Identifying Gaps in the Investigation of the Vredefort Granophyre Dikes: A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Nature of Studies Found
3.1.1. Fieldwork and Mapping
3.1.2. Bulk Geochemistry
3.1.3. Petrography and Mineral Components
3.1.4. Geochronology and Age Determination
3.1.5. Platinum Group Element and Isotope Geochemistry
3.1.6. Geophysics
3.2. Studies on Individual Granophyre Dikes
3.2.1. Core-Collar Dike Studies
3.2.2. Core Dike Studies
4. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Taylor, S.R. Solar System Evolution: A New Perspective, 2nd ed.; Cambridge University Press: New York, NY, USA, 2001. [Google Scholar]
- Melosh, H.L. Impact Cratering. A Geological Process; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Board, S.S.; Council, N.R. Vision and Voyages for Planetary Science in the Decade 2013–2022; National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-22464-2. [Google Scholar]
- Grieve, R.; Therriault, A. Vredefort, Sudbury, Chicxulub: Three of a Kind? Annu. Rev. Earth Planet. Sci. 2000, 28, 305–338. [Google Scholar] [CrossRef]
- Morgan, J.; Gulick, S.; Mellett, C.L.; Green, S.L. Chicxulub: Drilling the K-Pg Impact Crater. Int. Ocean Discov. Progr. 2016, 364, 1385–2332. [Google Scholar]
- Lightfoot, P.C.; Morrison, G.G.; Bite, A.; Farrell, P. Geochemical Relationships in the Sudbury Igneous Complex: Origin of the Main Mass and Offset Dikes. Econ. Geol. 1997, 92, 289–307. [Google Scholar] [CrossRef]
- Therriault, A.M.; Grieve, R.A.F.; Reimold, W.U. Original size of the Vredefort structure: Implications for the geological evolution of the Witwatersrand Basin. Meteorit. Planet. Sci. 1997, 32, 71–77. [Google Scholar] [CrossRef]
- Reimold, W.U.; Gibson, R.L. The melt rocks of the Vredefort impact structure-Vredefort Granophyre and pseudotachylitic breccias: Implications for impact cratering and the evolution of the Witwatersrand Basin. Chem. Der Erde 2006, 66, 1–35. [Google Scholar] [CrossRef]
- Simpson, C. The structure of the rim synclinorium of the Vredefort dome. S. Afr. J. Geol. 1978, 81, 115–121. [Google Scholar]
- Manzi, M.S.D.; Hein, K.A.A.; King, N.; Durrheim, R.J. Neoarchaean tectonic history of the Witwatersrand Basin and Ventersdorp Supergroup: New constraints from high-resolution 3D seismic reflection data. Tectonophysics 2013, 590, 94–105. [Google Scholar] [CrossRef]
- Molezzi, M.G.; Hein, K.A.A.; Manzi, M.S.D. Mesoarchaean-Palaeoproterozoic crustal-scale tectonics of the central Witwatersrand basin—Interpretation from 2D seismic data and 3D geological modelling. Tectonophysics 2019, 761, 65–85. [Google Scholar] [CrossRef]
- Henkel, H.; Reimold, W.U. Integrated geophysical modelling of a giant, complex impact structure: Anatomy of the Vredefort Structure, South Africa. Tectonophysics 1998, 287, 1–20. [Google Scholar] [CrossRef]
- Turtle, E.P.; Pierazzo, E.; Brien, D.P.O. Numerical modeling of impact heating and cooling of the Vredefort impact structure. Meteorit. Planet. Sci. 2003, 303, 293–303. [Google Scholar] [CrossRef]
- Ivanov, B.A. Numerical Modeling of the Largest Terrestrial Meteorite Craters. Solar Syst. Res. 2005, 39, 381–409. [Google Scholar] [CrossRef]
