Enhanced Steady-State Solution of the Infinite Moving Line Source Model for the Thermal Design of Grouted Borehole Heat Exchangers with Groundwater Advection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Infinite Moving Line Source
- an initial temperature of the porous medium of zero (IC),
- a continuous source of constant strength generated at the point from t = 0 onwards (BC),
- a surface temperature of zero located at infinity (BC).
2.2. Finite Moving Line Source
2.3. Numerical Model
2.4. Correction of Infinite MLS and Application to BHE Design
3. Results and Discussion
3.1. Compatibility of the Thermal Borehole Resistance Model for BHEs with Groundwater Advection
3.2. Applicability of the Infinite MLS Model to Finite Boreholes
3.3. Steady-State Thermal Conditions at the Wall of a Grouted Borehole
3.4. Correction Function
3.5. Demonstration Example
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
cp | J/kg·K | Heat capacity at constant pressure |
fcor | - | Correction function |
Fo | - | Fourier number (dimensionless time) |
g | - | g-function, dimensionless temperature response |
H | m | Borehole length |
I0 | - | Modified Bessel function of the first kind of order 0 |
K0 | - | Modified Bessel function of the second kind of order 0 |
kf | m/s | Hydraulic conductivity |
Pe | - | Péclet number, the ratio of advective to diffusive heat transport |
W/m | Specific heat injection (positive) or extraction (negative) | |
r | m | Radius |
Rb | (m·K)/W | Thermal borehole resistance |
t | s | Time |
U | m/s | Velocity |
x, y, z | m | Space coordinates, where the temperature is evaluated |
x´, y´, z´ | m | Space coordinates, where the heat source is located |
Greek symbols | ||
α | m2/s | Thermal diffusivity |
Γ | - | The generalized incomplete gamma function |
K | Temperature difference | |
K | Mean temperature change | |
ϑ | °C | Temperature |
°C | Mean undisturbed subsurface temperature | |
λ | W/(m·K) | Thermal conductivity |
ρ | kg/m3 | Density |
τ | s | Time at which the heat source is switched on |
φ | - | Porosity of the subsurface |
φ | - | Angle around the heat source, with φ = 0 corresponding to the direction of the groundwater flow in the plane perpendicular to the heat source and located behind the heat source in the groundwater flow direction. |
Subscripts: | ||
b | Referring to the borehole wall | |
Darcy | Referring to Darcy´s law | |
eff | Referring to the effective physical properties of the subsurface, which are i.e., volume-weighted unless otherwise specified | |
End | Referring to the state-state condition | |
grout | Referring to the grouting material | |
IMLS | Infinite moving line source | |
num | Referring to the numerical simulation(s) | |
f | Referring to the physical properties of the fluid | |
FMLS | Finite moving line source | |
s | Referring to the physical properties of the solid phase (rock matrix) | |
Abbreviations: | ||
BHE | Borehole heat exchanger | |
FLS | Finite line source | |
GSHP | Ground source heat pump | |
GW | Groundwater | |
MLS | Moving line source | |
UPS | Uninterrupted power supply |
References
- Blum, P.; Campillo, G.; Münch, W.; Kölbel, T. CO2 savings of ground source heat pump systems—A regional analysis. Renew. Energy 2010, 35, 122–127. [Google Scholar] [CrossRef]
- Bayer, P.; Saner, D.; Bolay, S.; Rybach, L.; Blum, P. Greenhouse gas emission savings of ground source heat pump systems in Europe: A review. Renew. Sustain. Energy Rev. 2012, 16, 1256–1267. [Google Scholar] [CrossRef]
- Aditya, G.R.; Narsilio, G.A. Environmental assessment of hybrid ground source heat pump systems. Geothermics 2020, 87, 101868. [Google Scholar] [CrossRef]
- Rees, S.J. An introduction to ground-source heat pump technology. In Advances in Ground-Source Heat Pump Systems; Rees, S., Ed.; Elsevier Reference Monographs; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–25. [Google Scholar]
- Yu, X.; Zhang, Y.; Deng, N.; Wang, J.; Zhang, D.; Wang, J. Thermal response test and numerical analysis based on two models for ground-source heat pump system. Energy Build. 2013, 66, 657–666. [Google Scholar] [CrossRef]
- Saner, D.; Juraske, R.; Kübert, M.; Blum, P.; Hellweg, S.; Bayer, P. Is it only CO2 that matters? A life cycle perspective on shallow geothermal systems. Renew. Sustain. Energy Rev. 2010, 14, 1798–1813. [Google Scholar] [CrossRef]
- Diao, N.; Li, Q.; Fang, Z. Heat transfer in ground heat exchangers with groundwater advection. Int. J. Therm. Sci. 2004, 43, 1203–1211. [Google Scholar] [CrossRef]
- Ingenieure, V.D. Thermische Nutzung des Untergrunds: Erdgekoppelte Wärmepumpenanlagen; Beuth Verlag GmbH: Berlin, Germany, 2019. [Google Scholar]
- Reuss, M.; Karrer, H.; Gehlin, S.; Andersson, O.; Bjorn, H.; Nagano, K.; Katsura, T.; Metzner, M. IEA ECES ANNEX 27: Quality Management in Design, Construction and Operation of Borehole Systems. Final Report. 2020. Available online: https://iea-eces.org/wp-content/uploads/public/IEA-ECES-ANNEX-27-Final-Report-20201118.pdf (accessed on 7 December 2020).
