 | 36.5 | 20.7 | - | - | - | - |
s5 | 6 | 284.5 | −52.0 | 92.5 | 7.0 | - | - | - | - |
s6 | 6 | 271.0 | −57.7 | 87.5 | 7.2 | - | - | - | - |
s10 | 5 | 257.1 | −67.4 | 39.0 | 12.4 | - | - | - | - |
Location 5: | |||||||||
tv33 (the top) | 3 | 264.6 | −65.0 | 159.3 | 9.8 | 216.7 | −68.7 | 159.3 | 9.8 |
tv32 | 4 | 289.4 | −58.5 | 129.6 | 8.1 | 255.8 | −72.5 | 129.6 | 8.1 |
tv31 | 4 | 296.5 | −56.9 | 74.7 | 10.7 | 269.7 | −73.2 | 74.7 | 10.7 |
tv26 | 5 | 93.2 | 50.2 | 19.6 | 17.7 | 67.6 | 60.4 | 19.6 | 17.7 |
tv25 | 3 | 298.9 | −60.5 | 162.5 | 9.7 | 228.7 | −55.1 | 162.5 | 9.7 |
tv24 | 3 | 236.3 | −46.0 | 29.3 | 23.2 | 217.3 | −17.7 | 29.3 | 23.2 |
tv23 | 4 | 277.9 | −49.3 | 136.2 | 7.9 | 237.0 | −39.7 | 136.2 | 7.9 |
tv22 | 6 | 313.6 | −49.3 | 16.1 | 17.2 | 253.1 | −60.5 | 16.1 | 17.2 |
tv21 | 3 | 259.2 | −52.0 | 36.5 | 20.7 | 225.5 | −32.0 | 36.5 | 20.7 |
int1 | 13 | 283.4 | −53.5 | 37.1 | 6.9 | 243.4 | −67.0 | 18.9 | 9.8 |
tv20 | 4 | 285.2 | −51.7 | 79.0 | 10.4 | 257.5 | −73.0 | 79.0 | 10.4 |
tv19 | 3 | 277.5 | −53.6 | 75.4 | 14.3 | 241.1 | −71.8 | 75.4 | 14.3 |
tv18 | 4 | 305.1 | −60.0 | 52.5 | 12.8 | 301.2 | −85.0 | 52.5 | 12.8 |
tv16 | 3 | 281.2 | −55.0 | 41.9 | 19.3 | 235.9 | −64.5 | 24.6 | 25.4 |
tv13 | 4 | 271.6 | −60.7 | 64.8 | 11.5 | 215.5 | −74.0 | 64.8 | 11.5 |
tv12 | 3 | 287.6 | −61.0 | 244.5 | 7.9 | 233.2 | −80.8 | 244.5 | 7.9 |
tv11 | 3 | 294.3 | −62.1 | 165.9 | 9.6 | 239.8 | −84.1 | 165.9 | 9.6 |
tv10 | 4 | 289.0 | −64.2 | 87.1 | 9.9 | 214.9 | −82.7 | 87.1 | 9.9 |
tv9 | 3 | 291.8 | −59.7 | 25.6 | 24.9 | 248.5 | −81.6 | 25.6 | 24.9 |
tv8 | 4 | 294.6 | −60.7 | 83.7 | 10.1 | 250.3 | −83.3 | 83.7 | 10.1 |
tv7 | 4 | 256.2 | −54.3 | 60.6 | 11.9 | 215.8 | −63.5 | 60.6 | 11.9 |
tv6 | 3 | 297.0 | −58.6 | 93.8 | 12.8 | 268.8 | −82.3 | 93.8 | 12.8 |
tv5 | 4 | 269.0 | −60.7 | 64.8 | 11.5 | 213.1 | −72.9 | 64.8 | 11.5 |
tv4 | 3 | 277.9 | −51.1 | 44.5 | 18.7 | 246.4 | −70.1 | 45.0 | 18.6 |
tv3 | 4 | 302.7 | −55.6 | 74.7 | 10.7 | 295.1 | −80.4 | 74.7 | 10.7 |
tv2 | 4 | 294.5 | −58.0 | 68.3 | 11.2 | 262.9 | −81.2 | 68.3 | 11.2 |
tv1 (bottom) | 4 | 284.3 | −58.4 | 57.7 | 12.2 | 238.6 | −77.9 | 57.7 | 12.2 |
Mean (R polarity): | 31 | 283.5 | −57.6 | 4602 | 3.9 | 247.5 | −69.3 | 16.8 | 6.5 |
Mean pole: Slat = 70.8°, Slong = 101.0°, Plat = 56.0°, Plong = 186.4°, A95 = 10.2°, paleolatitude = 52.9° | |||||||||
Lower Delkansky Formation: | |||||||||
Location 6 (N) | (4) | 54.9 | 70.1 | 120.7 | 8.4 | 127.3 | 78.5 | 121.1 | 8.4 |
Location 6 (R) | (15) | 340.0 | −69.5 | 22.1 | 8.3 | 358.9 | −52.1 | 22.1 | 8.3 |
Location 5 (top) * | (51) | 265.5 | −64.0 | 8.8 | 7.2 | 162.9 | −79.8 | 7.8 | 7.7 |
dl42 | 5 | 281.5 | −62.7 | 131.3 | 6.7 | 240.1 | −75.5 | 97.2 | 7.8 |
dl41 | 3 | 242.5 | −68.0 | 56.2 | 16.6 | 197.0 | −63.8 | 56.2 | 16.6 |
dl40 | 3 | 229.7 | −73.1 | 39.0 | 20.0 | 182.0 | −63.8 | 38.7 | 20.1 |
dl38 | 4 | 275.6 | −43.2 | 34.4 | 15.9 | 256.5 | −54.9 | 34.4 | 15.9 |
