Seismically Induced Soil Liquefaction and Geological Conditions in the City of Jama due to the M7.8 Pedernales Earthquake in 2016, NW Ecuador
Abstract
:1. Introduction
2. Geodynamic Setting and Description of the Study Area
3. Data and Analytical Procedures
3.1. Geomorphological Conditions and Earthquake-Induced Environmental Effects
3.2. Geological and Geophysical Characterization of the Subsoil
3.3. Geotechnical Soil Characterization and Liquefaction Susceptibility
4. Results and Discussion
4.1. Evaluation of the Liquefaction Potential
4.2. Liquefaction Potential Mapping
4.3. Site Response Analysis
4.4. Selection of Earthquakes with Compressive Tectonic Settings
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data and Resources
References
- Swenson, J.L.; Beck, S.L. Historical 1942 Ecuador and 1942 Peru subduction earthquakes and earthquake cycles along Colombia-Ecuador and Peru subduction segments. Pure Appl. Geophys. 1996, 146, 67–101. [Google Scholar] [CrossRef]
- Obermeier, S.F. Use of Liquefaction-Induced Features for Paleo Seismic Analysis—An Overview of How Seismic Liquefaction Features Can Be Distinguished from Other Features and How Their Origin Can Be Used to Infer the Location and Strength of Holocene Paleo-Earthquakes. Eng. Geol. 1996, 44, 1–76. [Google Scholar] [CrossRef]
- Egred, J. Catálogo de Terremotos del Ecuador 1541–2009; Internal Report; Escuela Politecnica Nacional, Instituto Geofisico: Quito, Ecuador, 2009. [Google Scholar]
- Toulkeridis, T. Unexpected results of a seismic hazard evaluation applied to a modern hydroelectric plant in central Ecuador. J. Struct. Eng. 2016, 43, 373–380. [Google Scholar]
- Aguiar, R.; Mieles Bravo, Y. Análisis de los edificios que colapsaron en Portoviejo durante el terremoto del 16 de abril de 2016. Rev. Int. Ing. Estruct. 2016, 21, 257–282. [Google Scholar]
- Chunga, K.; Toulkeridis, T.; Vera-Grunauer, X.; Gutierrez, M.; Cahuana, N.; Alvarez, A. A review of earthquakes and tsunami records and characterization of capable faults on the northwestern coast of Ecuador. J. Sci. Tsunami Hazards 2017, 36, 100–127. [Google Scholar]
- Moncayo Theurer, M.; Velasco, G.; Mora Carlos Montenegro, M.; Cordova, J. Terremotos Mayores a 6.5 en Escala Richter Ocurridos en Ecuador Desde 1900 Hasta 1970. Ingeniería, 21. 2017. Available online: http://www.redalyc.org/articulo.oa?id=46753192005> (accessed on 1 October 2020).
- Navas, L.; Caiza, P.; Toulkeridis, T. An evaluated comparison between the molecule and steel framing construction systems—Implications for the seismic vulnerable Ecuador. Malays. Constr. Res. J. 2018, 26, 87–109. [Google Scholar]
- Cando-Jácome, M.; Martínez-Graña, A. Differential interferometry, structural lineaments and terrain deformation analysis applied in Zero Zone 2016 Earthquake (Manta, Ecuador). Environ. Earth Sci. 2019, 78, 499. [Google Scholar] [CrossRef]
- Serva, L. History of the Environmental Seismic Intensity Scale ESI-07. Geosciences 2019, 9, 210. [Google Scholar] [CrossRef] [Green Version]
- Vera-Grunauer, X.; Lopez-Zhindon, S.; Ordoñez-Rendon, J.; Chavez-Abril, M.A. Liquefaction case histories after the 2016 megathrust Pedernales earthquake in Ecuador. In Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions; Silvestri, F., Moraci, N., Eds.; Associazione Geotecnica Italiana: Rome, Italy, 2019; ISBN 978-0-367-14328-2. [Google Scholar]
- Giesecke, A.; Capera, A.G.; Leschiutta, I.; Migliorini, E.; Valverde, L.R. The CERESIS earthquake catalogue and database of the Andean Region: Background, characteristics and examples of use. Ann. Geophys. 2004, 47, 2–3. [Google Scholar]
- Michetti, A.M.; Esposito, E.; Guerrieri, L.; Porfido, S.; Serva, L.; Tatevossian, R.; Vittori, E.; Audemard, F.; Azuma, T.; Clague, J.; et al. Environmental Seismic Intensity Scale 2007—ESI 2007, Memorie Descrittive della Carta Geologica d’Italia; Servizio Geologico d’Italia—Dipartimento Difesa del Suolo, APAT: Rome, Italy, 2007; Volume 74, pp. 7–54. Available online: http://www.isprambiente.gov.it/en/publications/technical-periodicals/descriptive-memories-of-the-geological-map-of/intensity-scale-esi-2007?set_language=en (accessed on 1 August 2020).
