Volcanic Geomorphology: A Review of Worldwide Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Defining Search Criteria
2.2. Data Compilation
2.3. Adjustment and Refinement of Criteria
2.4. Export and Analysis of Data
3. Results
3.1. Analysis of Scientific Production
3.1.1. Introduction (1956–1998): Birth of Volcanic Geomorphology
3.1.2. Growth (1999–2009): Geomorphological Evolution
3.1.3. Maturation (2010–2019): Peak of Volcanic Geomorphology
3.2. Contribution of the Main Authors
3.3. Frequently Cited Documents
3.4. Country and Region Contributions
3.5. Analysis of the Structure of the Field of Volcanic Geomorphology
3.5.1. Author Keyword Co-Occurrence Network
3.5.2. Co-citation Network of Cited Authors
3.5.3. Co-citation Network of Scientific Journals
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CSV | Comma-Separated Values |
CNES | Center National d’Etudes Spatiales |
References
- Augustin, N.; van der Zwan, F.M.; Devey, C.W.; Ligi, M.; Kwasnitschka, T.; Feldens, P.; Bantan, R.A.; Basaham, A.S. Geomorphology of the central Red Sea Rift: Determining spreading processes. Geomorphology 2016, 274, 162–179. [Google Scholar] [CrossRef]
- Azzoni, R.S.; Fugazza, D.; Garzonio, C.A.; Nicoll, K.; Diolaiuti, G.A.; Pelfini, M.; Zerboni, A. Geomorphological effects of the 1840 Ahora Gorge catastrophe on Mount Ararat (Eastern Turkey). Geomorphology 2019, 332, 10–21. [Google Scholar] [CrossRef]
- Bocco, G.; Prieto, J.L.P. La contribución de la investigación geomorfológica en la cuestión ambiental en México. Investig. Geográficas Boletín del Instituto de Geografía 2014, 6–27. [Google Scholar] [CrossRef] [Green Version]
- Carrión-Mero, P.C.; Morante-Carballo, F.E.; Herrera-Franco, G.A.; Maldonado-Zamora, A.; Paz-Salas, N. The context of Ecuador’s world heritage, for sustainable development strategies. Int. J. Des. Nat. Ecodyn. 2020, 15, 39–46. [Google Scholar] [CrossRef]
- Dóniz-Páez, J. Volcanic geomorphological classification of the cinder cones of Tenerife (Canary Islands, Spain). Geomorphology 2015, 228, 432–447. [Google Scholar] [CrossRef]
- Haag, M.B.; Baez, W.A.; Sommer, C.A.; Arnosio, J.M.; Filipovich, R.E. Geomorphology and spatial distribution of monogenetic volcanoes in the southern Puna Plateau (NW Argentina). Geomorphology 2019, 342, 196–209. [Google Scholar] [CrossRef]
- Gomez, C. Understanding volcanic geomorphology from derivatives and wavelet analysis: A case study at Miyakejima Volcano, Izu Islands, Japan. J. Volcanol. Geotherm. Res. 2018, 354, 57–66. [Google Scholar] [CrossRef]
- Ghignone, S.; Gattiglio, M.; Balestro, G.; Borghi, A. Geology of the Susa Shear Zone (Susa Valley, Western Alps). J. Maps 2020, 16, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.M.; Mcginnis, R.N.; Necsoiu, M. Volcaniclastic aeolian deposits at Sunset Crater, Arizona: Terrestrial analogs for Martian dune forms. Earth Surf. Process. Landforms 2012, 37, 1090–1105. [Google Scholar] [CrossRef]
- Lalubie, G. Volcanic hydro-geomorphology of the montagne pelée and the rediscovery of an ancestral problematic (Carib, Kalinago) in the Lesser Antilles. Bull. de la Société Géologique de Fr. 2013, 184, 129–135. [Google Scholar] [CrossRef]
- Lai, Y.M.; Song, S.R. The volcanoes of an oceanic arc from origin to destruction: A case from the northern Luzon Arc. J. Asian Earth Sci. 2013, 74, 97–112. [Google Scholar] [CrossRef]