- Hart, R.J.; Andreoli, M.A.G.; Tredoux, M.; De Wit, M.J. Geochemistry across an exposed section of Archaean crust at Vredefort, South Africa: With implications for mid-crustal discontinuities. Chem. Geol. 1990, 82, 21–50. [Google Scholar] [CrossRef]
- Bisschoff, A.A. The dioritic rocks of the Vredefort Dome. S. Afr. J. Geol. 1972, 75, 31–45. [Google Scholar]
- Bisschoff, A.A. The history and origin of the Vredefort Dome (South Africa). S. Afr. J. Sci. 1988, 84, 413–417. [Google Scholar]
- Reimold, W.U.; Colliston, W.P. Pseudotachylites of the Vredefort Dome and the surrounding Witwatersrand Basin, South Africa. In Large Meteorite Impacts and Planetary Evolution, Geological Society of America Special Paper 293; Dressier, B.O., Grieve, R.A.F., Sharpton, V.L., Eds.; Geological Society of America: Boulder, CO, USA, 1994; pp. 177–196. [Google Scholar]
- Kamo, S.L.; Reimold, W.U.; Krogh, T.E.; Colliston, W.P. EPSL A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and Granophyre. Earth Planet. Sci. Lett. 1996, 144, 369–387. [Google Scholar] [CrossRef]
- Moser, D.E. Dating the shock wave and thermal imprint of the giant Vredefort impact, South Africa. Geology 1997, 25, 7–10. [Google Scholar] [CrossRef]
- Schreyer, W. Metamorphism and fluid inclusions in the basement of the Vredefort dome, South Africa: Guidelines to the origin of the structure. J. Petrol. 1983, 24, 26–47. [Google Scholar] [CrossRef]
- Gibson, R.L.; Reimold, W.U.; Stevens, G. Thermal-metamorphic signature of an impact event in the Vredefort dome, South Africa. Geology 1998, 26, 787–790. [Google Scholar] [CrossRef]
- Therriault, A.M.; Reimold, W.U.; Reid, A.M. Field relations and petrography of the Vredefort Granophyre. S. Afr. J. Geol. 1996, 99, 1–21. [Google Scholar]
- Hall, A.L.; Molengraff, G.A.F. The Vredefort Mountain Land in the Southern Transvaal and the Northern Orange Free State; Verhandelingen, Koninklijke Akademie van Wetenschappen: Amsterdam, The Netherlands, 1925. [Google Scholar]
- Dietz, R.S. Vredefort ring structure: Meteorite impact scar? J. Geol. 1961, 67, 499–516. [Google Scholar] [CrossRef]
- Reimold, W.U. Pseudotachylite in impact structures—Generation by friction melting and shock brecciation?: A review and discussion. Earth Sci. Rev. 1995, 39, 247–265. [Google Scholar] [CrossRef]
- Mohr-Westheide, T.; Reimold, W.U. Microchemical investigation of small-scale pseudotachylitic breccias from the Archean gneiss of the Vredefort Dome, South Africa. Geol. Soc. Am. Spec. Pap. 2010, 465, 619–643. [Google Scholar] [CrossRef]
- Harris, C.; Fourie, D.S.; Fagereng, A. Stable isotope evidence for impact-related pseudotachylite formation at Vredefort by local melting of dry rocks. S. Afr. J. Geol. 2013, 116, 101–118. [Google Scholar] [CrossRef]
- Reimold, W.U.; Hauser, N.; Hansen, B.T.; Thirlwall, M.; Hoffmann, M. The impact pseudotachylitic breccia controversy: Insights from first isotope analysis of Vredefort impact-generated melt rocks. Geochim. Cosmochim. Acta 2017, 214, 266–281. [Google Scholar] [CrossRef]
- Kring, D.A. The dimensions of the Chicxulub impact crater and impact melt sheet. J. Geophys. Res. 1995, 100, 16979. [Google Scholar] [CrossRef]