- Rivera, J.A.; Blum, P.; Bayer, P. Increased ground temperatures in urban areas: Estimation of the technical geothermal potential. Renew. Energy 2017, 103, 388–400. [Google Scholar] [CrossRef] [Green Version]
- FascÌ, M.L.; Lazzarotto, A.; Acuna, J.; Claesson, J. Analysis of the thermal interference between ground source heat pump systems in dense neighborhoods. Sci. Technol. Built Environ. 2019, 25, 1069–1080. [Google Scholar] [CrossRef] [Green Version]
- EED Version 4—Earth Energy Designer: Update Manual. 2020. Available online: https://www.buildingphysics.com/manuals/EED4.pdf (accessed on 1 March 2021).
- Spitler, J.D.; Marshall, C.L.; Manickam, A.; Dharapuram, M.; Delahoussaye, R.D.; Yeung, K.W.D.; Young, R.; Bhargava, M.; Mokashi, S.; Yavuzturk, C.; et al. GLHEPro 5.0 For Windows: Users’ Guide. 2016. Available online: https://hvac.okstate.edu/sites/default/files/pubs/glhepro/GLHEPRO_5.0_Manual.pdf (accessed on 1 March 2021).
- Huber, A. Bedienungsanleitung zum Programm EWS; Huber Energietechnik AG: Zürich, Switzerland, 2016. [Google Scholar]
- Koenigsdorff, R. Oberflächennahe Geothermie für Gebäude: Grundlagen und Anwendungen Zukunftsfähiger Heizung und Kühlung; Fraunhofer IRB-Verl.: Stuttgart, Germany, 2011. [Google Scholar]
- Erol, S.; François, B. Multilayer analytical model for vertical ground heat exchanger with groundwater flow. Geothermics 2018, 71, 294–305. [Google Scholar] [CrossRef]
- De Carli, M.; Tonon, M.; Zarrella, A.; Zecchin, R. A computational capacity resistance model (CaRM) for vertical ground-coupled heat exchangers. Renew. Energy 2010, 35, 1537–1550. [Google Scholar] [CrossRef]
- Bennet, J.; Claesson, J.; Hellström, G. Multipole Method to Compute the Conductive Heat Flows to and Between Pipes in a Composite Cylinder; Notes on Heat Transfer; University of Lund: Lund, Sweden, 1987. [Google Scholar]
- Javed, S.; Spitler, J.D. Calculation of Borehole Thermal Resistance; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Claesson, J.; Hellström, G. Multipole method to calculate borehole thermal resistances in a borehole heat exchanger. HVAC&R Res. 2011, 17, 895–911. [Google Scholar] [CrossRef]
- Eskilson, P. Thermal Analysis of Heat Extraction. Boreholes. Dissertation, University of Lund, Lund, Sweden, 1987. [Google Scholar]
- Javed, S.; Fahlén, P.; Claesson, J. Vertical ground heat exchangers: A review of heat flow models. In Proceedings of the Effstock 2009, Stockholm, Sweden, 14–17 June 2009. [Google Scholar]
- Zeng, H.Y.; Diao, N.R.; Fang, Z.H. A finite line-source model for boreholes in geothermal heat exchangers. Heat Trans. Asian Res. 2002, 31, 558–567. [Google Scholar] [CrossRef]
- Angelotti, A.; Ly, F.; Zille, A. On the applicability of the moving line source theory to thermal response test under groundwater flow: Considerations from real case studies. Geotherm Energy 2018, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Antelmi, M.; Alberti, L.; Angelotti, A.; Curnis, S.; Zille, A.; Colombo, L. Thermal and hydrogeological aquifers characterization by coupling depth-resolved thermal response test with moving line source analysis. Energy Convers. Manag. 2020, 225, 113400. [Google Scholar] [CrossRef]
- Chiasson, A.; O´Connell, A. New analytical solution for sizing vertical borehole ground heat exchangers in environments with significant groundwater flow: Parameter estimation from thermal response test data. HVAC&R Res. 2011, 17, 1000–1011. [Google Scholar] [CrossRef]
- Claesson, J.; Hellström, G. Analytical Studies of the Influence of Regional Groundwater Flow on the Performance of Borehole Heat Exchangers. In Proceeding of the 8th International Conference on Thermal Energy Storage, Stuttgart, Germany, 20 August 2000. [Google Scholar]
- Hecht-Méndez, J.; de Paly, M.; Beck, M.; Bayer, P. Optimization of energy extraction for vertical closed-loop geothermal systems considering groundwater flow. Energy Convers. Manag. 2013, 66, 1–10. [Google Scholar] [CrossRef]
- Katsura, T.; Nagano, K.; Takeda, S.; Shimakura, K. Heat Transfer Experiment in the Ground with Ground Water Advection. In Proceeding of the 10th International Conference on Thermal Energy Storage, Galloway, New Jersey, USA, 31 May–2 June 2006. [Google Scholar]