- Berzhinskii, Y.A.; Ordynskaya, A.P.; Gladkov, A.S.; Lunina, O.V.; Berzhinskaya, L.P.; Radziminovich, N.A.; Radziminovich, Y.B.; Imayev, V.S.; Chipizubov, A.V.; Smekalin, O.P. Application of the ESI-2007 scale for estimating the intensity of the Kultuk earthquake, August 27, 2008 (south Baikal). Seism. Instrum. 2010, 46, 307–324. [Google Scholar] [CrossRef]
- Kelson, K.; Witter, R.C.; Tassara, A.; Ryder, I.; Ledezma, C.; Montalva, G.; Frost, D.; Sitar, N.; Moss, R.; Johnson, L. Coseismic tectonic surface deformation during the 2010 Maule, Chile, M 8.8 earthquake. Earthq. Spectra 2012, 28, S39–S54. [Google Scholar] [CrossRef]
- Wartman, J.; Dunham, L.; Tiwari, B.; Pradel, D. Landslides in Eastern Honshu induced by the 2011 off the Pacific Coast of Tohoku earthquake. Bull. Seismol. Soc. Am. 2013, 103, 1503–1521. [Google Scholar] [CrossRef]
- Serva, L.; Vittori, E.; Comerci, V.; Esposito, E.; Guerrieri, L.; Michetti, A.M.; Mohammadioun, B.; Mohammadioun, G.C.; Porfido, S.; Tatevossian, R.E. Earthquake Hazard and the Environmental Seismic Intensity (ESI) Scale. Pure Appl. Geophys. 2016, 173, 1479–1515. [Google Scholar] [CrossRef]
- Chunga, K.; Livio, F.; Mulas, M.; Ochoa-Cornejo Besenzon, D.; Ferrario, M.; Michetti, A.M. Earthquake ground effects and intensity of the 16 April 2016, Mw 7.8 Pedernales Earthquake (Ecuador): Implications for the source characterization of large subduction earthquakes. Bull. Seismol. Soc. Am. 2018, 108, 3384–3397. [Google Scholar] [CrossRef]
- Xu, C.; Ma, S.; Tan, Z.; Chao Xie, I.; Shinji, T.; Xueqiang, H. Landslides triggered by the 2016 Mj 7.3 Kumamoto, Japan, earthquake. Landslides 2018, 15, 551. [Google Scholar] [CrossRef]
- Mato, F.; Toulkeridis, T. An unsupervised K-means based clustering method for geophysical post-earthquake diagnosis. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017; pp. 1–8. [Google Scholar]
- Serey, A.; Piñero-Feliciangeli, L.; Sepúlveda, S.A.; Iveda, F.; Poblete, D.; Petley, I.; Murphy, W. Landslides induced by the 2010 Chile megathrust earthquake: A comprehensive inventory and correlations with geological and seismic factors. Landslides 2019, 16, 1153. [Google Scholar] [CrossRef]
- Dakshanamurthy, V. A simple method of identifying an expansive soil. Soils Found 1973, 13, 97–104. [Google Scholar] [CrossRef] [Green Version]
- CDMG. Guidelines for Analyzing and Mitigating Liquefaction Hazards; California Department Conservation, Division of Mines, Special Publication: Canonsburg, PA, USA, 1999; Volume 117, p. 63. [Google Scholar]
- Sana, H.; Nath, S.K. Liquefaction potential analysis of the Kashmir valley alluvium, NW Himalaya. Soil Dyn. Earthq. Eng. 2016, 85, 11–18. [Google Scholar] [CrossRef]
- Bahadori, H.; Hasheminezhad, A.; Karimi, A. Development of an integrated model for seismic vulnerability assessment of residential buildings: Application to Mahabad City, Iran. J. Build. Eng. 2017, 12, 118–131. [Google Scholar] [CrossRef]
- Cando-Jácome, M.; Martínez-Graña, A.; Chunga, K.; Ortíz-Hernández, E. Satellite radar interferometry for assessing coseismic liquefaction in Portoviejo city, induced by the M 7.8 2016 Pedernales, Ecuador Earthquake. Environ. Earth Sci. 2020, 79, 467. [Google Scholar] [CrossRef]
- Hazen, A. Hydraulic-fill dams. Trans. Am. Soc. Civ. Eng. 1919, 83, 1713–1745. [Google Scholar]
- Seed, H.B.; Idriss, I.M. Simplified procedure for evaluating soil liquefaction potential. J. Soil Mech. Found Div. ASCE 1971, 97, 1249–1273. [Google Scholar]
- Wang, W. Some Findings in Soil Liquefaction; Water Conservancy and Hydro-Electric Power Scientific Research Institute: Beijing, China, 1979; pp. 1–17. [Google Scholar]
- Seed, H.B.; Tokimatsu, K.; Harder, L.F.; Chung, R.M. The influence of SPT procedures in soil liquefaction resistance evaluations. J. Geotech. Eng. Div. ASCE 1985, 111, 1425–1445. [Google Scholar] [CrossRef]
