Sedimentation Patterns of Multiple Finnish Lakes Reveal the Main Environmental Stressors and the Role of Peat Extraction in Lake Sedimentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lake Selection
2.2. Lake and Catchment Properties (Environmental Variables)
2.3. Echo Sounding Surveys and Sediment Coring
2.4. Dating with 137Cs Fallout
2.5. Chemical and Physical Analyses of Sediment
2.6. Numerical Analyses
3. Results
3.1. Recent Sedimentation Rates
3.1.1. Overall Sediment Thickness
3.1.2. 137Cs Dating and the Rate of Recent Sediment Deposition
3.1.3. Carbon and Dry Matter Accumulation
3.1.4. Factors Affecting Carbon and Dry Matter Accumulation
3.2. Chemical Compositions of the Sediment
3.3. Sediment Quality vs. Environmental Variables
4. Discussion
4.1. Patterns in Sediment Accumulation and Factors Affecting Accumulation Rates
4.2. Factors Affecting the Chemical Composition Differences
4.3. Factors Affecting Sediment Quality
5. Conclusions
- Sedimentation patterns in both lake groups correspond to those found in small lakes in general; the sediment in the studied lakes was of moderate thickness and was comparable to other Finnish lakes.
- The acoustic sub-bottom profiles did not reveal any site, location, or basin in the impacted or reference lakes with anomalously thick sediments that deviated from normal long-term sedimentation patterns in these types of lake environments.
- Recent (post-1986 Chernobyl accident) sedimentation in reference and impacted lakes was consistently of the order of centimeters rather than tens of centimeters.
- The calculated recent carbon and dry matter annual accumulation rates were similar to other studies, indicating that sediment fluxes in both the impacted and reference lakes were within the typical range.
- Differences in the chemical compositions of the sediments occurred between the lake groups already during the pre-industrial period and before the signs of intensive land use; however, the vertical distributions of the HNO3-extractable elemental concentrations in the sediment cores showed marked changes in sediment composition in all lakes during the past decades, regardless of the lake group. These changes indicate widespread human land-use influence on lake sediments in the region, which are likely due to global climate and environmental change.
- Sediment composition between the two groups of lakes only differed a little within the recent sediments of the two lake groups. Sediments in lakes that receive waters from peat extraction sites have not become more organic. That is, organic-rich reference lakes and mineral-rich impacted lakes clearly differed also in the recent sediment layers.
- Statistically significant relations between the analyzed environmental factors and recent (post-1986) dry matter or carbon accumulation rates were not identified.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Lake | Id | Type | Acoustic Quality (Good/Average/Poor) | Sediment Thickness <2, 2–4, >4 m |
---|---|---|---|---|
Halmejärvi | 1310 | I | Good | 2–4 |
Hietalampi | 1402 | R | Good | 2–4 |
Eitikka | 1410 | R | Good | 2–4 |
Lintulampi | 1610 | R | Good | 2–4 |
Lehmilampi | 1305 | R | Good | 2–4 |
Haapajärvi | 1302 | I | Good | 2–4 |
Valkeislampi | 1405 | R | Good | 2–4 |
Päsmäri | 1302 | I | Good | 2–4 |
Jänkkärä | 1311 | R | Good | 2–4 |
Iso-Musta | 1401 | I | Good | <2 |
Moskulanlampi | 1403 | R | Good | <2 |
Pitkänjärvi | 1404 | R | Good | <2 |
Kotjonjärvi | 1404 | I | Good | <2 |
Kangaslampi | 1401 | R | Good | <2 |
Salahminjärvi | 1301 | I | Average | >4 |
Ylemmäinen | 1405 | I | Average | 2–4 |
Viitalampi | 1609 | R | Average | 2–4 |
Iso-Pajunen | 1410 | I | Average | <2 |
Kolunjärvi | 1610 | I | Average | <2 |
Hirvijärvi | 1402 | I | Average | <2 |
Tiisijärvi | 1409 | R | Average | <2 |
Leväjärvi | 1609 | I | Average | <2 |
Patananjärvi | 1607 | R | Average | <2 |
Haukilampi | 1307 | R | Average | <2 |