- Fourie, F.D.; Huber, M.S.; Kovaleva, E. Geophysical characterization of the Daskop granophyre dyke and surrounding host rocks, Vredefort impact structure, South Africa. Meteorit. Planet. Sci. 2019, 54, 1579–1593. [Google Scholar] [CrossRef]
- Willemse, J. On the old granite of the Vredefort region and some of its associated rocks. Trans. Geol. Soc. S. Afr. 1937, 41, 43–119. [Google Scholar]
- Spray, J.G. Pseudotachylyte controversy: Fact or friction? Geology 1995, 23, 1119. [Google Scholar] [CrossRef]
- Dressler, B.O.; Reimold, W.U. Order or chaos? Origin and mode of emplacement of breccias in floors of large impact structures. Earth Sci. Rev. 2004, 67, 1–54. [Google Scholar] [CrossRef]
- Melosh, H.J. The Mechanics of Pseudotachylite Formation in Impact Events. In Impact Tectonics; Koeberl, C., Henkel, H., Eds.; Springer: New York, NY, USA, 2005; pp. 55–80. [Google Scholar]
- Sibson, R.H. Generation of Pseudotachylyte by Ancient Seismic Faulting. Geophys. J. Int. 1975, 43, 775–794. [Google Scholar] [CrossRef] [Green Version]
- Kovaleva, E.; Huber, M.S.; Habler, G.; Zamyatin, D.A. Zircon Microstructures Record Deformation History of Shock- and Tectonically-generated Pseudotachylites: A Case Study from the Vredefort Impact Structure, South Africa. J. Petrol. 2019, 60, 2529–2546. [Google Scholar] [CrossRef]
- Osinski, G.R.; Grieve, R.A.F.; Marion, C.; Chanou, A. Impact Melting; John Wiley & Son: Hoboken, NJ, USA, 2013; Chapter 9. [Google Scholar]
- Riller, U.; Lieger, D.; Gibson, R.L.; Grieve, R.A.F.; Stoffler, D. Origin of large-volume pseudotachylite in terrestrial impact structures. Geology 2010, 38, 619–622. [Google Scholar] [CrossRef]
- O’Callaghan, J.W.; Osinski, G.R.; Lightfoot, P.C.; Linnen, R.L.; Weirich, J.R. Reconstructing the geochemical signature of Sudbury Breccia, Ontario, Canada: Implications for its formation and trace metal content. Econ. Geol. 2016, 111, 1705–1729. [Google Scholar] [CrossRef]
- Reimold, W.U.; Koeberl, C. Impact structures in Africa: A review. J. Afr. Earth Sci. 2014, 93, 57–175. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Matthew, J.; Page, V.A.W. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Booth, A.; Sutton, A.; Papaioannou, D. Systematic Approaches to a Successful Literature Review, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2016; ISBN 978-0857021359. [Google Scholar]
- Collins, J.A.; Fauser, B.C.J.M. Balancing the strengths of systematic and narrative reviews. Hum. Reprod. Update 2005, 11, 103–104. [Google Scholar] [CrossRef]
- Petticrew, M. Systematic reviews from astronomy to zoology: Myths and misconceptions. BMJ 2001, 322, 98–101. [Google Scholar] [CrossRef] [Green Version]
- Petticrew, M.; Roberts, H. Systematic Reviews in the Social Sciences; Blackwell Publishing Ltd.: Oxford, UK, 2006; ISBN 9780470754887. [Google Scholar]
- Ólafsdóttir, R.; Tverijonaite, E. Geotourism: A Systematic Literature Review. Geosciences 2018, 8, 234. [Google Scholar] [CrossRef] [Green Version]
- Nel, L.T. The Geology of the Country Around Vredefort, an Explanation of the Geological Map; Union of South Africa, Department of Mines and Industries, Geological Survey: Pretoria, South Africa, 1927.