- Wakamatsu, K. Evaluation of liquefaction susceptibility based on detailed geomorphological classification. In Proceedings of the Annual Meeting of Architectural Institute of Japan, Tokyo, Japan, 12–13 December 1992; pp. 1443–1444. (In Japanese). [Google Scholar]
- Bray, J.D.; Luque, R. Seismic performance of a building affected by moderate liquefaction during the Christchurch earthquake. Soil Dyn. Earthq. Eng. 2017, 102, 99–111. [Google Scholar] [CrossRef]
- Mendoza, C.; Dewey, J.W. Seismicity associated with the great Colombia–Ecuador earthquakes of 1942, 1958, and 1979: Implications for barrier models of earthquake rupture. Bull. Seismol. Soc. Am. 1984, 74, 577–593. [Google Scholar]
- Ye, L.; Kanamori, H.; Avouac, J.P.; Li, L.; Cheung, K.F.; Lay, T. The 16 April 2016, M 7.8 (Ms 7.5) Ecuador earthquake: A quasi-repeat of the 1942 M S 7.5 earthquake and partial re-rupture of the 1906 Ms 8.6 Colombia–Ecuador earthquake. Earth Planet. Sci. Lett. 2016, 454, 248–258. [Google Scholar]
- Chunga, K.; Livio, F.A.; Martillo, C.; Lara-Saavedra, H.; Ferrario, M.F.; Zevallos, I.; Michetti, A.M. Landslides Triggered by the 2016 M 7.8 Pedernales, Ecuador Earthquake: Correlations with ESI-07 Intensity, Lithology, Slope and PGA-h. Geosciences 2019, 9, 371. [Google Scholar] [CrossRef] [Green Version]
- Salocchi, A.C.; Minarelli, L.; Lugli, S.; Amoroso, S.; Rollins, K.M.; Fontana, D. Liquefaction source layer for sand blows induced by the 2016 megathrust earthquake (M 7.8) in Ecuador (Boca de Briceño). J. S. Am. Earth Sci. 2020, 103. [Google Scholar] [CrossRef]
- Youd, T.L.; Perkins, D.H. Mapping liquefaction-induced ground failure potential. J. Geotech. Eng. Div. ASCE 1978, 104, 433–446. [Google Scholar]
- Lombardi, D.; Bhattacharya, S. Liquefaction of soil in the Emilia-Romagna region after the 2012 Northern Italy earthquake sequence. Nat. Hazards 2014, 73, 1749–1770. [Google Scholar] [CrossRef]
- Bahadori, H.; Hasheminezhad, A. Standard Penetration Test-Based Assessment of Seismic Soil Liquefaction Potential of Urmia, Iran. 2016. Available online: https://www.issmge.org/uploads/publications/25/26/ISC5_078.pdf (accessed on 1 June 2020).
- Bourenane, H.; Bouhadad, Y.; Tas, M. Liquefaction hazard mapping in the city of Boumerdès, Northern Algeria. Bull. Eng. Geol. Environ. 2018, 77, 1473–1489. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.J.; Juang, C.H. Calibration of SPT-and CPT-based liquefaction evaluation methods. In Innovation sand Application Sin Geotechnical Site Characterization; Mayne, P.W., Hryciw, R., Eds.; Geotechnical Special Publication: Reston, VA, USA, 2000; Volume 97, pp. 49–64. [Google Scholar]
- Juang, C.H.; Chen, C.J.; Jiang, T.; Andrus, R.D. Risk-based liquefaction potential evaluation using standard penetration tests. Can. Geotech. J. 2000, 37, 1195–1208. [Google Scholar] [CrossRef]
- Goharzay, M.; Noorzad, A.; Ahmadreza Mahboubi, A.; Mostafa, J. A worldwide SPT-based soil liquefaction triggering analysis utilizing gene expression programming and Bayesian probabilistic method. J. Rock Mech. Geotech. Eng. 2017, 9, 683–693. [Google Scholar] [CrossRef]
- Hashash, Y.M.A.; Musgrove, M.I.; Harmon, J.A.; Groholski, D.R.; Phillips, C.A.; Park, D. DEEPSOIL 6.1, User Manual; Board of Trustees of University of Illinois at Urbana-Champaign: Urbana, IL, USA, 2016. [Google Scholar]
- Lai, C.G.; Bozzoni, F.; Conca, D.; Famà, A.; Özcebe, A.; Zuccolo, E.; Meisina, C.; Bonì, R.; Bordoni, M.; Cosentini, R.M.; et al. Technical guidelines for the assessment of earthquake induced liquefaction hazard at urban scale. Bull. Earthq. Eng. 2020. [Google Scholar] [CrossRef]
- NEC-11. Norma Ecuatoriana de la Construcción. Registro Oficial No. 413 del 10 de Enero de 2015. Available online: http://www.normaconstruccion.ec/ (accessed on 11 August 2020).
