A Fluid Dynamics Approach for Assessing the Intelligent Geomorphic Design of the Japanese Pufferfish Nest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nest Reconstruction
2.1.1. Image Acquisition
2.1.2. Nest Dimensions
2.1.3. Reconstruction of Nest and Surrounding Terrain
2.2. Post-Processing and 2D Slice Generation
2.3. Numerical Simulation
- A steady incompressible current flow along the maximum dimension of the nest is modelled;
- The angle between two adjacent ridges is sufficiently small so that the flow remains invariant in the radial direction;
- The nest is away from surf zones and coast for the flow to be fully developed.
2.4. Computational Domain and Boundary Conditions
3. Results
3.1. Recirculation Zones
3.2. Velocity and Pressure Distribution
3.3. Shear Stress Distribution
4. Discussion
5. Conclusions
- The topology of the nest contributes to the reduction of flow velocity and formation of a recirculation zone within the nest site that ensures eggs are protected from adverse velocity fluctuations, improved aeration and additionally act as a barrier blocking transport of foreign particles into the nest;
- The previously observed behavior of male pufferfish decorating peaks with shell fragments ensures a resilient structure through improved shear strength in regions of high shear stress;
- Lower shear stress is seen within the central zone of the nest, ensuring a stable bed surface for spawning of eggs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bixler, G.D.; Bhushan, B. Fluid Drag Reduction with Shark-Skin Riblet Inspired Microstructured Surfaces. Adv. Funct. Mater. 2013, 23, 4507–4528. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, X.; Li, P.; Huang, G.; Feng, S.; Shen, C.; Han, B.; Zhang, X.; Jin, F.; Xu, F.; et al. Bioinspired engineering of honeycomb structure—Using nature to inspire human innovation. Prog. Mater. Sci. 2015, 74, 332–400. [Google Scholar] [CrossRef]
- Matsuura, K. A new pufferfish of the genus Torquigener that builds “mystery circles” on sandy bottoms in the Ryukyu Islands, Japan (Actinopterygii: Tetraodontiformes: Tetraodontidae). Ichthyol. Res. 2015, 62, 207–212. [Google Scholar] [CrossRef]
- Kawase, H.; Okata, Y.; Ito, K. Role of huge geometric circular structures in the reproduction of a Marine pufferfish. Sci. Rep. 2013, 3, 4–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikkel, P.C. Social organization and spawning in the Atlantic sharpnose puffer, Canthigaster rostrata (Tetraodontidae). Environ. Biol. Fishes 1990, 27, 243–254. [Google Scholar] [CrossRef]
- Gladstone, W. Lek-like spawning, parental care and mating periodicity of the triggerfish Pseudobalistes flavimarginatus (Balistidae). Environ. Biol. Fishes 1994, 39, 249–257. [Google Scholar] [CrossRef]
- Public Broadcasting Service. Mysterious, Big Pacific. 2017. Available online: https://www.amazon.com/Big-Pacific-Season-1/dp/B072WLL63W (accessed on 19 June 2020).