- Hargraves, R.B. Paleomagnetic evidence relevant to the origin of the Vredefort ring. J. Geol. 1970, 78, 253–263. [Google Scholar] [CrossRef]
- Wilshire, H.G. Pseudotachylite from the Vredefort Ring, South Africa. J. Geol. 1971, 79, 195–206. [Google Scholar] [CrossRef]
- French, B.M.; Orth, C.J.; Quintana, L.R. Iridium in the Vredefort Bronzite Granophyre: Impact melting and limits on a possible extraterrestrial component. Proc. Lunar Planet. Sci. Conf. 1989, 19, 733–744. [Google Scholar]
- Reimold, W.U.; Horsch, H.; Durrheim, R.J. The ‘bronzite’-granophyre from the Vredefort structure-A detailed analytical study and reflections on the genesis of one of Vredefort’s enigmas. Proc. Lunar Planet. Sci. Conf. 1990, 20, 433–450. [Google Scholar]
- Walraven, F.; Armstrong, R.; Kruger, F. A chronostratigraphic framework for the north-central Kaapvaal craton, the Bushveld Complex and the Vredefort structure. Tectonophysics 1990, 171, 23–48. [Google Scholar] [CrossRef]
- Allsopp, H.L.; Fitch, F.J.; Miller, J.A.; Reimold, W.U. 40Ar/39Ar stepheating age determinations relevant to the formation of the Vredefort Dome. S. Afr. J. Sci. 1991, 87, 431–442. [Google Scholar]
- Bisschoff, A.A. Note on the relative ages of the pseudotachylite and the basic granophyre in the Vredefort Dome. S. Afr. J. Geol. 1996, 99, 89–92. [Google Scholar]
- Koeberl, C.; Reimold, W.U.; Shirey, S.B. Re-Os isotope and geochemical study of the Vredefort Granophyre: Clues to the origin of the Vredefort structure, South Africa. Geology 1996, 24, 913–916. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, P.C.; Reimold, W.U. Planar deformation features and impact glass in inclusions from the Vredefort Granophyre, South Africa. Meteorit. Planet. Sci. 2002, 37, 807–822. [Google Scholar] [CrossRef]
- Henkel, H.; Reimold, W.U. Magnetic model of the central uplift of the Vredefort impact structure, South Africa. J. Appl. Geophys. 2002, 51, 43–62. [Google Scholar] [CrossRef]
- Koeberl, C.; Peucker-Ehrenbrink, B.; Reimold, W.U.; Shukolyukov, A.; Lugmair, G.W. Comparison of the osmium and chromium isotopic methods for the detection of meteoritic components in impactites: Examples from the Morokweng and Vredefort impact structures, South Africa. In Catastrophic Events and Mass Extinctions: Impacts and Beyond; Geological Society of America: Boulder, CO, USA, 2002. [Google Scholar]
- Fagereng, Å.; Harris, C.; La Grange, M.; Stevens, G. Stable isotope study of the Archaean rocks of the Vredefort impact structure, central Kaapvaal Craton, South Africa. Contrib. Mineral. Petrol. 2007, 155, 63–78. [Google Scholar] [CrossRef]
- Salminen, J.; Pesonen, L.J.; Reimold, W.U.; Donadini, F.; Gibson, R.L. Corrigendum to “Paleomagnetic and rock magnetic study of the Vredefort impact structure and the Johannesburg Dome, Kaapvaal Craton, South Africa-Implications for the apparent polar wander path of the Kaapvaal Craton during the Mesoproterozoic”. Precambrian Res. 2009, 168, 167–184. [Google Scholar] [CrossRef]
- Moynier, F.; Koeberl, C.; Quitté, G.; Telouk, P. A tungsten isotope approach to search for meteoritic components in terrestrial impact rocks. Earth Planet. Sci. Lett. 2009, 286, 35–40. [Google Scholar] [CrossRef]