- Chunga, K. Shallow Crustal Earthquakes and Seismic Zonation for Ecuador through the Integration of Geological, Seismological and Morphostructural Data. Ph.D. Thesis, University of Insubria, Varese, Italy, 2010; p. 165. (In Italian). [Google Scholar]
- Béjar-Pizarro, M.; Álvarez, G.J.; Staller, A.; Luna, M.; Pérez-López, R.; Monserrat, O.; Chunga, K. InSAR-Based Mapping to Support Decision-Making after an Earthquake. Remote Sens. 2018, 10, 899. [Google Scholar] [CrossRef] [Green Version]
- Pennington, W.D. Subduction of the eastern Panama Basin and seismotectonics of northwestern South America. J. Geophys. Res. B Solid Earth Planets 1981, 86, 10753–10770. [Google Scholar] [CrossRef]
- Hey, R. Tectonic evolution of the Cocos-Nazca spreading center. Geol. Soc. Am. Bull. 1977, 88, i–vi. [Google Scholar] [CrossRef]
- Gutscher, M.A.; Malavieille, J.S.L.; Collot, J.-Y. Tectonic segmentation of the North Andean margin: Impact of the Carnegie ridge collision. Earth Planet. Sci. Lett. 1999, 168, 255–270. [Google Scholar] [CrossRef]
- Aguiar, R.; Castro, C.; Garzón, C.; Yanchatuña, W.; Cumbal, L.; la Fave, J. Magnitud máxima en zonas fuentes para estudios de peligrosidad sísmica del Ecuador. Rev. Cienc. ESPE Univ. Fuerzas Armadas 2009, 12, 109–121. [Google Scholar]
- Veloza, G.; Styron, R.; Taylor, M.; Mora, A. Open-source archive of active faults for northwest South America. GSA Today 2012, 22, 4–10. [Google Scholar]
- White, S.M.; Trenkamp, R.; Kellogg, J.N. Recent crustal deformation and the earthquake cycle along the Ecuador–Colombia subduction zone. Earth Planet. Sci. Lett. 2003, 216, 231–242. [Google Scholar] [CrossRef]
- Chlieh, M.; Mothes, P.A.; Nocquet, J.-M.; Jarrin, P.; Charvis, P.; Cisneros, D.; Font, Y.; Collot, J.-Y.; Villegas-Lanza, J.-C.; Rolandone, F.; et al. Distribution of discrete seismic asperities and aseismic slip along the Ecuadorian megathrust. Earth Planet. Sci. Lett. 2014, 400, 292–301. [Google Scholar] [CrossRef]
- Nocquet, J.M.; Jarrin, P.; Vallée, M.; Mothes, P.A.; Grandin, R.; Rolandone, F.; Delouis, B.; Yepes, H.; Font, Y.; Fuentes, D.; et al. Supercycle at the Ecuadorian subduction zone revealed after the 2016 Pedernales earthquake. Nat. Geosci. 2016, 10, 145–149. [Google Scholar] [CrossRef]
- IOC Intergovernmental Oceanographic Commission. Tsunami Sources, Hazards, Risk and Uncertainties Associated with the Colombia-Ecuador Subduction Zone. Guayaquil, Ecuador, 27–29 January; UNESCO: Paris, France, 2020. [Google Scholar]
- Toulkeridis, T.; Chunga, K.; Rentería, W.; Rodriguez, F.; Mato, F.; Nikolaou, S.; Cruz D’Howitt, M.; Besenzon, D.; Ruiz, H.; Parra, H.; et al. The 7.8 M Earthquake and Tsunami of the 16th April 2016 in Ecuador—Seismic evaluation, geological field survey and economic implications. Sci. Tsunami Hazards 2017, 36, 197–242. [Google Scholar]
- Kanamori, H.; McNally, K. Variable rupture mode of the suduction zone along the Ecuador-Colombia coast. Bull. Seismol. Soc. Am. 1982, 72, 1241–1253. [Google Scholar]
- Yoshimoto, M.; Kumagai, H.; Acero, W.; Ponce, G.; Vasconez, F.; Arrais, S.; Ruiz, M.; Alvarado, A.; Pedraza Garcia, P.; Dionicio, V.; et al. Depth dependent rupture mode along the Ecuador-Colombia subduction zone. Geophys. Res. Lett. 2017, 44, 2203–2210. [Google Scholar] [CrossRef]
- Pulido, N.; Yoshimoto, M.; Sarabia, A.M. Broadband wavelength slip model of the 1906 Ecuador-Colombia megathrust-earthquake based on seismic intensity and tsunami data. Tectonophysics 2020, 774. [Google Scholar] [CrossRef]