Suojärvi | 1403 | I | Average | <2 |
Kurranjärvi | 1605 | I | Average | <2 |
Viitastenjärvi | 1606 | R | Average | <2 |
Valkiaisjärvi | 1603 | R | Average | <2 |
Hamarinjärvi | 1602 | I | Average | <2 |
Kaitavesi | 1408 | I | Poor | 2–4 |
Ilkonlampi | 1309 | I | Poor | 2–4 |
Levänen | 1311 | I | Poor | <2 |
Osmanginjärvi | 1308 | I | Poor | <2 |
Ohenjärvi | 1309 | R | Poor | <2 |
Saukkojärvi | 1409 | I | Poor | <2 |
Pieni-Musta | 1407 | I | Poor | <2 |
Hepojärvi | 1307 | I | Poor | <2 |
Sanginjärvi | 1603 | I | Poor | <2 |
Sexsjön | 1608 | R | Poor | <2 |
Kortejärvi | 1604 | R | Poor | <2 |
Järvitalonjärvi | 1605 | R | Poor | <2 |
Leuvanjärvi | 1606 | I | Poor | <2 |
Narssjön | 1608 | I | Poor | <2 |
Sääksjärvi | 1607 | I | Poor | <2 |
Appendix B
Lake | ID | Type | Quality of 137Cs Analysis | Estimated Depth (cm) of the AD 1986 Chernobyl 137Cs Peak | Average Rate of Deposition (mm/yr) between 1986 and 2013, 2014, or 2016 | Estimated Number of Years in the Modern Sample (0-1 cm) | Estimated Date (Decade) for the Sediment Depth of 15 cm | Maximum 137Cs Concentration (Bq/kg) |
---|---|---|---|---|---|---|---|---|
Salahminjärvi | 1301 | I | average | 10 | 3.3 | 2 | 1970 | 489.89 |
Päsmäri | 1302 | I | good | 3 | 1 | 7 | 1860 | 1061.44 |
Jyrkkä | 1302 | R | average | 9 | 3 | 2 | 1970 | 1069.44 |
Sarvijärvi | 1303 | I | - | n/d | 156.64 | |||
Iso Kiuloinen | 1303 | R | - | n/d | 147.03 | |||
Joutenjärvi | 1304 | I | average | 4 | 1.3 | 6 | 1900 | 1478.78 |
Kokko-Valkeinen | 1304 | R | average | 3.5 | 1.2 | 6 | 1880 | 5921.71 |
Uitamonjärvi | 1305 | I | good | 5 | 1.7 | 5 | 1930 | 3730.08 |
Lehmilampi | 1305 | R | good | 5 | 1.7 | 5 | 1930 | 5363.70 |
Vehkaputti | 1306 | I | average | 5 | 1.7 | 5 | 1930 | 780.07 |
Hepojärvi | 1307 | I | good | 3 | 1 | 7 | 1860 | 3389.62 |
Haukilampi | 1307 | R | good | 8 | 2.6 | 3 | 1960 | 7277.04 |
Osmanginjärvi | 1308 | I | poor | 3 | 1 | 7 | 1860 | 284.29 |
Ilkonlampi | 1309 | I | average | 8 | 2.6 | 3 | 1960 | 1767.56 |
Ohenjärvi | 1309 | R | average | 6 | 2 | 4 | 1950 | 1300.46 |
Halmejärvi | 1310 | I | average | 7 | 2.3 | 4 | 1950 | 1287.73 |
Peurajärvi | 1310 | R | poor | 3 | 1 | 7 | 1860 | 926.88 |
Levänen | 1311 | I | good | 6 | 2 | 4 | 1950 | 3872.93 |
Jänkkärä | 1311 | R | average | 3 | 1 | 7 | 1860 | 10,381.34 |
Iso-Musta | 1401 | I | good | 3 | 1 | 7 | 1860 | 8712.19 |
Kangaslampi | 1401 | R | good | 4 | 1.3 | 6 | 1900 | 35,531.21 |
Hirvijärvi | 1402 | I | poor | 15 | 5 | 1 | 1985 | 1538.62 |
Hietalampi | 1402 | R | good | 5 | 1.7 | 5 | 1930 | 4004.22 |
Suojärvi | 1403 | I | poor | 4 | 1.3 | 6 | 1900 | 2881.29 |
Moskulanlampi | 1403 | R | average | 11 | 3.7 | 2 | 1975 | 11,086.68 |
Kotjonjärvi | 1404 | I | average | 4.5 | 1.5 | 5 | 1920 | 1072.31 |
Pitkänjärvi | 1404 | R | good | 4 | 1.3 | 6 | 1900 | 873.82 |
Ylemmäinen | 1405 | I | - | n/d | 1002.03 | |||
Pieni-Musta | 1407 | I | poor | 5 | 1.7 | 5 | 1930 | 1895.74 |
Saukkojärvi | 1409 | I | poor | 5 | 1.7 | 5 | 1930 | 1427.64 |
Tiisjärvi | 1409 | R | poor | 12 | 4 | 2 | 1980 | 2239.18 |
Iso-Pajunen | 1410 | I | - | n/d | 322.70 | |||
Eitikka | 1410 | R | good | 10 | 3.3 | 2 | 1970 | 483.69 |
Hamarinjärvi | 1602 | I | average | 7 | 2.3 | 3 | 1950 | 271.95 |
Sanginjärvi | 1603 | I | - | n/d | 229.18 | |||
Valkiaisjärvi | 1603 | R | poor | 15 | 4.7 | 2 | 1985 | 397.81 |
Kortejärvi | 1604 | R | - | n/d | 48.4 | |||
Kurranjärvi | 1605 | I | good | 4 | 1.3 | 6 | 1900 | 186.33 |
Järvitalonjärvi | 1605 | R | - | n/d | 95.76 | |||
Leuvanjärvi | 1606 | I | average | 5 | 1.7 | 5 | 1930 | 120.28 |
Viitastenjärvi | 1606 | R | average | 3 | 1 | 7 | 1870 | 292.23 |
Sääksjärvi | 1607 | I | average | 5 | 1.7 | 5 | 1920 | 1145.29 |
Patananjärvi | 1607 | R | average | 8 | 2.6 | 3 | 1960 | 1941.82 |
Narssjön | 1608 | I | average | 7 | 2.3 | 3 | 1950 | 1469.29 |
Sexsjön | 1608 | R | average | 7 | 2.3 | 3 | 1950 | 1584.57 |
Leväjärvi | 1609 | I | average | 11 | 3.7 | 2 | 1975 | 1112.30 |