- Lieger, D.; Riller, U. Emplacement history of Granophyre dikes in the Vredefort Impact Structure, South Africa, inferred from geochemical evidence. Icarus 2012, 219, 168–180. [Google Scholar] [CrossRef]
- Wielicki, M.M.; Harrison, T.M.; Schmitt, A.K. Geochemical signatures and magmatic stability of terrestrial impact produced zircon. Earth Planet. Sci. Lett. 2012, 321–322, 20–31. [Google Scholar] [CrossRef]
- Huber, M.S.; črne, A.E.; McDonald, I.; Hecht, L.; Melezhik, V.A.; Koeberl, C. Impact spherules from Karelia, Russia: Possible ejecta from the 2.02 Ga Vredefort impact event. Geology 2014, 42, 375–378. [Google Scholar] [CrossRef] [Green Version]
- Wielicki, M.M.; Harrison, T.M. Zircon Formation in Impact Melts: Complications for Deciphering Planetary Impact Histories. In Large Meteorite Impacts and Planetary Evolution V; Osinski, G.R., Kring, D.A., Eds.; Geological Society of America: Boulder, CO, USA, 2015; pp. 127–134. [Google Scholar]
- Kovaleva, E.; Huber, M.S.; Roelofse, F.; Tredoux, M.; Praekelt, H. Pseudotachylite vein hosted by a clast in the vredefort granophyre: Characterization, origin and relevance. S. Afr. J. Geol. 2018, 121, 51–68. [Google Scholar] [CrossRef]
- Kovaleva, E.; Huber, M.S.; Zaccarini, F. Petrography and geochemistry of coarse-crystalline veins within Vredefort Granophyre, Vredefort impact structure, South Africa. S. Afr. J. Geol. 2018, 121, 383–402. [Google Scholar] [CrossRef]
- Kovaleva, E.; Zamyatin, D.A.; Habler, G. Granular zircon from Vredefort granophyre (South Africa) confirms the deep injection model for impact melt in large impact structures. Geology 2019, 47, 691–694. [Google Scholar] [CrossRef]
- Alvarez, L.W.; Alvarez, W.; Asaro, F.; Michel, H.V. Extraterrestrial Cause for the Cretaceous-Tertiary Extinction. Science 1980, 208, 1095–1108. [Google Scholar] [CrossRef] [Green Version]
- Hildebrand, A.R.; Penfield, G.T.; Kring, D.A.; Pilkington, M.; Camargo, Z.A.; Jacobsen, S.B.; Boynton, W.V. Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 1991, 19, 867. [Google Scholar] [CrossRef]
- French, B.M.; Nielsen, R.L. Vredefort bronzite granophyre: Chemical evidence for origin as a meteorite impact melt. Tectonophysics 1990, 171, 119–138. [Google Scholar] [CrossRef]
- Kring, D.A. Composition of Earth’s continental crust as inferred from the compositions of impact melt sheets. Lunar Planet. Sci. Conf. 1997, 28, 763–764. [Google Scholar]
- Grieve, R.A.F.; Coderre, J.M.; Robertson, P.B.; Alexopoulos, J. Microscopic planar deformation features in quartz of the Vredefort structure: Anomalous but still suggestive of an impact origin. Tectonophysics 1990, 171, 185–200. [Google Scholar] [CrossRef]
- Prior, D.J.; Boyle, A.P.; Brenker, F.; Cheadle, M.C.; Day, A.; Lopez, G.; Peruzzi, L.; Potts, G.; Reddy, S.; Spiess, R.; et al. The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am. Mineral. 1999, 84, 1741–1759. [Google Scholar] [CrossRef]
- Erickson, T.M.; Cavosie, A.J.; Moser, D.E.; Barker, I.R.; Radovan, H.A. Correlating planar microstructures in shocked zircon from the Vredefort Dome at multiple scales: Crystallographic modeling, external and internal imaging, and EBSD structural analysis. Am. Mineral. 2013, 98, 53–65. [Google Scholar] [CrossRef]