- Madonia, P.; Grassa, F.; Cangemi, M.; Musumeci, C. Geomorphological and geochemical characterization of the 11 August 2008 mud volcano eruption at S. Barbara village (Sicily, Italy) and its possible relationship with seismic activity. Nat. Hazards Earth Syst. Sci. 2011, 11, 1545–1557. [Google Scholar] [CrossRef]
- Concha-Dimas, A.; Cerca, M.; Rodríguez, S.R.; Watters, R.J. Geomorphological evidence of the influence of pre-volcanic basement structure on emplacement and deformation of volcanic edifices at the Cofre de Perote-Pico de Orizaba chain and implications for avalanche generation. Geomorphology 2005, 72, 19–39. [Google Scholar] [CrossRef]
- Liaudat, D.T.; Penas, P.; Aloy, G. Geomorphology Impact of volcanic processes on the cryospheric system of the Peteroa Volcano, Andes of southern Mendoza, Argentina. Geomorphology 2014, 208, 74–87. [Google Scholar] [CrossRef]
- Favalli, M.; Karátson, D.; Mazzuoli, R.; Pareschi, M.T.; Ventura, G. Volcanic geomorphology and tectonics of the Aeolian archipelago (Southern Italy) based on integrated DEM data. Bull. Volcanol. 2005, 68, 157–170. [Google Scholar] [CrossRef]
- Martínez-moreno, F.J.; Santos, F.A.M.; Madeira, J.; Pous, J.; Bernardo, I.; Soares, A.; Esteves, M.; Adão, F.; Ribeiro, J.; Mata, J.; et al. Investigating collapse structures in oceanic islands using magnetotelluric surveys: The case of Fogo Island in Cape Verde. J. Volcanol. Geotherm. Res. 2018, 357, 152–162. [Google Scholar] [CrossRef]
- Doyle, M.W.; Julian, J.P. The most-cited works in Geomorphology. Geomorphology 2005, 72, 238–249. [Google Scholar] [CrossRef]
- Hansell, A.; Oppenheimer, C. Health Hazards from Volcanic Gases: A Systematic Literature Review. Arch. Environ. Health: Int. J. 2004, 59, 628–639. [Google Scholar] [CrossRef]
- Forte, P.; Domínguez, L.; Bonadonna, C.; Lamberti, M.C.; Gregg, C.E.; Castro, J.M. Tormentas de ceniza volcánica en Patagonia: Un peligro latente y subestimado. In Proceedings of the VIII Foro Internacional: Los Volcanes y su Impacto, Arequipa, Perú, 26–27 April 2018; pp. 1–6. [Google Scholar]
- Grosse, P.; van Wyk de Vries, B.; Euillades, P.A.; Kervyn, M.; Petrinovic, I.A. Systematic morphometric characterization of volcanic edifices using digital elevation models. Geomorphology 2012, 136, 114–131. [Google Scholar] [CrossRef]
- Chabowski, B.R.; Samiee, S.; Hult, G.T.M. A bibliometric analysis of the global branding literature and a research agenda. J. Int. Bus. Stud. 2013, 44, 622–634. [Google Scholar] [CrossRef]
- Waltman, L.; van Eck, N.J.; Noyons, E.C.M. A unified approach to mapping and clustering of bibliometric networks. J. Informetr. 2010, 4, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Betancourt, K.G.; de Zayas Pérez, M.R.; Guitián, M.V.G. Análisis bibliométrico de las publicaciones relacionadas con proyectos de innovación y su gestión en Scopus, en el período 2001–2011. Rev. Cuba. Inf. en Ciencias la Salud (ACIMED) 2013, 24, 281–294. [Google Scholar]
- Liu, X.; Zhang, L.; Hong, S. Global biodiversity research during 1900–2009: A bibliometric analysis. Biodivers. Conserv. 2011, 20, 807–826. [Google Scholar] [CrossRef]
- Maldonado-Erazo, C.P.; Álvarez-García, J.; del Río-Rama, M.D.L.C.; Correa-Quezada, R. Corporate Social Responsibility and Performance in SMEs: Scientific Coverage. Sustainability 2020, 12, 2332. [Google Scholar] [CrossRef] [Green Version]