- Michaud François Witt, C.; Royer, J.Y. Influence of the subduction of the Carnegie volcanic ridge on Ecuadorian geology: Reality and fiction. In Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision; Mahlburg Kay, S., Ramos, V., Dickinson, W., Eds.; The Geological Society of America: Boulder, CO, USA, 2009; pp. 217–228. ISBN 978-0-8137-1204-8. [Google Scholar]
- Blanco-Chao, R.; Pedoja, K.; Witt, C.; Martinod, J.; Husson, L.; Regard, V.; Audin, L.; Nexer, M.; Delcaillau, C.B.; Saillard, M.; et al. Chapter 10 The Rock Coast of South and Central America; Geological Society: London, UK, 2014; Volume 40, pp. 155–191. [Google Scholar] [CrossRef]
- Pedoja, K.; Dumont, J.F.; Lamothe, M.; Ortlieb, L.; Collot, J.-Y.; Ghaleb, B.; Auclair, M.; Alvarez, V.; Labrousse, B. Plio-Quaternary uplift of the Manta Peninsula and La Plata Island and the subduction of the Carnegie Ridge, central coast of Ecuador. J. S. Am. Earth Sci. 2006, 22, 1–21. [Google Scholar] [CrossRef]
- Graindorge, D.; Calahorrano, A.; Charvis, P.; Collot, J.Y.; Bethoux, N. Deep structures of the Ecuador convergent margin and the Carnegie Ridge, possible consequence on great earthquakes recurrence interval. Geophys. Res. Lett. 2004, 31, L04603. [Google Scholar] [CrossRef]
- Font, Y.; Segovia, M.; Vaca, S.; Theunissen, T. Seismicity patterns along the Ecuadorian subduction zone: New constraints from earthquake location in a 3-D a priori velocity model. Geophys. J. Int. 2013, 193, 263–286. [Google Scholar] [CrossRef] [Green Version]
- Nocquet, J.M.; Villegas-Lanza, J.C.; Chlieh, M.; Mothes, P.A.; Rolandone, F.; Jarrin, P.; Cisneros, D.; Alvarado, A.; Audin, L.; Bondoux, F.; et al. Motion of continental slivers and creeping subduction in the northern Andes. Nat. Geosci. 2014, 7, 287–291. [Google Scholar] [CrossRef]
- Alvarado, A.; Audin, L.; Nocquet, J.M.; Jaillard, E.; Mothes, P.; Jarrín, P.; Segovia, M.; Rolandone, F.; Cisneros, D. Partitioning of oblique convergence in the Northern Andes subduction zone: Migration history and the present-day boundary of the North Andean Sliver in Ecuador. Tectonics 2016, 35, 1048–1065. [Google Scholar] [CrossRef] [Green Version]
- Marcaillou, B.; Collot, J.Y.; Ribodetti, A.; d’Acremont, E.; Mahamat, A.A.; Alvarado, A. Seamount subduction at the North-Ecuadorian convergent margin: Effects on structures, inter-seismic coupling and seismogenesis. Earth Planet. Sci. Lett. 2016, 433, 146–158. [Google Scholar] [CrossRef]
- Collot, J.Y.; Sanclemente, E.; Nocquet, J.M.; Leprêtre, A.; Ribodetti, A.; Jarrin, P.; Chlieh, M.; Graindorges, D.; Charvis, P. Subducted oceanic relief locks the shallow megathrust in central Ecuador. J. Geophys. Res. B Solid Earth Planets 2017, 122, 3286–3305. [Google Scholar] [CrossRef]
- IGEPN. Instituto Geofísico Escuela Politécnica Nacional. Quito. Available online: http://www.igepn.edu.ec/solicitud-de-datos (accessed on 20 May 2020).
- Beauvalet, C.; Marinière, J.; Yepes, H.; Audin, L.; Nocquet, J.M.; Alvarado, A.; Baize, S.; Aguilar, J.; Singaucho, J.C.; Jomard, H.A. New Seismic Hazard Model for Ecuador. Bull. Seismol. Soc. Am. 2018, 108, 1443–1464. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmith, K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar]
- Wesnousky. Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture. Bull. Seismol. Soc. Am. 2008, 98, 1609–1632. [Google Scholar] [CrossRef]
- Stirling, M.; Goded, T.; Berryman, K.; Litchfield, N. Selection of earthquake scaling relationships for seismic-hazard analysis. Bull. Seismol. Soc. Am. 2013, 103, 2993–3011. [Google Scholar] [CrossRef]
- INEC. Base de Datos—Censo de Población y Vivienda del Ecuador. 2010. Available online: http://www.ecuadorencifras.gob.ec/base-de-datos-censo-de-poblacion-y-vivienda/ (accessed on 1 July 2020).