- Erickson, T.M.; Cavosie, A.J.; Moser, D.E.; Barker, I.R.; Radovan, H.A.; Wooden, J. Identification and provenance determination of distally transported, Vredefort-derived shocked minerals in the Vaal River, South Africa using SEM and SHRIMP-RG techniques. Geochim. Cosmochim. Acta 2013, 107, 170–188. [Google Scholar] [CrossRef]
- Cavosie, A.J.; Erickson, T.M.; Timms, N.E.; Reddy, S.M.; Talavera, C.; Montalvo, S.D.; Pincus, M.R.; Gibbon, R.J.; Moser, D. A terrestrial perspective on using ex situ shocked zircons to date lunar impacts. Geology 2015, 43, 999–1002. [Google Scholar] [CrossRef]
- Nicolaysen, L.O.; Burger, A.J.; Van Niekerk, C.B. The Origin of the Vredefort Dome Structure in the Light of New Isotopic Data. In Proceedings of the 13th International Union of Geodesy and Geophysics, Berkeley, CA, USA, 19–31 August 1963. [Google Scholar]
- Moser, D.E.; Davis, W.J.; Reddy, S.M.; Flemming, R.L.; Hart, R.J. Zircon U–Pb strain chronometry reveals deep impact-triggered flow. Earth Planet. Sci. Lett. 2009, 277, 73–79. [Google Scholar] [CrossRef]
- Hart, R.J.; Welke, H.J.; Nicolaysen, L.O. Geochronology of the deep profile through archean basement at Vredefort, with implications for early crustal evolution. J. Geophys. Res. Solid Earth 1981, 86, 10663–10680. [Google Scholar] [CrossRef]
- Hargraves, R.B. Paleomagnetic and 40Ar/39Ar evidence for intrusion of dioritie and peralkaline rocks at Vredefort prior to overturning of the coIlar. S. Afr. J. Geol. 1987, 90, 305–313. [Google Scholar]
- Trieloff, M.; Reimold, W.U.; Kunz, J.; Boer, R.H.; Jessberger, E.K. 40Ar-39Ar thermochronology of pseudotachylite at the Ventersdorp Contact Reef, Witwatersrand basin. S. Afr. J. Geol. 1994, 97, 365–384. [Google Scholar]
- Spray, J.G.; Kelley, S.P.; Reimold, W.U. Laser probe argon-40/argon-39 dating of coesite- and stishovite-bearing pseudotachylytes and the age of the Vredefort impact event. Meteoritics 1995, 30, 335–343. [Google Scholar] [CrossRef]
- Gibson, R.L.; Reimold, W.U.; Wallmach, T. Origin of pseudotachylite in the lower Witwatersrand Supergroup, Vredefort Dome (South Africa): Constraints from metamorphic studies. Tectonophysics 1997, 283, 241–262. [Google Scholar] [CrossRef]
- Alexandre, P.; Andreoli, M.A.G.; Jamison, A.; Gibson, R.L. 40Ar/39Ar age constraints on low-grade metamorphism and cleavage development in the Transvaal Supergroup (central Kaapvaal craton, South Africa): Implications for the tectonic setting of the Bushveld Igneous Complex. S. Afr. J. Geol. 2006, 109, 393–410. [Google Scholar] [CrossRef]
- Moser, D.E.; Cupelli, C.L.; Barker, I.R.; Flowers, R.M.; Bowman, J.R.; Wooden, J.; Hart, J.R. New zircon shock phenomena and their use for dating and reconstruction of large impact structures revealed by electron nanobeam (EBSD, CL, EDS) and isotopic U–Pb and (U–Th)/He analysis of the Vredefort domeThis article is one of a series of papers publish. Can. J. Earth Sci. 2011, 48, 117–139. [Google Scholar] [CrossRef]
- French, B.M.; Koeberl, C. The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why. Earth Sci. Rev. 2010, 98, 123–170. [Google Scholar] [CrossRef]
- Puchtel, I.S.; Walker, R.J.; Touboul, M.; Nisbet, E.G.; Byerly, G.R. Insights into early Earth from the Pt–Re–Os isotope and highly siderophile element abundance systematics of Barberton komatiites. Geochim. Cosmochim. Acta 2014, 125, 394–413. [Google Scholar] [CrossRef] [Green Version]