Viitalampi | 1609 | R | poor | 17 | 5.3 | 2 | 1990 | 1838.07 |
Kolunjärvi | 1610 | I | good | 6 | 2 | 4 | 1950 | 2089.38 |
Lintulampi | 1610 | R | good | 5 | 1.7 | 5 | 1930 | 12,762.43 |
Appendix C
p-Values | |||||||||
---|---|---|---|---|---|---|---|---|---|
Depth at coring point | Drained peatland | Peatland | Peat extracti-on | Lake propor-tion | Agricul-ture | Watershed | Lake area | Watershed: lake ratio | |
Al | 0.96831 | 0.15157 | 0.85626 | 0.51704 | 0.019877 | 0.3497 | 0.43577 | 0.032118 | 0.33276 |
Ba | 0.048226 | 0.95794 | 0.44287 | 0.042954 | 0.82195 | 0.21459 | 0.66834 | 0.98583 | 0.53519 |
Ca | 0.011276 | 0.75983 | 0.009307 | 0.004279 | 0.097766 | 0.52103 | 0.042699 | 0.02955 | 0.37666 |
Co | 0.56398 | 0.26736 | 0.77721 | 0.56908 | 0.988 | 0.10733 | 0.26885 | 0.40327 | 0.73112 |
Cr | 0.8999 | 0.20277 | 0.82621 | 0.73879 | 0.28321 | 0.017273 | 0.17717 | 0.045146 | 0.77098 |
Cu | 0.87499 | 0.78354 | 0.29981 | 0.98008 | 0.25861 | 0.17216 | 0.53675 | 0.36192 | 0.052014 |
Fe | 0.18888 | 0.31246 | 0.2185 | 0.88947 | 0.69711 | 0.9584 | 0.080974 | 0.23848 | 0.26194 |
K | 0.40358 | 0.068596 | 0.86324 | 0.093754 | 0.78746 | 0.005091 | 0.28693 | 0.16357 | 0.81411 |
Mg | 0.47385 | 0.078657 | 0.91624 | 0.15212 | 0.55437 | 0.002302 | 0.37631 | 0.29637 | 0.83622 |
Mn | 0.70008 | 0.11969 | 0.51151 | 0.69333 | 0.044138 | 0.72308 | 0.81065 | 0.052917 | 0.27623 |
Na | 0.26822 | 0.11011 | 0.93126 | 0.050368 | 0.9242 | 0.23031 | 0.45857 | 0.27674 | 0.86071 |
Ni | 0.65248 | 0.095891 | 0.85109 | 0.64458 | 0.73322 | 0.013971 | 0.63644 | 0.52446 | 0.85441 |
P | 0.29193 | 0.27833 | 0.001932 | 0.48422 | 0.75205 | 0.14821 | 0.26784 | 0.43746 | 0.70878 |
Pb | 0.58535 | 0.74458 | 0.23012 | 0.71032 | 2.06 × 10−5 | 0.004543 | 0.91557 | 0.044983 | 0.016727 |
S | 0.25848 | 0.75241 | 0.54909 | 0.48384 | 0.84454 | 0.35137 | 0.3402 | 0.90353 | 0.15435 |
Sr | 0.024552 | 0.84857 | 0.016941 | 0.004265 | 0.33746 | 0.73923 | 0.061961 | 0.10823 | 0.32114 |
Ti | 0.17273 | 0.28722 | 0.77458 | 0.076268 | 0.99862 | 0.063048 | 0.72136 | 0.34818 | 0.35922 |
V | 0.98239 | 0.70666 | 0.6641 | 0.86574 | 0.14405 | 0.84148 | 0.022119 | 0.011024 | 0.35877 |
Zn | 0.91864 | 0.34856 | 0.74161 | 0.23376 | 0.29335 | 0.055873 | 0.17736 | 0.94769 | 0.046081 |
N | 0.63705 | 0.063966 | 0.51523 | 0.56949 | 0.62835 | 0.40759 | 0.15246 | 0.044272 | 0.83219 |
C | 0.43343 | 0.24795 | 0.14563 | 0.67671 | 0.12925 | 0.53245 | 0.003521 | 0.001466 | 0.34421 |
EUCL | 0.53266 | 0.48672 | 0.89124 | 0.1536 | 0.4389 | 0.053962 | 0.22511 | 0.45372 | 0.38826 |
Spearman’s Rank Order Correlations | |||||||||
Al | −0.0057 | 0.19975 | 0.025485 | 0.090982 | −0.31906 | −0.13103 | −0.10934 | −0.29481 | 0.13566 |
Ba | −0.27802 | −0.00742 | 0.10767 | 0.27914 | 0.031658 | −0.17331 | 0.060232 | 0.0025 | 0.087092 |
Ca | −0.35212 | 0.042998 | 0.35401 | 0.38627 | 0.22986 | −0.09012 | 0.27947 | 0.29916 | 0.12392 |
Co | −0.0827 | 0.15513 | −0.0398 | 0.079997 | 0.002116 | −0.22371 | −0.15465 | −0.1172 | −0.04833 |
Cr | 0.018061 | 0.1778 | −0.03089 | 0.046897 | −0.15015 | −0.32582 | −0.1882 | −0.27638 | 0.040944 |
Cu | −0.02259 | 0.038642 | 0.14513 | 0.003513 | 0.15796 | −0.19036 | −0.08676 | 0.12777 | −0.26837 |
Fe | −0.18699 | −0.14142 | −0.17186 | 0.019555 | 0.054729 | −0.00734 | −0.2419 | −0.16474 | −0.15688 |
K | −0.1195 | 0.2521 | 0.024235 | 0.23258 | 0.037924 | −0.37933 | −0.14901 | −0.19417 | 0.033078 |
Mg | −0.10257 | 0.24371 | 0.014799 | 0.19948 | 0.08305 | −0.40991 | −0.12401 | −0.14615 | 0.029084 |
Mn | 0.055269 | −0.21636 | −0.09218 | −0.05545 | 0.27763 | 0.049832 | 0.033704 | 0.26739 | −0.15232 |
Na | −0.15798 | 0.22201 | 0.012138 | 0.27021 | 0.013387 | −0.1676 | −0.10402 | −0.15216 | 0.024687 |
Ni | 0.064594 | 0.23112 | −0.02641 | 0.064844 | −0.04793 | −0.33577 | −0.06644 | −0.08938 | 0.025817 |
P | −0.15046 | −0.15166 | 0.41631 | 0.098197 | −0.04444 | 0.20137 | 0.15498 | 0.10894 | 0.052521 |