dl37 | 4 | 344.6 | −51.0 | 100.7 | 9.2 | 3.5 | −68.0 | 100.7 | 9.2 |
dl35 (bottom) | 4 | 218.8 | −64.3 | 50.9 | 13.0 | 188.0 | −54.7 | 50.9 | 13.0 |
Mean: | 8 | 277.6 | −68.5 | 13.8 | 15.4 | 227.0 | −79.8 | 8.9 | 19.7 |
Mean pole: Slat = 70.8°, Slong = 101.0°, Plat = 74.7°, Plong = 170.7°, A95 = 36.8°, paleolatitude = 70.2° | |||||||||
* nonsegmented lavas on the top of Location 5 | |||||||||
Upper Delkansky Formation (sample-level mean): | |||||||||
Lower part (HTC N) | (21) | 68.2 | 72.3 | 12.3 | 9.5 | - | - | - | - |
Mean pole: Slat = 70.8°, Slong = 100.8°, Plat = 59.5°, Plong = 188.8°, A95 = 15.8°, paleolatitude = 57.5° | |||||||||
Upper part (HTC R) | (15) | 263.3 | −53.0 | 8.4 | 14.0 | 228.7 | −66.1 | 6.6 | 16.1 |
Mean pole: Slat = 70.8°, Slong = 100.8°, Plat = 58.3°, Plong = 209.4°, A95 = 23.8°, paleolatitude = 48.5° | |||||||||
Maymechinsky Formation: | |||||||||
mm1 | 11 | 206.5 | −78.1 | 25.1 | 9.3 | 214.2 | −62.7 | 25.1 | 9.3 |
mm2 | 10 | 219.3 | −73.4 | 25.8 | 9.7 | 218.8 | −57.6 | 25.8 | 9.7 |
mm3 | 8 | 258.7 | −50.1 | 11.7 | 16.9 | 300.3 | −81.5 | 11.7 | 16.9 |
mm4 | 21 | 242.8 | −54.7 | 12.2 | 9.5 | 222.3 | −68.9 | 8.5 | 11.6 |
Mean: | 4 | 240.6 | −65.2 | 24.4 | 19.0 | 230.4 | −69.3 | 32.2 | 16.4 |
Mean pole: Slat = 70.9°, Slong = 100.7°, Plat = 61.6°, Plong = 203.1°, A95 = 25.8°, paleolatitude = 52.9° | |||||||||
Samoedsky Formation (Norilsk Region): | |||||||||
Sm1 (the top) | 3 | 297.8 | −75.9 | 95.5 | 12.7 | - | - | - | - |
Sm2 | 3 | 287.1 | −76.2 | 78.9 | 14.0 | - | - | - | - |
Sm4 | 6 | 301.7 | −79.3 | 69.3 | 8.1 | - | - | - | - |
Sm6 | 8 | 169.5 | 37.4 | 36.5 | 9.3 | - | - | - | - |
Sm7 | 5 | 237.6 | 84.8 | 15.6 | 20.0 | - | - | - | - |
Sm9 (the bottom) | 8 | 346.8 | 67.0 | 96.9 | 5.7 | - | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latyshev, A.V.; Fetisova, A.M.; Veselovskiy, R.V. Linking Siberian Traps LIP Emplacement and End-Permian Mass Extinction: Evidence from Magnetic Stratigraphy of the Maymecha-Kotuy Volcanic Section. Geosciences 2020, 10, 295. https://doi.org/10.3390/geosciences10080295
Latyshev AV, Fetisova AM, Veselovskiy RV. Linking Siberian Traps LIP Emplacement and End-Permian Mass Extinction: Evidence from Magnetic Stratigraphy of the Maymecha-Kotuy Volcanic Section. Geosciences. 2020; 10(8):295. https://doi.org/10.3390/geosciences10080295
Chicago/Turabian StyleLatyshev, Anton V., Anna M. Fetisova, and Roman V. Veselovskiy. 2020. "Linking Siberian Traps LIP Emplacement and End-Permian Mass Extinction: Evidence from Magnetic Stratigraphy of the Maymecha-Kotuy Volcanic Section" Geosciences 10, no. 8: 295. https://doi.org/10.3390/geosciences10080295
APA StyleLatyshev, A. V., Fetisova, A. M., & Veselovskiy, R. V. (2020). Linking Siberian Traps LIP Emplacement and End-Permian Mass Extinction: Evidence from Magnetic Stratigraphy of the Maymecha-Kotuy Volcanic Section. Geosciences, 10(8), 295. https://doi.org/10.3390/geosciences10080295