- Reimold, W.U.; Schulz, T.; Hoffmann, M.; Wannek, D.; Hauser, N.; Van Acken, D.; Luguet, A. Vredefort Granophyre genesis: Clues from Re-Os isotope data. In Proceedings of the 79th Annual Meeting of the Meteoritical Society, Berlin, Germany, 7–12 August 2016; p. 6047. [Google Scholar]
- Kovaleva, E.; Huber, M.S.; Roelofse, F.; Tredoux, M.; Praekelt, H. Reply to the comment made by W. U. Reimold on “Pseudotachylite vein hosted by a clast in the Vredefort Granophyre: Characterization, origin and relevance”. S. Afr. J. Geol. 2019, 122, 109–115. [Google Scholar] [CrossRef]
Researchers | Year of Study | Publication | Field Studies | Bulk Geochemistry | Mineral Components | Geochronology | PGE and Isotope Geochemistry | Geophysics | Core Dikes | Core-Collar Dikes | Specific Dike(s) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Hall and Mollengraff [24] | 1925 | Koninklijke Akademie van Wetenschappen | x | x | x | x | All | ||||
2 | Nel [48] | 1927 | Geological Survey of South Africa | x | x | x | All | |||||
3 | Willemse [32] | 1937 | Transactions of the Geological Society of South Africa | x | x | x | x | x | Holfontein (1), Kopjeskraal (7), El Dorado (8), Rensburgdrift (9) | |||
4 | Dietz [25] | 1961 | Journal of Geology | x | ? | |||||||
5 | Hargraves [49] | 1970 | South African Journal of Geology | x | x | x | Holfontein (1), Zandfontein (5), El Dorado (8), Rensburgdrift (9) | |||||
6 | Wilshire [50] | 1971 | Journal of Geology | x | x | x | ? | |||||
7 | Bisschoff [16] | 1972 | Transactions of the Geological Society of South Africa | x | x | ? | ||||||
8 | French et al. [51] | 1989 | Proceedings of the 19th Lunar and Planetary Science Conference | x | x | x | x | x | Holfontein (1), Kopjeskraal (7) | |||
9 | Reimold et al. [52] | 1990 | Proceedings of the 20th Lunar and Planetary Science Conference | x | x | x | x | Holfontein (1), Zandfontein (5), Kopjeskraal (7) | ||||
10 | Walraven et al. [53] | 1990 | Tectonophysics | x | x | ? | ||||||
11 | Allsopp et al. [54] | 1991 | South African Journal of Science | x | x | ? | ||||||
12 | Bisschoff [55] | 1996 | South African Journal of Geology | x | x | x | Rensburgdrift (9) | |||||
13 | Kamo et al. [19] | 1996 | Earth and Planetary Science Letters | x | x | x | Holfontein (1) | |||||
14 | Koeberl et al. [56] | 1996 | Geology | x | x | x | Kopjeskraal (7) | |||||
15 | Therriault et al. [23] | 1996 | South African Journal of Geology | x | x | x | x | x | All | |||
16 | Therriault et al. [7] | 1997 | South African Journal of Geology | x | x | x | All | |||||
17 | Henkel and Reimold [12] | 1998 | Tectonophysics | x | ? | |||||||
18 | Buchanan and Reimold [57] | 2002 | Meteoritics and Planetary Science | x | x | x | x | El Dorado (8), Rensburgdrift (9) | ||||
19 | Henkel and Reimold [58] | 2002 | Journal of Applied Geophysics | x | ? | |||||||
20 | Koeberl et al. [59] | 2002 | Geological Society of America Special1Paper | x | x | x | Kopjeskraal (7) | |||||
21 | Fagereng et al. [60] | 2007 | Contributions to Mineralogy and Petrology | x | x | x | Holfontein (1) | |||||