Pb | −0.07822 | −0.04582 | 0.16767 | −0.05223 | 0.54913 | −0.38389 | −0.01492 | 0.27658 | −0.32735 |
S | 0.16119 | −0.04437 | −0.08416 | −0.09828 | 0.027589 | −0.13057 | −0.13361 | −0.01705 | −0.19843 |
Sr | −0.31459 | 0.026864 | 0.32675 | 0.3864 | 0.13436 | −0.04681 | 0.25818 | 0.22316 | 0.13893 |
Ti | −0.19392 | 0.14892 | 0.040284 | 0.24562 | −0.00024 | −0.25715 | −0.05015 | −0.13144 | 0.12848 |
V | −0.00317 | −0.05292 | −0.06105 | −0.02379 | −0.20341 | 0.028138 | −0.31382 | −0.34653 | −0.1286 |
Zn | −0.01467 | −0.13133 | 0.046373 | −0.16638 | 0.14706 | −0.26425 | −0.18811 | −0.00923 | −0.27523 |
N | −0.06767 | −0.25629 | 0.091375 | −0.07991 | 0.068035 | 0.11614 | 0.19932 | 0.27747 | −0.02981 |
C | −0.11212 | −0.1615 | 0.20263 | 0.058622 | 0.21106 | −0.08768 | 0.39389 | 0.42612 | 0.13251 |
EUCL | −0.0923 | 0.10066 | 0.019837 | 0.20483 | 0.11196 | −0.27422 | −0.17465 | −0.10838 | −0.12469 |
References
- Shukla, P.R.; Skea, J.; Buendia, E.C.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, R.; et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. 2019. Available online: https://www.ipcc.ch/srccl/ (accessed on 12 August 2019).
- Limpens, J.; Berendse, F.; Blodau, C.; Canadell, J.G.; Freeman, C.; Holden, J.; Roulet, N.; Rydin, H.; Schaepman-Strub, G. Peatlands and the carbon cycle: From local processes to global implications—A synthesis. Biogeosciences 2008, 5, 1475–1491. [Google Scholar] [CrossRef] [Green Version]
- Väliranta, M.; Lohila, A.; Minkkinen, K.; Ojanen, P.; Sannel, B. Soiden ja turpeen taloudellinen hyödyntäminen ja käyttömuotojen aiheuttama säteilypakote. Geologi 2019, 71, 141–146. (In Finnish) [Google Scholar]
- Roberts, N.; Fyfe, R.M.; Woodbridge, J.; Gaillard, M.-J.; Davis, B.A.S.; Kaplan, J.O.; Marquer, R.; Mazier, F.; Nielsen, A.B.; Sugita, S.; et al. Europe’s lost forests: A pollen-based synthesis for the last 11,000 years. Sci. Rep. 2018, 8, 716. [Google Scholar] [CrossRef] [PubMed]
- Stephens, L. ArchaeoGLOBE Project. Archaeological assessment reveals Earth’s early transformation through land use. Science 2019, 365, 897–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenny, J.-P.; Koirala, S.; Gregoy-Eaves, I.; Francus, P.; Niemann, C.; Ahrens, B.; Jung, M.; Brovkin, V.; Baud, A.; Ojala, A.E.K.; et al. Human and climate influences on global sediment transfers during the past 10,000 years. Proc. Natl. Acad. Sci. USA 2019, 116, 22972–22976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cris, R.; Buckmaster, S.; Bain, C.; Reed, M.S. Global Peatland Restoration Demonstrating Success; IUCN UK National Committee Peatland Programme: Edinburgh, UK, 2014; p. 35. ISBN 978-0-9570572-3-4. [Google Scholar]
- Turunen, J. Development of Finnish Peatland area and carbon storage 1950–2000. Boreal Environ. Res. 2008, 13, 319–334. [Google Scholar]
- Clarke, D.; Rieley, J.O. Strategy for Responsible Peatland Management, 6th ed.; International Peatland Society: Jyväskylä, Finland, 2019; p. 35. [Google Scholar]
- Kondelin, H. Environmental impacts of mire utilization. In Finland—The Land of Mires; Lindholm, T., Heikkilä, R., Eds.; Finnish Environment: Helsinki, Finland, 2006; pp. 193–204. [Google Scholar]
- Kauppila, T.; Ahokas, T.; Nikolajev-Wikström, L.; Mäkinen, J.; Tammelin, M.H.; Meriläinen, J.J. Aquatic effects of peat extratcion and peatland forest drainage: A comparative sediment study of two adjanced lakes in Central Finland. Environ. Earth Sci. 2016, 75, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Daza-Secco, E.; Haimi, J.; Vähäkuopus, T.; Ojala, A.E.K.; Valpola, S.; Meissner, K. Testate amoebae as a potential tracer of organic matter dislodged from peat extraction areas. Use of testaceans to trace matter from peatlands to lakes. Boreal Environ. Res. 2020, 25, 19–37. [Google Scholar]
- National Land Survey of Finland (NLS) Base Map Database. Available online: https://tiedostopalvelu.maanmittauslaitos.fi/tp/kartta?lang=en (accessed on 1 January 2013).