- Chunga, K. Reconocimiento Geológico de la Ciudad de JAMA. Microzonificación Sísmica de Ciudades Prioritarias de la Costa Ecuatoriana de Conformidad con los Requisitos de la Norma Ecuatoriana de la Construcción NEC; Proyecto BID # EC-T1354. Reporte técnico 34 pág; Universidad de los Andes: Bogotá, Colombia, 2019. [Google Scholar]
- Daza, J.; Trstancho, J.; Caicedo, B. Caracterización Geotécnica y Geofísica de la Ciudad de JAMA. Microzonificación Sísmica de Ciudades Prioritarias de la Costa Ecuatoriana de Conformidad con los Requisitos de la Norma Ecuatoriana de la Construcción NEC; Proyecto BID # EC-T1354. Reporte técnico 94 pág; Universidad de los Andes: Bogotá, Colombia, 2019. [Google Scholar]
- Santibáñez, I.; Cembrano, J.; García-Pérez, T.; Costa, C.; Yáñez, G.; Marquardt, C.; Arancibia, G.; González, G. Crustal faults in the Chilean Andes: Geological constraints and seismic potential. Andean Geol. 2019, 46, 32–65. [Google Scholar] [CrossRef]
- Leonard, M. Earthquake fault scaling: Self consistent relating of rupture length width, average displacement, and moment release. Bull. Seismol. Soc. Am. 2010, 100, 1971–1988. [Google Scholar] [CrossRef]
- Fukushima, Y.; Tanaka, T. A New Attenuation Relation for Peak Horizontal Acceleration of Strong Earthquake Ground Motion in Japan. Bull. Seismol. Soc. Am. 1990, 80, 757–783. [Google Scholar]
- Stainforth, R.M. Applied micropaleontology in coastal Ecuador. J. Paleontol. 1948, 616, 113–151. [Google Scholar]
- Mulas, M.; Chunga, K.; Garces, D.; Escobar, K. Sedimentological study of distal rain-triggered lahars: The case of west coast of Ecuador. Lat. Am. J. Sedimentol. Basin Anal. 2019, 26, 32. [Google Scholar]
- Whittaker, J.E. Benthic Cenozoic Foraminifera from Ecuador. Taxonomy and Distribution of Smaller Benthic Foraminifera from Coastal Ecuador (Late Oligocene—Late Pliocene); British Museum (Nature History) Publisher: London, UK, 1988; 194p. [Google Scholar]
- Gómez-de la Torre, M.; Ríos, P.V.; Coello, D.S.; Briones, M. Determinación de zonas de peligrosidad Sísmica en la cuenca del río Jama con el uso de perfiles de respuesta del suelo. J. Sci. Res. 2018, 3, 74–80. [Google Scholar] [CrossRef]
- Kramer, S.L. Geotechnical Earthquake Engineering; Prentice-Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Osorio Gutiérrez, B. Resistencia Estática y Cíclica de Relaves Integrales. 2009. Available online: http://repositorio.uchile.cl/handle/2250/103414 (accessed on 1 May 2020).
- Garcia, J.; Weatherhill, G.; Pagani, M.; Rodriguez, L.; Poggi, V.; SARA Hazard Working Group 517. Building an open seismic hazard model for South America: The SARA-PSHA model. In Proceedings of the 16th World Conference on Earthquake Engineering, Santiago, Chile, 9–13 January 2017; p. 13. [Google Scholar]
- Parra, H.; Benito, M.; Gaspar-Escribano, J. Seismic Hazard Assessment in Continental Ecuador. Bull. Earthq. Eng. 2016, 14, 2129–2159. [Google Scholar] [CrossRef]
- Seed, R.B.; Cetin, K.O.; Moss, R.E.S.; Kammerer, A.M.; Wu, J.; Pestana, J.M.; Riemer, M.F.; Sancio, R.B.; Bray, J.D.; Kayen, R.E.; et al. Recent advances in soil liquefaction engineering: A unified and consistent framework. In Proceedings of the 26th annual ASCE L.A. Geotechnical Spring Seminar, Long Beach, CA, USA, 30 April 2003; p. 71. [Google Scholar]
- Seed, H.B.; Idriss, I.M. Ground Motions and Soil Liquefaction during Earthquakes; Earthquake Engineering Research Institute Monograph: Oakland, CA, USA, 1982. [Google Scholar]
- Juang, C.H.; Yuan, H.; Lee, D.-H.; Lin, P.S. Simplified cone penetration test-based method for evaluating liquefaction resistance of soils. J. Geotech. Geoenviron. Eng. 2003, 129, 66–80. [Google Scholar] [CrossRef]