22 | Salminen et al. [61] | 2009 | Precambrian Research | x | x | x | Holfontein (1), Zandfontein (5), Kopjeskraal (7), El Dorado (8), Rensburgdrift (9) | |||||
23 | Moynier et al. [62] | 2009 | Earth and Planetary Science Letters | x | x | Kopjeskraal (7) | ||||||
24 | Lieger and Riller [63] | 2012 | Icarus | x | x | x | x | Kopjeskraal (7), El Dorado (8) | ||||
25 | Wielicki et al. [64] | 2012 | Earth and Planetary Science Letters | x | x | x | El Dorado (8) | |||||
26 | Harris et al. [28] | 2013 | South African Journal of Geology | x | x | x | Holfontein (1) | |||||
27 | Huber et al. [65] | 2014 | Geology | x | x | x | Kopjeskraal (7) | |||||
28 | Wielicki and Harrison [66] | 2015 | Geological Society of America Special Paper | x | x | x | El Dorado (8) | |||||
29 | Reimold et al. [29] | 2017 | Geochemica et Cosmochimica Acta | x | x | x | x | Holfontein (1), Kopjeskraal (7) | ||||
30 | Kovaleva et al. [67] | 2018 | South African Journal of Geology | x | x | x | Daskop (4) | |||||
31 | Kovaleva et al. [68] | 2018 | South African Journal of Geology | x | x | x | x | Holfontein (1), Daskop (4) | ||||
32 | Fourie et al. [31] | 2019 | Meteoritics and Planetary Science | x | x | x | Daskop (4) | |||||
33 | Kovaleva et al. [69] | 2019 | Geology | x | x | Daskop (4) |
Oxide | Average Composition |
---|---|
SiO2 | 66.72 ± 1.12 |
TiO2 | 0.49 ± 0.09 |
Al2O3 | 12.64 ± 0.34 |
Fe2O3 | 7.38 ± 0.58 |
MnO | 0.14 ± 0.03 |
MgO | 3.6 ± 0.29 |
CaO | 4.65 ± 4.51 |
Na2O | 2.63 ± 0.42 |
K2O | 2.18 ± 0.24 |
P2O5 | 0.13 ± 0.06 |
Core | Core-Collar Boundary | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Holfontein (1) | Mokwallo (2) | Lesutoskraal (3) | Daskop (4) | Zandfontein (5) | Rietpoort (6) | Kopjeskraal (7) | El Dorado (8) | Rensburgdrift (9) | Unknown | |
Total studies performed | 14 | 4 | 4 | 8 | 7 | 4 | 14 | 11 | 9 | 6 |
Field Studies | 9 | 3 | 3 | 5 | 4 | 3 | 6 | 6 | 5 | 2 |
Bulk Geochemistry | 7 | 2 | 2 | 4 | 2 | 2 | 9 | 5 | 5 | 1 |
Mineral Components | 10 | 2 | 2 | 5 | 3 | 2 | 6 | 7 | 5 | 2 |
Geochronology | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 |
PGE and Isotope Geochemistry | 4 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 |
Geophysics | 4 | 0 | 0 | 1 | 2 | 0 | 1 | 2 | 2 | 2 |
Accessibility | Public Land | Public Land | Private game reserve | Private farm | Private farm | Private farm | Private farm | Private game reserve | Private farm | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huber, M.S.; Kovaleva, E. Identifying Gaps in the Investigation of the Vredefort Granophyre Dikes: A Systematic Literature Review. Geosciences 2020, 10, 306. https://doi.org/10.3390/geosciences10080306
Huber MS, Kovaleva E. Identifying Gaps in the Investigation of the Vredefort Granophyre Dikes: A Systematic Literature Review. Geosciences. 2020; 10(8):306. https://doi.org/10.3390/geosciences10080306
Chicago/Turabian StyleHuber, Matthew S., and Elizaveta Kovaleva. 2020. "Identifying Gaps in the Investigation of the Vredefort Granophyre Dikes: A Systematic Literature Review" Geosciences 10, no. 8: 306. https://doi.org/10.3390/geosciences10080306
APA StyleHuber, M. S., & Kovaleva, E. (2020). Identifying Gaps in the Investigation of the Vredefort Granophyre Dikes: A Systematic Literature Review. Geosciences, 10(8), 306. https://doi.org/10.3390/geosciences10080306