- Finnish Catchment Data. Finnish Environmental Institute (SYKE) Open Information. https://www.syke.fi/openinformation. metadata. Available online: http://geoportal.ymparisto.fi/meta/julkinen/dokumentit/catchment_areas.pdf (accessed on 1 January 2012).
- AVI Lupa-Information Service. Available online: https://tietopalvelu.ahtp.fi/Lupa/ (accessed on 1 May 2018).
- VALUE-Catchment Delineation Tool. Finnish Environmental Institute (SYKE). Available online: http://paikkatieto.ymparisto.fi/value/ (accessed on 1 January 2018).
- Corine Land Cover 2018. Finnish Environmental Institute (SYKE) Open Information. https://www.syke.fi/openinformation. metadata. Available online: http://geoportal.ymparisto.fi/meta/julkinen/dokumentit/CorineLandCover2018_en.pdf (accessed on 1 January 2018).
- Hertta Service, Finnish Environment Institute Environmental Data. Available online: Syke.fi/avointieto (accessed on 1 January 2016).
- Peatland Boundaries–Dataset of Geological Survey of Finland; (internal use); Geological Survey of Finland: Espoo, Finland, 2018.
- Pajunen, H. Järvisedimentit kuiva-aineen ja hiilen varastona. Tutk. Rep. Investig. 2004, 160, 308. (In Finnish) [Google Scholar]
- Mäkinen, J.; Pajunen, H. Correlation of carbon with acid-soluble elements in Finnish lake sediments: Two opposite composition trends. Geochem. Explor. Environ. Anal. 2005, 5, 169–181. [Google Scholar] [CrossRef]
- Håkanson, L.; Jansson, M. Principles of Lake Sedimentology; Springer: Berlin, Germany, 1983; p. 316. [Google Scholar]
- Kansanen, P.H.; Jaakkola, T.; Kulmala, S.; Suutarinen, R. Sedimentation and distribution of gamma-emitting radionuclides in bottom sediments of southern Lake Päijänne Finland, after the Chernobyl accident. Hydrobiologia 1991, 222, 121–140. [Google Scholar] [CrossRef]
- Appleby, P.G. Radiometric dating of sediment records in European mountain lakes. J. Limnol. 2000, 59, 1–14. [Google Scholar] [CrossRef]
- Wright, S.M.; Howard, B.J.; Strand, P.; Nylén, T.; Sickel, M.A.K. Prediction of Cs-137 deposition from atmospheric nuclear weapons tests within the Arctic. Environ. Pollut. 1999, 104, 131–143. [Google Scholar] [CrossRef]
- Klaminder, J.; Appleby, P.; Crook, P.; Renberg, I. Post-deposition diffusion of 137Csin lake sediment: Implications for radiocaesium dating. Sedimentology 2012, 59, 2259–2267. [Google Scholar] [CrossRef]
- Ojala, A.E.K.; Luoto, T.P.; Virtasalo, J.J. Establishing a high-resolution surface sediment chronology with multiple dating methods–testing 137Cs determination with Nurmijärvi clastic-biogenic varves. Quat. Geochronol. 2017, 37, 32–41. [Google Scholar] [CrossRef]
- Ojala, A.E.K.; Francus, P.; Zolitschka, B.; Besonen, M.; Lamoureux, S. Characteristis of sedimentary varve chronologies–A review. Quat. Sci. Rev. 2012, 43, 45–60. [Google Scholar] [CrossRef]
- Zolitschka, B.; Francus, P.; Ojala, A.E.K.; Schimmelmann, A. Varves in lake sediments—A review. Quat. Sci. Rev. 2015, 117, 1–41. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Ter Braak, C.J.; Šmilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5); Microcomputer Power: Ithaca, NY, USA, 2002. [Google Scholar]
- Ilus, E.; Saxén, R. Accumulation of Chernobyl-derived 137Cs in bottom sediments of some Finnish lakes. J. Environ. Radioact. 2005, 82, 199–221. [Google Scholar] [CrossRef]
- Kortelainen, P.; Pajunen, H.; Rantakari, M.; Saarnisto, M. A large carbon pool and small sink in boreal Holocene lake sediments. Glob. Chang. Biol. 2004, 10, 1648–1653. [Google Scholar] [CrossRef]