- Mizuuchi, R.; Kawase, H.; Shin, H.; Iwai, D.; Kondo, S. Simple rules for construction of a geometric nest structure by pufferfish. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Lotsari, E.; Tarsa, T.; Kämäri, M.; Alho, P.; Kasvi, E. Spatial variation of flow characteristics in a subarctic meandering river in ice-covered and open-channel conditions: A 2D hydrodynamic modelling approach. Earth Surf. Process. Landf. 2019, 44, 1509–1529. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.; Muljadi, B.P.; Raeini, A.Q.; Jost, C.; Vandeginste, V.; Blunt, M.J.; Theraulaz, G.; Degond, P. The architectural design of smart ventilation and drainage systems in termite nests. Sci. Adv. 2019, 5, eaat8520. [Google Scholar] [CrossRef] [Green Version]
- Crowder, D.W.; Diplas, P. Using two-dimensional hydrodynamic models at scales of ecological importance. J. Hydrol. Amst. 2000, 230, 172–191. [Google Scholar] [CrossRef]
- Crowder, D.W.; Diplas, P. Applying spatial hydraulic principles to quantify stream habitat. River Res. Appl. 2006, 22, 79–89. [Google Scholar] [CrossRef]
- Crowder, D.W.; Diplas, P. Vorticity and circulation: Spatial metrics for evaluating flow complexity in stream habitats. Can. J. Fish. Aquat. Sci. 2002, 59, 633–645. [Google Scholar] [CrossRef]
- Ullman, S. The Interpretation of Structure from Motion. Proc. R. Soc. Lond. B Biol. Sci. 1979, 203, 405–426. [Google Scholar] [CrossRef] [PubMed]
- Robert, K.; Huvenne, V.A.I.; Georgiopoulou, A.; Jones, D.O.B.; Marsh, L.; Carter, G.D.O.; Chaumillon, L. New approaches to high-resolution mapping of marine vertical structures. Sci. Rep. 2017, 7, 9005–9014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leon, J.X.; Roelfsema, C.M.; Saunders, M.I.; Phinn, S.R. Measuring coral reef terrain roughness using “Structure-from-Motion” close-range photogrammetry. Geomorphology 2015, 242, 21–28. [Google Scholar] [CrossRef]
- Price, D.M.; Robert, K.; Callaway, A.; Lo lacono, C.; Hall, R.A.; Huvenne, V.A.I. Using 3D photogrammetry from ROV video to quantify cold-water coral reef structural complexity and investigate its influence on biodiversity and community assemblage. Coral Reefs 2019, 38, 1007–1021. [Google Scholar] [CrossRef] [Green Version]
- Pitts, A.D.; Casciano, C.I.; Patacci, M.; Longhitano, S.G.; Di Celma, C.; McCaffrey, W.D. Integrating traditional field methods with emerging digital techniques for enhanced outcrop analysis of deep water channel-fill deposits. Mar. Pet. Geol. 2017. [Google Scholar] [CrossRef] [Green Version]
- Barreiro, A.; Domínguez, J.M.; Crespo, A.J.C.; González-Jorge, H.; Roca, D.; Gómez-Gesteira, M. Integration of UAV photogrammetry and SPH modelling of fluids to study runoff on real terrains. PLoS ONE 2014. [Google Scholar] [CrossRef] [Green Version]
- Lerma, J.L.; Navarro, S.; Cabrelles, M.; Villaverde, V. Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: The Upper Palaeolithic Cave of Parpalló as a case study. J. Archaeol. Sci. 2010. [Google Scholar] [CrossRef]
- Marchal, A.F.J.; Lejeune, P.; de Bruyn, P.J.N. Virtual plaster cast: Digital 3D modelling of lion paws and tracks using close-range photogrammetry. J. Zool. 2016, 300, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Agisoft LLC. Agisoft Metashape User Manual Professional Edition, version 1.6; Agisoft LLC: St. Petersburg, Russia, 2020. [Google Scholar]
- Verhoeven, G. Taking computer vision aloft—Archaeological three-dimensional reconstructions from aerial photographs with photoscan. Archaeol. Prospect. 2011, 18, 67–73. [Google Scholar] [CrossRef]
- Young, G.C.; Dey, S.; Rogers, A.D.; Exton, D. Cost and time-effective method for multi-scale measures of rugosity, fractal dimension, and vector dispersion from coral reef 3D models. PLoS ONE 2017, 12, e0175341. [Google Scholar] [CrossRef] [PubMed]
- Agisoft LLC. Agisoft Metashape Professional; Agisoft LLC: St. Petersburg, Russia, 2020. [Google Scholar]
- VideoLan. VLC Media Player; VideoLan: Paris, France, 2020. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 526–529. [Google Scholar] [CrossRef] [PubMed]
- Blender Foundation. Blender; Blender Foundation: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Siemens PLM Software. V2F Model, Simcenter STAR CCM+ Documentation; Siemens PLM Software: Plano, TX, USA, 2020. [Google Scholar]
- Zhang, X.; Simons, R. Experimental investigation on the structure of turbulence in the bottom wave-current boundary layers. Coast. Eng. 2019, 152, 103511. [Google Scholar] [CrossRef]
- Zai-Jin, Y. A simple model for current velocity profiles in combined wave-current flows. Coast. Eng. 1994, 23, 289–304. [Google Scholar] [CrossRef]
- Coffey, F.C. Current Profiles in the Presence of Waves and the Hydraulic Roughness of Natural Sand Beds; University of Sydney: Sydney, Australia, 1987. [Google Scholar]
- Soulsby, R. Dynamics of Marine Sands: A Manual for Practical Applications; Thomas Telford Publications: London, UK, 1997; ISBN 978-0-7277-2584-X. [Google Scholar]
- He, H.; Song, J.; Bai, Y.; Xu, Y.; Wang, J.; Bi, F. Climate and extrema of ocean waves in the East China Sea. Sci. China Earth Sci. 2018, 61, 980–994. [Google Scholar] [CrossRef]
- Hydrographic and Oceanographic Department, Japan Coast Guard 1 Degree Gridded Salinity Statistics. Available online: https://jdoss1.jodc.go.jp/vpage/bss.html (accessed on 21 July 2020).