- Youd, T.L.; Idriss, I.M. (Eds.) NCEER Workshop on Evaluation of liquefaction Resistance of Soils; National Center for Earthquake Engineering Research, State University of New York at Buffalo: Buffalo, NY, USA, 1997. [Google Scholar]
- Youd, T.L.; Idriss, I.M.; Andrus, R.D.; Arango, I.; Castro, G.; Christian, T.V.; Dobry, R.; Finn, W.D.L.; Harder, L.F.; Hynes, M.E.; et al. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J. Geotech. Geoenviron. Eng. ASCE 2001, 127, 817–833. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.; Whitman, R. Overburden correction factor for SPT in sand. J. Geotech. Eng. ASCE 1986, 112, 373–377. [Google Scholar] [CrossRef]
- Iwasaki, T. Microzonation for soil liquefaction potential using simplified methods. Procrd Int. Conf. Microzonat. 1982, 3, 1310–1330. [Google Scholar]
- Baldock, J.W. The Northern Andes: A review of the Ecuadorian Pacific margin. In The Ocean Basins and Margins; Springer: Boston, MA, USA, 1985; pp. 181–217. [Google Scholar]
- Lee, J.-C.; Chu, H.-T.; Angelier, J.; Chan, Y.-C.; Hu, J.-C.; Lu, C.-Y.; Rau, R.-J. Geometry and structure of northern surface ruptures of the1999, M = 7.6 Chi-Chi Taiwan earthquake: Influence from inherited foldbelt structures. J. Struct. Geol. 2002, 24, 173–192. [Google Scholar]
- Romeo, R.; Pugliese, A. Seismicity, seismotectonics and seismic hazard of Italy. Eng. Geol. 2000, 55, 241–266. [Google Scholar] [CrossRef]
- Douglas, J. Earthquake ground motion estimation using strong-motion records: A review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth-Sci. Rev. 2003, 61, 43–104. [Google Scholar]
- Ambraseys, N.N.; Douglas, J.; Sarma, S.K.; Smit, P.M. Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: Horizontal peak ground acceleration and spectral acceleration. Bull. Earthq. Eng. 2005, 3, 1–53. [Google Scholar] [CrossRef] [Green Version]
- Schnabel, P.B.; Lysmer, J.; Seed, H.B. SHAKE—A Computer Program for Earthquake Analysis of Horizontally Layered Sites; Report No. EERC 72-12; Earthquake Engineering Research Center, University of California: Berkeley, CA, USA, 1972. [Google Scholar]
- Vucetic, M.; Dobry, R. Effect of soil plasticity on cyclic response. J. Geotech. Eng. 1991, 117, 89–107. [Google Scholar] [CrossRef]
Segment | Depht (km) | DIP (°) | Strike (°) | Rake (°) | Width (km) | Length (km) | Slip (km/m) | M |
---|---|---|---|---|---|---|---|---|
Galera I + II | 20 | 16 | 30 | 90 | 120 | 560 | 120/14 | 8.9 |
100/16.8 | ||||||||
Galera II | 20 | 16 | 30 | 90 | 120 | 450 | 120/6.2 | 8.6 |
110/7.4 | ||||||||
80/9.3 | ||||||||
Galera I | 22 | 21 | 27 | 90 | 80 | 110 | 80/3.4 | 7.9 |
60/4.5 | ||||||||
Isla Plata | 15 | 14 | 10 | 90 | 80 | 100/120 | 2.6 | 7.8 |
Salinas | 20 | 17 | 5 | 90 | 80 | 200 | 3.7 | 8.1 |
Fault | Mechanism | Fault Length (km) | Fault Depth (km) | Dip-Direction Fault | Rake | Fault Width (km) | Estimated Magnitude M | Levels of Reliability | PGA-Rock (g) * |
---|---|---|---|---|---|---|---|---|---|
F01 | Reverse | 16.3 | 12 | 140 | 90 | 8 | 6.39 | deducible | 0.30 |
F02 | Reverse | 5.5 | 12 | 310 | 90 | 6 | 5.50 | deducible | 0.19 |
F03 | Reverse | 10.3 | 12 | 330 | 90 | 7 | 6.01 | true | 0.25 |
F04 | Shear fault Sx | 5.0 | 12 | - | −5 | 6 | 6.17 | deducible | 0.27 |
F05 | Shear fault Sx | 10.0 | 12 | - | −5 | 7 | 6.43 | true | 0.31 |
F06 | Shear fault Dx | 6.8 | 12 | - | −175 | 6 | 6.28 | deducible | 0.29 |
F07 | Reverse | 4.8 | 12 | 125 | 90 | 5 | 5.39 | deducible | 0.17 |
F08 | Reverse | 7.6 | 12 | 335 | 90 | 6 | 5.77 | true | 0.22 |
F09 | Shear fault Dx | 5.7 | 12 | - | −175 | 6 | 6.22 | deducible | 0.28 |
F10 | Shear fault Sx | 5.0 | 12 | - | −5 | 6 | 6.17 | deducible | 0.27 |
F11 | Reverse | 13.7 | 12 | 305 | 90 | 7 | 6.25 | true | 0.29 |
F12 | Reverse | 18.2 | 12 | 325 | 90 | 8 | 6.48 | deducible | 0.32 |
F13 | Reverse | 6.3 | 12 | 322 | 90 | 6 | 5.61 | deducible | 0.20 |
F14 | Shear fault Dx | 8.4 | 12 | - | −175 | 6 | 6.36 | deducible | 0.30 |