- Valpola, S.E.; Ojala, A.E.K. Post-glacial sedimentation rate and patterns in six lakes of the Kokemäenjoki upper watercourse, Finland. Boreal Environ. Res. 2006, 11, 195–211. [Google Scholar]
- Mäkinen, J.; Ojala, A. Sedimentation dynamics and metal loading in Lake Pyhajarvi, Finland. J. Paleolimnol. 2013, 50, 1–13. [Google Scholar] [CrossRef]
- Laamanen, L.; Mäkinen, J.; Koivuhuhta, A.; Nilivaara-Koskela, R.; Karppinen, A.; Hellsten, S. Kaivosvesiä vastaanottavien vesistöjen hallinta ja kunnostaminen. KaiHali-hankkeen loppuraportti. Suomen Ympäristökeskuksen Raportteja 2019, 38, 194. [Google Scholar]
- Mendonca, R.; Müller, R.A.; Clow, D.; Verpoorter, C.; Raymond, P.; Tranvik, L.J.; Sobek, S. Organic carbon burial in global lakes and reservoirs. Nat. Commun. 2017, 8, 1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiljander, M.; Saarnisto, M.; Ojala, A.E.K.; Saarinen, T. A 3000-year palaeoenvironmental record from annually laminated sediment of Lake Korttajärvi, central Finland. Boreas 2003, 26, 566–577. [Google Scholar] [CrossRef]
- Ojala, A.E.K.; Alenius, T. 10,000 years of interannual sedimentation recorded in the Lake Nautajärvi (Finland) clastic-organic varves. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 219, 285–302. [Google Scholar] [CrossRef]
- Saarni, S.; Muschitiello, F.; Weege, S.; Brauer, A.; Saarinen, T. A late Holocene record of solar-forced atmospheric blocking variability over Northern Europe inferred from varved lake sediments of Lake Kuninkaisenlampi. Quat. Sci. Rev. 2016, 154, 100–110. [Google Scholar] [CrossRef]
- Minkkinen, K. Effects of Forestry Drainage on the Carbon Balance and Radiative Forcing of Peatlands in Finland; Department of Forest Ecology, University of Helsinki: Helsinki, Finland, 1999; p. 42. [Google Scholar]
- Kenttämies, K. Tilanne ja tavoitteet metsätalouden vesistökuormituksen vähentämiseksi. Metsäntutkimuslaitoksen Tied. 2003, 886, 9–16. (In Finnish) [Google Scholar]
- Nieminen, M.; Sallantaus, T.; Ukonmaanaho, L.; Nieminen, T.M.; Sarkkola, S. Nitrogen and phosporous concentrations in discharge from drained peatland forests are increasing. Sci. Total Environ. 2017, 609, 974–981. [Google Scholar] [CrossRef]
- Päivänen, J. Suot Ja Suometsät–Järkevän Käytön Perusteet; Metsäkustannus Oy: Hämeenlinna, Finland, 2007; p. 368. (In Finnish) [Google Scholar]
- Kløve, B. Characteristics of nitrogen and phosphorus loads in peat mining wastewater. Water Res. 2001, 35, 2353–2362. [Google Scholar]
- Puustinen, M.; Koskiaho, J.; Peltonen, K. Influence of cultivation methods on suspended solids and phosphorus concentrations in surface runoff on clayey sloped fields in boreal climate. Agric. Ecosyst. Environ. 2005, 105, 565–579. [Google Scholar] [CrossRef]
Catchment and Lake Properties | Peatland Data, % per Catchment Area | CLC Data, % per Catchment Area | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Catchment area (ha) | Lake area (ha) | Max depth m | Average depth m | Water depth at coring site | Peatland % | Ditched peatland % | Peat extraction % | Agricultural areas % | Water bodies % | |
ALL LAKES | ||||||||||
Impacted (n = 29) | ||||||||||
Avg | 16,831 | 131 | 7.0 | 2.4 | 4.3 | 33 | 86 | 4 | 4 | 5 |
Median | 3548 | 58 | 4.0 | 1.9 | 3.0 | 33 | 88 | 3 | 1 | 4 |
Min | 284 | 3 | 1.4 | 0.6 | 0.9 | 15 | 56 | 0.2 | 0 | 0 |
Max | 146,885 | 529 | 36.1 | 7.3 | 22.0 | 58 | 100 | 17 | 16 | 15 |
Reference (n = 22) | ||||||||||