- Camargo, J.; Silva, M.; Ferreira Júnior, A.; Araújo, T. Marine Geohazards: A Bibliometric-Based Review. Geoscience 2019, 9, 100. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Malule, H. Bibliometric analysis of global research on clavulanic acid. Antibiotics 2018, 7, 102. [Google Scholar] [CrossRef] [Green Version]
- Ruban, D.; Ponedelnik, A.; Yashalova, N. Megaclasts: Term Use and Relevant Biases. Geoscience 2019, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- González-Serrano, M.H.; Añó Sanz, V.; González-García, R.J. Sustainable Sport Entrepreneurship and Innovation: A Bibliometric Analysis of This Emerging Field of Research. Sustainability 2020, 12, 5029. [Google Scholar] [CrossRef]
- Zhong, S.; Geng, Y.; Liu, W.; Gao, C.; Chen, W. A bibliometric review on natural resource accounting during 1995–2014. J. Clean. Prod. 2016, 139, 122–132. [Google Scholar] [CrossRef]
- Montero, F.P.; López-Muñoz, F.; Santa Cruz, F.H. Análisis bibliométrico de la producción científica española en el área de la Optometría. Arch. Soc. Esp. Oftalmol. 2016, 91, 160–169. [Google Scholar] [CrossRef]
- Espinoza-portilla, E.; Lioo-jordán, F.; Villanueva-Cadenas, G.J. Análisis bibliométrico de las publicaciones peruanas relacionadas a resistencia Bibliometric analysis of Peruvian publications on antimicrobial resistance in Scopus database (1992–2017). Horiz. Médico (Lima) 2018, 18, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Roverato, M.; Larrea, P.; Casado, I.; Mulas, M.; Béjar, G.; Bowman, L. Characterization of the Cubilche debris avalanche deposit, a controversial case from the northern Andes, Ecuador. J. Volcanol. Geotherm. Res. 2018, 360, 22–35. [Google Scholar] [CrossRef]
- Barsotti, S.; Neri, A.; Bertagnini, A.; Cioni, R.; Mulas, M.; Mundula, F. Dynamics and tephra dispersal of Violent Strombolian eruptions at Vesuvius: Insights from field data, wind reconstruction and numerical simulation of the 1906 event. Bull. Volcanol. 2015, 77, 58. [Google Scholar] [CrossRef]
- Denyer, D.; Tranfield, D. Producing a Systematic Review. In The Sage Handbook of Organizational Research Methods; Buchanan, D.A., Bryman, A., Eds.; Sage Publications Ltd.: Thousand Oaks, CA, USA, 2009; pp. 671–689. [Google Scholar]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review* Introduction: The need for an evidence- informed approach. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Keathley-Herring, H.; Van Aken, E.; Gonzalez-Aleu, F.; Deschamps, F.; Letens, G.; Orlandini, P.C. Assessing the maturity of a research area: Bibliometric review and proposed framework. Scientometrics 2016, 109, 927–951. [Google Scholar] [CrossRef]
- Wu, X.; Chen, X.; Zhan, F.B.; Hong, S. Global research trends in landslides during 1991–2014: A bibliometric analysis. Landslides 2015, 12, 1215–1226. [Google Scholar] [CrossRef]
- Williams, M.; Bursik, M.I.; Cortes, G.P.; Garcia, A.M. Correlation of eruptive products, Volcán Azufral, Colombia: Implications for rapid emplacement of domes and pyroclastic flow units. J. Volcanol. Geotherm. Res. 2017, 341, 21–32. [Google Scholar] [CrossRef]
- Vera-Baceta, M.A.; Thelwall, M.; Kousha, K. Web of Science and Scopus language coverage. Scientometrics 2019, 121, 1803–1813. [Google Scholar] [CrossRef]