F15 | Shear fault Dx | 4.0 | 12 | - | −175 | 5 | 6.08 | deducible | 0.26 |
F16 | Shear fault Dx | 6.5 | 12 | - | −175 | 6 | 6.27 | deducible | 0.29 |
F17 | Shear fault Dx | 3.0 | 12 | - | −175 | 5 | 5.98 | true | 0.25 |
F18 | Shear fault Sx | 6.1 | 12 | - | −5 | 6 | 6.24 | true | 0.28 |
F19 | Shear fault Dx | 6.3 | 12 | - | −175 | 6 | 6.26 | deducible | 0.29 |
F20 | Reverse | 4.5 | 12 | 328 | 90 | 5 | 5.34 | deducible | 0.17 |
F21 | Shear fault Dx | 8.2 | 12 | - | −175 | 6 | 6.36 | deducible | 0.30 |
F22 | Reverse | 5.6 | 12 | 153 | 90 | 6 | 5.52 | true | 0.19 |
F23 | Reverse | 8.5 | 12 | 338 | 90 | 6 | 5.86 | true | 0.23 |
F24 | Reverse | 16.4 | 12 | 335 | 90 | 8 | 6.39 | true | 0.31 |
F25 | Reverse | 4.8 | 12 | 330 | 90 | 5 | 5.39 | deducible | 0.17 |
F26 | Shear fault Dx | 3.2 | 12 | - | −175 | 5 | 6.00 | true | 0.25 |
F27 | Reverse | 5.3 | 12 | 203 | 90 | 6 | 5.47 | deducible | 0.18 |
Geologic Units | Thickness of Sediments | USCS Soil Type | Geological Age | Average Shear Velocity |
---|---|---|---|---|
Fill | 1 ≤ m ≤ 2 | CH/waste materials | Modern | 100 ≤ vs. ≤ 140 |
Intertidal flat, alluvium plain and ancient floodplain deposits (Qa-Qaa-Qf) | 2 ≤ m ≤ 4 | MH, CL | Holocene | 110 ≤ vs. ≤ 150 |
Terrace (abandoned floodplain deposits) (Qt) | 6 ≤ m ≤ 8 | ML, SM | Holocene to Late Pleistocene | 160 ≤ vs. ≤ 210 |
Colluvium deposits (Qc) | 8 ≤ m ≤ 15 | ML | Holocene to Late Pleistocene | 200 ≤ vs. ≤ 260 |
Ancient colluvium alluvium deposits (Qca) | 10 ≤ m ≤ 25 | MH, OH | Late Pleistocene | 130 ≤ vs. ≤ 260 |
Alluvial valley fill deposits (qaf) | 15 ≤ m ≤ 40 | SC, SM | Middle Pleistocene | 260 ≤ vs. ≤ 450 |
Soft rock (Mab) | 40 ≤ m ≤ 100 | siltstone, claystone | Miocene | 380 ≤ vs. ≤ 680 |
Basement rock (Kp) | ˃40 m | basalt | Cretaceous | 1000 ≤ vs. ≤ 3000 |
Probability (PL) | Description | Safety Factor | Liquefaction Hazard Level |
---|---|---|---|
0.85 ≤ PL < 1.00 | Almost certain that it will liquefy | 0.653 ≥ SF > 0.000 | Very high |
0.65 ≤ PL < 0.85 | Very likely | 0.837 ≥ SF > 0.653 | High |
0.35 ≤ PL < 0.65 | Liquefaction/non liquefaction is equally likely | 1.102 ≥ SF > 0.837 | Moderate |
0.15 ≤ PL < 0.35 | Unlikely | 1.411 ≥ SF > 1.102 | Low |
0.00 ≤ PL < 0.15 | Almost certain that it will not liquefy | α ≥ SF > 1.41 | Very low to null |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avilés-Campoverde, D.; Chunga, K.; Ortiz-Hernández, E.; Vivas-Espinoza, E.; Toulkeridis, T.; Morales-Delgado, A.; Delgado-Toala, D. Seismically Induced Soil Liquefaction and Geological Conditions in the City of Jama due to the M7.8 Pedernales Earthquake in 2016, NW Ecuador. Geosciences 2021, 11, 20. https://doi.org/10.3390/geosciences11010020
Avilés-Campoverde D, Chunga K, Ortiz-Hernández E, Vivas-Espinoza E, Toulkeridis T, Morales-Delgado A, Delgado-Toala D. Seismically Induced Soil Liquefaction and Geological Conditions in the City of Jama due to the M7.8 Pedernales Earthquake in 2016, NW Ecuador. Geosciences. 2021; 11(1):20. https://doi.org/10.3390/geosciences11010020
Chicago/Turabian StyleAvilés-Campoverde, Diego, Kervin Chunga, Eduardo Ortiz-Hernández, Eduardo Vivas-Espinoza, Theofilos Toulkeridis, Adriana Morales-Delgado, and Dolly Delgado-Toala. 2021. "Seismically Induced Soil Liquefaction and Geological Conditions in the City of Jama due to the M7.8 Pedernales Earthquake in 2016, NW Ecuador" Geosciences 11, no. 1: 20. https://doi.org/10.3390/geosciences11010020
APA StyleAvilés-Campoverde, D., Chunga, K., Ortiz-Hernández, E., Vivas-Espinoza, E., Toulkeridis, T., Morales-Delgado, A., & Delgado-Toala, D. (2021). Seismically Induced Soil Liquefaction and Geological Conditions in the City of Jama due to the M7.8 Pedernales Earthquake in 2016, NW Ecuador. Geosciences, 11(1), 20. https://doi.org/10.3390/geosciences11010020