Avg | 779 | 73 | 8.6 | 3.6 | 7.3 | 19 | 62 | 0 | 7 | 11 |
Median | 277 | 28 | 9.1 | 3.4 | 7.2 | 12 | 79 | 0 | 2 | 7 |
Min | 34 | 7 | 1.4 | 1.5 | 0.5 | 0 | 0 | 0 | 0 | 0 |
Max | 5521 | 170 | 15.6 | 6.2 | 20.8 | 64 | 100 | 0 | 66 | 49 |
TRIMMED SUBSET | ||||||||||
Impacted (n = 9) | ||||||||||
Avg | 1195 | 35 | 6.3 | 2.7 | 4.7 | 33 | 91 | 8 | 3 | 5 |
Median | 1284 | 24 | 4.2 | 2.2 | 3.0 | 31 | 91 | 7 | 1 | 3 |
Min | 284 | 8 | 2.2 | 0.9 | 1.0 | 16 | 79 | 1 | 0.0 | 0 |
Max | 2683 | 79 | 11.5 | 5.0 | 11.5 | 56 | 100 | 17 | 16 | 15 |
Reference (n = 10) | ||||||||||
Avg | 903 | 103 | 8.5 | 3.5 | 5.9 | 20 | 87 | 0 | 3 | 13 |
Median | 862 | 126 | 9.1 | 3.4 | 6.6 | 17 | 92 | 0 | 2 | 10 |
Min | 191 | 7 | 1.8 | 1.5 | 1.3 | 2 | 57 | 0 | 0 | 0 |
Max | 1976 | 170 | 15.6 | 6.2 | 10.0 | 43 | 100 | 0 | 11 | 30 |
p (same mean) | 0.425 | 0.008 | 0.505 | 0.061 | 0.370 | n/a | 0.901 | 0.063 | ||
p (same median) | 0.438 | 0.037 | 0.487 | 0.066 | 0.713 | n/a | 0.767 | 0.093 |
Accumulation Rate g m−2 a−1 | |||
---|---|---|---|
Impacted lakes | Reference lakes | Ratio Impacted: Reference | |
Pb | 0.004 | 0.008 | 0.55 |
S | 0.622 | 0.838 | 0.74 |
N | 2.406 | 2.809 | 0.86 |
C | 35 | 36 | 0.98 |
Zn | 0.027 | 0.026 | 1.07 |
Cu | 0.005 | 0.005 | 1.10 |
P | 0.361 | 0.265 | 1.36 |
Co | 0.004 | 0.002 | 1.60 |
Al | 5.111 | 3.118 | 1.64 |
Ni | 0.006 | 0.004 | 1.64 |
Mn | 0.201 | 0.122 | 1.65 |
Fe | 9.746 | 5.593 | 1.74 |
DM | 352 | 197 | 1.79 |
Sr | 0.011 | 0.006 | 1.79 |
V | 0.015 | 0.008 | 1.79 |
Ba | 0.038 | 0.021 | 1.83 |
Cr | 0.011 | 0.005 | 2.12 |
Ca | 1.750 | 0.802 | 2.18 |
Na | 0.100 | 0.043 | 2.33 |
K | 0.752 | 0.250 | 3.01 |
Mg | 1.688 | 0.504 | 3.35 |
Ti | 0.464 | 0.136 | 3.41 |
C g m−2 a−1 | DM g m−2 a−1 | |||||||
---|---|---|---|---|---|---|---|---|
All Lakes (43) | Trimmed Subset Lakes (19) | All Lakes (43) | Trimmed Subset Lakes (19) | |||||
Variable | Pearson | p-value | Pearson | p-value | Pearson | p-value | Pearson | p-value |
Catchment ha | −0.049 | 0.755 | −0.001 | 0.997 | 0.209 | 0.179 | 0.071 | 0.774 |
Drained % | −0.250 | 0.106 | 0.032 | 0.895 | 0.033 | 0.836 | 0.144 | 0.556 |
Peatland % | −0.082 | 0.601 | 0.182 | 0.456 | 0.068 | 0.665 | 0.054 | 0.826 |
Peat prod. % | 0.060 | 0.703 | 0.017 | 0.944 | 0.026 | 0.867 | 0.012 | 0.960 |
Lake % | 0.020 | 0.899 | −0.215 | 0.376 | −0.138 | 0.376 | −0.179 | 0.465 |
Agric % | 0.352 | 0.021 | 0.216 | 0.375 | 0.070 | 0.654 | 0.287 | 0.234 |
Lake ha | −0.080 | 0.610 | −0.028 | 0.909 | 0.333 | 0.029 | −0.101 | 0.682 |
Catch: Lake | 0.021 | 0.895 | 0.018 | 0.942 | 0.110 | 0.481 | 0.198 | 0.416 |
Depth m | −0.113 | 0.476 | −0.172 | 0.481 | 0.189 | 0.231 | −0.166 | 0.497 |
43 Lakes | 19 Lakes | |||
---|---|---|---|---|
Controlling for | Linear correlation | p-value | Linear correlation | p-value |
Drained % | 0.124 | 0.432 | 0.015 | 0.952 |
Peatland % | 0.107 | 0.499 | −0.116 | 0.648 |
Lake % | 0.066 | 0.680 | −0.053 | 0.834 |
Agric % | 0.098 | 0.535 | 0.050 | 0.842 |
Catch. ha | 0.054 | 0.735 | 0.018 | 0.954 |
Lake ha | 0.051 | 0.749 | −0.023 | 0.982 |
Catch: Lake | 0.062 | 0.697 | 0.013 | 0.960 |
Depth m | 0.026 | 0.868 | −0.040 | 0.876 |
FI Data | Impacted Lakes | Reference Lakes | Impacted vs. Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Top | Bottom | Growth % | Top | Bottom | Growth % | Relative bottom difference % | Relative top difference % | |||
Al | mg/kg | 18,900 | 13,151 | 10,618 | 24 | 14,440 | 12,803 | 13 | −17 | −9 |
Ba | mg/kg | 133 | 99 | 78 | 28 | 118 | 102 | 16 | −24 | −16 |