- Bancheva, A. A bibliometric analysis of global research on the arctic (with special interest in environmental issues). Polar Sci. 2019, 21, 233–237. [Google Scholar] [CrossRef]
- Mulet-Forteza, C.; Socias Salvá, A.; Monserrat, S.; Amores, A. 80th Anniversary of Pure and Applied Geophysics: A Bibliometric Overview. Pure Appl. Geophys. 2020, 177, 531–570. [Google Scholar] [CrossRef]
- Mikoš, M. Landslides: A top international journal in geological engineering and engineering geology? Landslides 2017, 14, 1827–1838. [Google Scholar] [CrossRef]
- Kirchik, O.; Gingras, Y.; Larivière, V. Changes in Publication Languages and Citation Practices and Their Effect on the Scientific Impact of Russian Science (1993–2010). J. Am. Soc. Inf. Sci. Technol. 2012, 63, 1411–1419. [Google Scholar] [CrossRef] [Green Version]
- Zupic, I.; Čater, T. Bibliometric Methods in Management and Organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Visualizing Bibliometric Networks. In Measuring Scholarly Impact; Springer: Cham, Switzerland, 2014; pp. 285–320. ISBN 9783319103778. [Google Scholar]
- Najmi, A.; Rashidi, T.H.; Abbasi, A.; Travis Waller, S. Reviewing the transport domain: An evolutionary bibliometrics and network analysis. Scientometr. 2017, 110, 843–865. [Google Scholar] [CrossRef]
- Shah, S.H.H.; Lei, S.; Ali, M.; Doronin, D.; Hussain, S.T. Prosumption: Bibliometric analysis using HistCite and VOSviewer. Kybernetes 2019, 49, 1020–1045. [Google Scholar] [CrossRef]
- Montalván-Burbano, N.; Pérez-Valls, M.; Plaza-Úbeda, J. Analysis of scientific production on organizational innovation. Cogent Bus. Manag. 2020, 7, 1745043. [Google Scholar] [CrossRef]
- Aznar-sánchez, J.A.; Velasco-muñoz, J.F.; Belmonte-ureña, L.J.; Manzano-agugliaro, F. The worldwide research trends on water ecosystem services. Ecol. Indic. 2019, 99, 310–323. [Google Scholar] [CrossRef]
- Li, J.; Jovanovic, A.; Klimek, P. Bibliometric analysis of fracking scientific literature. Scientometrics 2015, 105, 1273–1284. [Google Scholar] [CrossRef]
- Chandra, Y. Mapping the evolution of entrepreneurship as a field of research (1990–2013): A scientometric analysis. PLoS ONE 2018, 13, e0190228. [Google Scholar] [CrossRef]
- Mesdaghinia, A.; Younesian, M.; Nasseri, S.; Nodehi, R.N.; Hadi, M. Analysis of the microbial risk assessment studies from 1973 to 2015: A bibliometric case study. Scientometrics 2015, 105, 691–707. [Google Scholar] [CrossRef]
- Andreo-martínez, P.; Ortiz-martínez, V.M.; García-martínez, N.; Ríos, A.P.D.L.; Hernández-fernández, F.J.; Quesada-medina, J. Production of biodiesel under supercritical conditions_ State of the art and bibliometric analysis. Appl. Energy 2020, 264, 114753. [Google Scholar] [CrossRef]
- Hovland, M.; Hill, A.; Stokes, D. The structure and geomorphology of the Dashgil mud volcano, Azerbaijan. Geomorphology 1997, 21, 1–15. [Google Scholar] [CrossRef]
- Bailón-Moreno, R.; Jurado-Alameda, E.; Ruiz-Baños, R.; Courtial, J.P. Bibliometric laws: Empirical flaws of fit. Scientometrics 2005, 63, 209–229. [Google Scholar] [CrossRef] [Green Version]
- Chorowicz, J.; Lopez, E.; Garcia, F.; Parrot, J.F.; Rudant, J.P.; Vinluan, R. Keys to analyze active lahars from Pinatubo on SAR ERS imagery. Remote Sens. Environ. 1997, 62, 20–29. [Google Scholar] [CrossRef]
- De Natale, G.; Petrazzuoli, S.M.; Pingue, F. The effect of collapse structures on ground deformations in calderas. Geophys. Res. Lett. 1997, 24, 1555–1558. [Google Scholar] [CrossRef]