- Siemens PLM Software. Wall Treatment Models Reference, Simcenter STAR CCM+ Documentation; Siemens PLM Software: Plano, TX, USA, 2020. [Google Scholar]
- Siemens PLM Software. Wall Treatment, Simcenter STAR CCM+ Documentation; Siemens PLM Software: Plano, TX, USA, 2020. [Google Scholar]
- Yagiz, S. Brief note on the influence of shape and percentage of gravel on the shear strength of sand and gravel mixtures. Bull. Eng. Geol. Environ. 2001, 60, 321–323. [Google Scholar] [CrossRef]
- Giorgi, A.E.; Congleton, J.L. Effects of current velocity on development and survival of lingcod, Ophiodon elongatus, embryos. Environ. Biol. Fishes 1984, 10, 15–27. [Google Scholar] [CrossRef]
- Pérez-Robles, J.; Diaz, F.; Denise Re, A.; Giffard-Mena, I.; Abdo-de la Parra, M.I.; Ibarra-Castro, L. Osmoregulation, growth, and survival during the larval development of bullseye puffer fish Sphoeroides annulatus (Jenyns, 1842, Pisces: Tetraodontidae). Mar. Freshw. Behav. Physiol. 2015, 48, 397–415. [Google Scholar] [CrossRef]
- De Clippele, L.H.; Huvenne, V.A.I.; Orejas, C.; Lundälv, T.; Fox, A.; Hennige, S.J.; Roberts, J.M. Swedish Institute for the Marine Environment; Havsmiljöinstitutet; Göteborgs universitet. The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef, Norway. Coral Reefs 2017, 37, 253–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Katwijk, M.M.; Bos, A.R.; de Jonge, V.N.; Hanssen, L.S.A.M.; Hermus, D.C.R.; de Jong, D.J. Guidelines for seagrass restoration: Importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. Mar. Pollut. Bull. 2009, 58, 179–188. [Google Scholar] [CrossRef] [PubMed]
CZ (mm) | FP (mm) | SP (mm) | D (mm) |
---|---|---|---|
709.798 | 983.674 | 1476.653 | 1739.118 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shameem, A.J.; Valyrakis, M.; Zare-Behtash, H. A Fluid Dynamics Approach for Assessing the Intelligent Geomorphic Design of the Japanese Pufferfish Nest. Geosciences 2021, 11, 22. https://doi.org/10.3390/geosciences11010022
Shameem AJ, Valyrakis M, Zare-Behtash H. A Fluid Dynamics Approach for Assessing the Intelligent Geomorphic Design of the Japanese Pufferfish Nest. Geosciences. 2021; 11(1):22. https://doi.org/10.3390/geosciences11010022
Chicago/Turabian StyleShameem, Abdulla Jailam, Manousos Valyrakis, and Hossein Zare-Behtash. 2021. "A Fluid Dynamics Approach for Assessing the Intelligent Geomorphic Design of the Japanese Pufferfish Nest" Geosciences 11, no. 1: 22. https://doi.org/10.3390/geosciences11010022
APA StyleShameem, A. J., Valyrakis, M., & Zare-Behtash, H. (2021). A Fluid Dynamics Approach for Assessing the Intelligent Geomorphic Design of the Japanese Pufferfish Nest. Geosciences, 11(1), 22. https://doi.org/10.3390/geosciences11010022