Ca | mg/kg | 4500 | 4670 | 3921 | 19 | 4002 | 3822 | 5 | 3 | 17 |
Co | mg/kg | 9 | 10 | 7 | 35 | 9 | 7 | 37 | 4 | 2 |
Cr | mg/kg | 35 | 27 | 21 | 26 | 23 | 19 | 21 | 10 | 14 |
Cu | mg/kg | 20 | 15 | 13 | 22 | 21 | 17 | 30 | −23 | −28 |
Fe | mg/kg | 27,900 | 25,203 | 21,503 | 17 | 26,129 | 20,181 | 29 | 7 | −4 |
K | mg/kg | 2300 | 1699 | 1016 | 67 | 1132 | 767 | 48 | 33 | 50 |
Mg | mg/kg | 3700 | 3558 | 2370 | 50 | 2204 | 1609 | 37 | 47 | 61 |
Mn | mg/kg | 700 | 454 | 410 | 11 | 588 | 474 | 24 | −14 | −23 |
Na | mg/kg | 200 | 271 | 196 | 38 | 207 | 160 | 29 | 22 | 31 |
Ni | mg/kg | 15 | 17 | 12 | 42 | 17 | 12 | 34 | −5 | 0 |
P | mg/kg | 1391 | 1123 | 1001 | 12 | 1303 | 1254 | 4 | −20 | −14 |
Pb | mg/kg | 7 | 19 | 15 | 22 | 50 | 32 | 53 | −52 | −62 |
S | mg/kg | 2359 | 2436 | 2008 | 21 | 4575 | 3098 | 48 | −35 | −47 |
Sr | mg/kg | 30 | 33 | 28 | 20 | 33 | 31 | 8 | −11 | 0 |
Ti | mg/kg | 818 | 974 | 691 | 41 | 610 | 484 | 26 | 43 | 60 |
V | mg/kg | 35 | 39 | 31 | 26 | 41 | 32 | 27 | −3 | −4 |
Zn | mg/kg | 83 | 79 | 71 | 11 | 119 | 86 | 39 | −18 | −34 |
N | % | 1 | 1 | 1 | −11 | 1 | 1 | −1 | −20 | −28 |
C | % | 14 | 16 | 18 | −12 | 20 | 22 | −10 | −18 | −19 |
Forward Sel. Variable | p-Value | % Expld | Covar. | p-Value | % Expld | Covar. | p-Value | % Expld | Covar. | p-Value | % Expld |
---|---|---|---|---|---|---|---|---|---|---|---|
Catch. ha | 0.001 | 18.3 | Peat % | 0.001 | 27.1 | Depth | 0.001 | 19.2 | Agri % | 0.001 | 20.6 |
Peat % | 0.016 | 8.0 | Catch. ha | 0.001 | 18.0 | Depth | 0.059 | 5.20 | Agri % | 0.007 | 8.4 |
Depth | 0.003 | 10.1 | Catch. ha | 0.005 | 11.1 | Peat % | 0.016 | 7.3 | Agri % | 0.002 | 11.9 |
Agri % | 0.002 | 8.5 | Catch ha | 0.001 | 11.1 | Peat % | 0.005 | 8.9 | Depth | 0.003 | 10.4 |
Catch. ha | 0.001 | 19.8 | Depth | 0.001 | 20.2 | Peat % | 0.001 | 24.9 | Agri % | 0.001 | 23.5 |
Peat % | 0.015 | 7.3 | Catch. ha | 0.001 | 13.2 | Depth | 0.084 | 4.5 | Agri % | 0.006 | 8.0 |
Depth | 0.002 | 10.7 | Catch. ha | 0.002 | 11.2 | Peat % | 0.009 | 8.0 | Agri % | 0.002 | 11.5 |
Agri % | 0.016 | 6.9 | Catch. ha | 0.003 | 11.2 | Depth | 0.011 | 7.8 | Peat% | 0.011 | 7.5 |
Prod % | 0.013 | 6.9 | Catch. ha | 0.037 | 5.8 | Depth | 0.150 | 3.3 | Peat % | 0.131 | 3.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vähäkuopus, T.; Kauppila, T.; Mäkinen, J.; Ojala, A.E.K.; Valpola, S.E. Sedimentation Patterns of Multiple Finnish Lakes Reveal the Main Environmental Stressors and the Role of Peat Extraction in Lake Sedimentation. Geosciences 2020, 10, 313. https://doi.org/10.3390/geosciences10080313
Vähäkuopus T, Kauppila T, Mäkinen J, Ojala AEK, Valpola SE. Sedimentation Patterns of Multiple Finnish Lakes Reveal the Main Environmental Stressors and the Role of Peat Extraction in Lake Sedimentation. Geosciences. 2020; 10(8):313. https://doi.org/10.3390/geosciences10080313
Chicago/Turabian StyleVähäkuopus, Tuija, Tommi Kauppila, Jari Mäkinen, Antti E. K. Ojala, and Samu E. Valpola. 2020. "Sedimentation Patterns of Multiple Finnish Lakes Reveal the Main Environmental Stressors and the Role of Peat Extraction in Lake Sedimentation" Geosciences 10, no. 8: 313. https://doi.org/10.3390/geosciences10080313
APA StyleVähäkuopus, T., Kauppila, T., Mäkinen, J., Ojala, A. E. K., & Valpola, S. E. (2020). Sedimentation Patterns of Multiple Finnish Lakes Reveal the Main Environmental Stressors and the Role of Peat Extraction in Lake Sedimentation. Geosciences, 10(8), 313. https://doi.org/10.3390/geosciences10080313