- Favalli, M.; Fornaciai, A.; Pareschi, M.T. LIDAR strip adjustment: Application to volcanic areas. Geomorphology 2009, 111, 123–135. [Google Scholar] [CrossRef]
- Hauber, E.; Bleacher, J.; Gwinner, K.; Williams, D.; Greeley, R. The topography and morphology of low shields and associated landforms of plains volcanism in the Tharsis region of Mars. J. Volcanol. Geotherm. Res. 2009, 185, 69–95. [Google Scholar] [CrossRef]
- Heet, T.L.; Arvidson, R.E.; Cull, S.C.; Mellon, M.T.; Seelos, K.D. Geomorphic and geologic settings of the Phoenix Lander mission landing site. J. Geophys. Res. Planets 2009, 114, 1–19. [Google Scholar] [CrossRef]
- Gavrilov, A.A. Circular geomorphologic and geological features in the Japanese islands. J. Volcanol. Seismol. 2012, 6, 15–30. [Google Scholar] [CrossRef]
- Pálfy, J.; Zajzon, N. Environmental changes across the Triassic-Jurassic boundary and coeval volcanism inferred from elemental geochemistry and mineralogy in the Kendlbachgraben section (Northern Calcareous Alps, Austria). Earth Planet. Sci. Lett. 2012, 335, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.J.; Manya, S.; Buisman, I.; Fontana, G.; Field, M.; Mac Niocaill, C.; Sparks, R.S.J.; Stuart, F.M. Eruption of kimberlite magmas: Physical volcanology, geomorphology and age of the youngest kimberlitic volcanoes known on earth (the Upper Pleistocene/Holocene Igwisi Hills volcanoes, Tanzania). Bull. Volcanol. 2012, 74, 1621–1643. [Google Scholar] [CrossRef] [Green Version]
- Németh, K.; Cronin, S.J. Volcanic structures and oral traditions of volcanism of Western Samoa (SW Pacific) and their implications for hazard education. J. Volcanol. Geotherm. Res. 2009, 186, 223–237. [Google Scholar] [CrossRef]
- Németh, K.; Goth, K.; Martin, U.; Csillag, G.; Suhr, P. Reconstructing paleoenvironment, eruption mechanism and paleomorphology of the Pliocene Pula maar, (Hungary). J. Volcanol. Geotherm. Res. 2008, 177, 441–456. [Google Scholar] [CrossRef]
- Németh, K.; Risso, C.; Nullo, F.; Smith, I.E.M.; Pécskay, Z. Facies architecture of an isolated long-lived, nested polygenetic silicic tuff ring erupted in a braided river system: The Los Loros volcano, Mendoza, Argentina. J. Volcanol. Geotherm. Res. 2012, 239, 33–48. [Google Scholar] [CrossRef]
- Lahitte, P.; Samper, A.; Quidelleur, X. DEM-based reconstruction of southern Basse-Terre volcanoes (Guadeloupe archipelago, FWI): Contribution to the Lesser Antilles Arc construction rates and magma production. Geomorphology 2012, 136, 148–164. [Google Scholar] [CrossRef]
- Peng, H.L.; Wang, G.-F.; Wan, Y.; Liu, J.; Liu, Q.; Ma, F. Bibliometric trend analysis on global graphene research. Scientometrics 2011, 88, 399–419. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.L.; Liu, D.; Ji, J.; Chu, M.F.; Lee, H.Y.; Wen, D.J.; Lo, C.H.; Lee, T.Y.; Qian, Q.; Zhang, Q. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology 2003, 31, 1021–1024. [Google Scholar] [CrossRef] [Green Version]
- Carr, M.H.; Head III, J.W. Geologic history of Mars. Earth Planet. Sci. Lett. 2010, 294, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Burr, D.M.; Grier, J.A.; McEwen, A.S.; Keszthelyi, L.P. Repeated aqueous flooding from the cerberus fossae: Evidence for very recently extant, deep groundwater on Mars. Icarus 2002, 159, 53–73. [Google Scholar] [CrossRef] [Green Version]
- Heiken, G. Morphology and petrography of volcanic ashes. Geol. Soc. Am. Bull. 1972, 83, 1961–1988. [Google Scholar] [CrossRef]
- Gattacceca, J.; Deino, A.; Rizzo, R.; Jones, D.S.; Henry, B.; Beaudoin, B.; Vadeboin, F. Miocene rotation of Sardinia: New paleomagnetic and geochronological constraints and geodynamic implications. Earth Planet. Sci. Lett. 2007, 258, 359–377. [Google Scholar] [CrossRef]
- Gulick, V.C.; Baker, V.R. Origin and evolution of valleys on Martian volcanoes. J. Geophys. Res. Solid Earth 1990, 95, 14325–14344. [Google Scholar] [CrossRef]
- Thomas, R.J.; Chevallier, L.P.; Gresse, P.G.; Harmer, R.E.; Eglington, B.M.; Armstrong, R.A.; De Beer, C.H.; Martini, J.E.J.; De Kock, G.S.; Macey, P.H.; et al. Precambrian evolution of the Sirwa Window, Anti-Atlas Orogen, Morocco. Precambrian Res. 2002, 118, 1–57. [Google Scholar] [CrossRef]
- Pyle, D.M.; Ricketts, G.D.; Margari, V.; van Andel, T.H.; Sinitsyn, A.A.; Praslov, N.D.; Lisitsyn, S. Wide dispersal and deposition of distal tephra during the Pleistocene ‘Campanian Ignimbrite/Y5′ eruption, Italy. Quat. Sci. Rev. 2006, 25, 2713–2728. [Google Scholar] [CrossRef]
- Manville, V.; Németh, K.; Kano, K. Source to sink: A review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. Sediment. Geol. 2009, 220, 136–161. [Google Scholar] [CrossRef]
- Major, J.J.; Pierson, T.C.; Dinehart, R.L.; Costa, J.E. Sediment yield following severe volcanic disturbance - A two-decade perspective from Mount St. Helens. Geology 2000, 28, 819–822. [Google Scholar] [CrossRef]
- Ablay, G.J.; Martí, J. Stratigraphy, structure, and volcanic evolution of the Pico Teidi–Pico Viejo formation, Tenerife, Canary Islands. J. Volcanol. Geotherm. Res. 2000, 103, 175–208. [Google Scholar] [CrossRef]
- Kurz, M.D.; Colodner, D.; Trull, T.W.; Moore, R.B.; O’Brien, K. Cosmic ray exposure dating with in situ produced cosmogenic 3He: Results from young Hawaiian lava flows. Earth Planet. Sci. Lett. 1990, 97, 177–189. [Google Scholar] [CrossRef]
- Thouret, J.C. Volcanic geomorphology—an overview. Earth Sci. Rev. 1999, 47, 95–131. [Google Scholar] [CrossRef]
- Gulick, V.C. Origin of the valley networks on Mars: A hydrological perspective. Geomorphology 2001, 37, 241–268. [Google Scholar] [CrossRef] [Green Version]
- Khan, G.F.; Wood, J. Information technology management domain: Emerging themes and keyword analysis. Scientometrics 2015, 105, 959–972. [Google Scholar] [CrossRef]
- Baier-fuentes, H.; Merigó, J.M.; Amorós, J.E.; Gaviria-marín, M. International entrepreneurship: A bibliometric overview. Int. Entrep. Manag. J. 2019, 15, 385–429. [Google Scholar] [CrossRef]
- Branca, S. Geological and geomorphological evolution of the Etna volcano NE flank and relationships between lava flow invasions and erosional processes in the Alcantara Valley (Italy). Geomorphology 2003, 53, 247–261. [Google Scholar] [CrossRef]
- Zhao, Y.W.; Li, N.; Fan, Q.C.; Zou, H.; Xu, Y.G. Two episodes of volcanism in the Wudalianchi volcanic belt, NE China: Evidence for tectonic controls on volcanic activities. J. Volcanol. Geotherm. Res. 2014, 285, 170–179. [Google Scholar] [CrossRef]
- Huang, X.; Cao, Y.; Li, J. An automatic change detection method for monitoring newly constructed building areas using time-series multi-view high-resolution optical satellite images. Remote Sens. Environ. 2020, 244, 111802. [Google Scholar] [CrossRef]
- Kern, C.; Masias, P.; Apaza, F.; Reath, K.A.; Platt, U. Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy. J. Geophys. Res. Solid Earth 2017, 122, 3540–3564. [Google Scholar] [CrossRef]
- Valentine, G.A.; Perry, F.V.; Krier, D.; Keating, G.N.; Kelley, R.E.; Cogbill, A.H. Small-volume basaltic volcanoes: Eruptive products and processes, and posteruptive geomorphic evolution in Crater Flat (Pleistocene), southern Nevada. Geol. Soc. Am. Bull. 2006, 118, 1313–1330. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, G.B.M.; Grosse, P. Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: Effects of eruption environment. J. Volcanol. Geotherm. Res. 2014, 282, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Vilardo, G.; Ventura, G.; Bellucci Sessa, E.; Terranova, C. Morphometry of the Campi Flegrei caldera (Southern Italy). J. Maps 2013, 9, 635–640. [Google Scholar] [CrossRef]
- Bilotta, E.; Cascini, L.; Foresta, V.; Sorbino, G. Geotechnical characterisation of pyroclastic soils involved in huge flowslides. Geotech. Geol. Eng. 2005, 23, 365–402. [Google Scholar] [CrossRef]
- Tanarro, L.M.; Andrés, N.; Zamorano, J.J.; Palacios, D.; Renschler, C.S. Geomorphological evolution of a fluvial channel after primary lahar deposition: Huiloac Gorge, Popocatépetl volcano (Mexico). Geomorphology 2010, 122, 178–190. [Google Scholar] [CrossRef]
- Komatsu, G.; Gabriele, G.; Cardinale, M.; Dohm, J.M.; Baker, V.R.; Vaz, D.A.; Ishimaru, R.; Namiki, N.; Matsui, T. Roles of methane and carbon dioxide in geological processes on Mars. Planet. Space Sci. 2011, 59, 169–181. [Google Scholar] [CrossRef]
- Cascini, L.; Cuomo, S.; Guida, D. Typical source areas of May 1998 flow-like mass movements in the Campania region, Southern Italy. Eng. Geol. 2008, 96, 107–125. [Google Scholar] [CrossRef]
- Zhao, J.; Xiao, L.; Qiao, L.; Glotch, T.D.; Huang, Q. The Mons Rümker volcanic complex of the Moon: A candidate landing site for the Chang’E-5 mission. J. Geophys. Res. Planets 2017, 122, 1419–1442. [Google Scholar] [CrossRef]
- Ferreira, F.A.F. Mapping the fi eld of arts-based management: Bibliographic coupling and co-citation analyses. J. Bus. Res. 2018, 85, 348–357. [Google Scholar] [CrossRef]
- Dong, D.; Chen, M.L. Publication trends and co-citation mapping of translation studies between 2000 and 2015. Scientometrics 2015, 105, 1111–1128. [Google Scholar] [CrossRef]
AU | AT | AF | CO | CI | HI |
---|---|---|---|---|---|
Németh K. | 13 | Massey University | New Zealand | 125 | 3.4 |
Lahitte P. | 9 | Geoscience Paris Sud | France | 24 | 13 |
Karátson D. | 8 | Eötvös Loránd University | Hungary | 65 | 17 |
Favalli M. | 7 | Istituto Nazionale di Geofisica e Vulcanologia. | Italy | 114 | 27 |
Quidelleur X. | 7 | Geoscience Paris Sud | France | 99 | 6 |
Chiocci F. | 6 | Università degli Studi di Roma La Sapienza | Italy | 40 | 26 |
Gomez C. | 6 | University of Canterbury | New Zealand | 15 | 1 |
Bosman A. | 5 | Istituto Di Geologia Ambientale E Geoingegneria | Italy | 24 | 16 |
Fornaciai A. | 5 | Istituto Nazionale di Geofisica e Vulcanologia | Italy | 57 | 18 |
Martí J. | 5 | Institute of Earth Sciences’ J | Spain | 181 | 43 |
Melekestsev I. | 5 | Institute of Volcanology and Seismology | Russia | 59 | 20 |
Palacios D. | 5 | Complutense University of Madrid | Spain | 10 | 2.3 |
Acosta J. | 4 | Spanish Institute of Oceanography | Spain | 93 | 21 |
Baker V.R. | 4 | The University of Arizona | United States | 31 | 58 |
Carracedo J.C. | 4 | University of Las Palmas de Gran Canaria | Spain | 11 | 31 |
AU | TI | CI |
---|---|---|
Massonnet,1998 [70] | Radar interferometry and its application to changes in the earth’s surface | 1608 |
Chung, 2003 [71] | Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet | 766 |
Carr and III, 2010 [72] | Geologic history of Mars | 305 |
Burr and Grier, 2002 [73] | Repeated aqueous flooding from the cerberus fossae: Evidence for very recently extant, deep groundwater on Mars | 185 |
Heiken and Khan, 1988 [74] | Morphology and petrography of volcanic ashes | 182 |
Gattacceca, 2007 [75] | Miocene rotation of Sardinia: New paleomagnetic and geochronological constraints and geodynamic implications | 182 |
Gulick, 1990 [76] | Origin and evolution of valleys on Martian volcanoes | 160 |
Thomas, 2002 [77] | Precambrian evolution of the Sirwa Window, Anti-Atlas Orogen, Morocco | 144 |
Pyle, 2006 [78] | Wide dispersal and deposition of distal tephra during the Pleistocene “Campanian Ignimbrite/Y5”eruption, Italy | 144 |
Manville, 2009 [79] | Source to sink: A review of three decades of progress in the understanding of volcanoclastic processes, deposits, and hazards | 142 |
Major, 2000 [80] | Sediment yield following severe volcanic disturbance - A two-decade perspective from Mount St. Helens | 138 |
Ablay and Martí, 2000 [81] | Stratigraphy, structure, and volcanic evolution of the Pico Teidi-Pico Viejo formation, Tenerife, Canary Islands | 129 |
Kurz, 1990 [82] Thouret, 1999 [83] | Cosmic ray exposure dating with in situ produced cosmogenic 3He: results from young Hawaiian lava flows | 129 |
Gulick, 2001 [84] | Volcanic geomorphology-an overview Origin of the valley networks on Mars: A hydrological perspective | 128 124 |
Rank | Country | Number of Articles | Citations |
---|---|---|---|
1 | United States | 217 | 6411 |
2 | Italy | 115 | 2895 |
3 | France | 77 | 3556 |
4 | United kingdom | 77 | 1927 |
5 | Germany | 61 | 1282 |
6 | Spain | 49 | 1046 |
7 | New Zealand | 43 | 1139 |
8 | Australia | 38 | 944 |
9 | Japan | 33 | 694 |
10 | Mexico | 30 | 544 |
11 | Canada | 26 | 659 |
12 | China | 21 | 1072 |
13 | Russian Federation | 21 | 455 |
14 | Hungary | 19 | 487 |
15 | Switzerland | 17 | 330 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrión-Mero, P.; Montalván-Burbano, N.; Paz-Salas, N.; Morante-Carballo, F. Volcanic Geomorphology: A Review of Worldwide Research. Geosciences 2020, 10, 347. https://doi.org/10.3390/geosciences10090347
Carrión-Mero P, Montalván-Burbano N, Paz-Salas N, Morante-Carballo F. Volcanic Geomorphology: A Review of Worldwide Research. Geosciences. 2020; 10(9):347. https://doi.org/10.3390/geosciences10090347
Chicago/Turabian StyleCarrión-Mero, Paúl, Néstor Montalván-Burbano, Nataly Paz-Salas, and Fernando Morante-Carballo. 2020. "Volcanic Geomorphology: A Review of Worldwide Research" Geosciences 10, no. 9: 347. https://doi.org/10.3390/geosciences10090347
APA StyleCarrión-Mero, P., Montalván-Burbano, N., Paz-Salas, N., & Morante-Carballo, F. (2020). Volcanic Geomorphology: A Review of Worldwide Research. Geosciences, 10(9), 347. https://doi.org/10.3390/geosciences10090347