- Kölbel, T. Grundwassereinfluss auf Erdwärmesonden: Geländeuntersuchungen und Modellrechnungen. Ph.D. Thesis, Karlsruher Institut für Technologie, Karlsruhe, Germany, 2010. [Google Scholar]
- Mohammadzadeh Bina, S.; Fujii, H.; Kosukegawa, H.; Farabi-Asl, H. Evaluation of ground source heat pump system’s enhancement by extracting groundwater and making artificial groundwater velocity. Energy Convers. Manag. 2020, 223, 113298. [Google Scholar] [CrossRef]
- Molina-Giraldo, N.; Blum, P.; Zhu, K.; Bayer, P.; Fang, Z. A moving finite line source model to simulate borehole heat exchangers with groundwater advection. Int. J. Therm. Sci. 2011, 50, 2506–2513. [Google Scholar] [CrossRef]
- Stauffer, F.; Bayer, P.; Blum, P.; Molina Giraldo, N.A.; Kinzelbach, W. Thermal Use of Shallow Groundwater; First issued in paperback 2017; Environmental engineering; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2017. [Google Scholar]
- Sutton, M.G.; Nutter, D.W.; Couvillion, R.J. A Ground Resistance for Vertical Bore Heat Exchangers With Groundwater Flow. J. Energy Resour. Technol. 2003, 125, 183–189. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, Z.; Yuan, T. Study on the Coupled Heat Transfer Model Based on Groundwater Advection and Axial Heat Conduction for the Double U-Tube Vertical Borehole Heat Exchanger. Sustainability 2020, 12, 7345. [Google Scholar] [CrossRef]
- Tye-Gingras, M.; Gosselin, L. Generic ground response functions for ground exchangers in the presence of groundwater flow. Renew. Energy 2014, 72, 354–366. [Google Scholar] [CrossRef]
- Hellström, G. Ground Heat Storage: Thermal Analyses of Duct Storage Systems Theory. Ph.D. Thesis, University of Lund, Lund, Sweden, 1991. [Google Scholar]
- Rivera, J.A.; Blum, P.; Bayer, P. Analytical simulation of groundwater flow and land surface effects on thermal plumes of borehole heat exchangers. Appl. Energy 2015, 146, 421–433. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, X.; Banks, J.; Liu, W.V. Considering buried depth in the moving finite line source model for vertical borehole heat exchangers—A new solution. Energy Build. 2020, 214, 109859. [Google Scholar] [CrossRef]
- Wagner, V.; Blum, P.; Kübert, M.; Bayer, P. Analytical approach to groundwater-influenced thermal response tests of grouted borehole heat exchangers. Geothermics 2013, 46, 22–31. [Google Scholar] [CrossRef]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids, 2nd ed.; Oxford Science Publications; Clarendon Press: Oxford, UK, 1959. [Google Scholar]
- Bear, J. Dynamics of Fluids in Porous Media; Dover Books on Physics and Chemistry; Dover: New York, NY, USA, 1988. [Google Scholar]
- Chaudhry, M.A.; Zubair, S.M. On a Class of Incomplete Gamma Functions with Applications: Chapman and Hall/CRC; Chapman and Hall/CRC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Rivera, J.A.; Blum, P.; Bayer, P. Influence of spatially variable ground heat flux on closed-loop geothermal systems: Line source model with nonhomogeneous Cauchy-type top boundary conditions. Appl. Energy 2016, 180, 572–585. [Google Scholar] [CrossRef] [Green Version]
- COMSOL Multiphysics, version 5.6; COMSOL AB: Stockholm, Sweden, 2020.
- Lazzari, S.; Priarone, A.; Zanchini, E. Long-Term Performance of Borehole Heat Exchanger Fluids with Groundwater Movement: Excerpt from the Proceedings of the COMSOL Conference 2010 Paris. In Proceedings of the COMSOL Conference 2010, Paris, France, 17–19 November 2010. [Google Scholar]
- Gossler, M.A.; Bayer, P.; Zosseder, K. Experimental investigation of thermal retardation and local thermal non-equilibrium effects on heat transport in highly permeable, porous aquifers. J. Hydrol. 2019, 578, 124097. [Google Scholar] [CrossRef]
- 48. COMSOL Multiphysics®. Subsurface Flow Module: User´s Guide. 2021. Available online: https://doc.comsol.com/5.4/doc/com.comsol.help.ssf/SubsurfaceFlowModuleUsersGuide.pdf (accessed on 24 August 2021).
- Claesson, J.; Dunand, A. Heat Extraction from the Ground by Horizontal Pipes: A Mathematical Analysis; Swedish Council for Building Research: Stockholm, Sweden, 1983. [Google Scholar]
- Gu, Y.; O´Neal, D.L. Development of an Equivalent Diameter Expression for Vertical U-Tubes Used in Ground-Coupled Heat Pumps. Transactions-Am. Soc. Heat. Refrig. Air Cond. Eng. 1998, 104, 347–355. [Google Scholar]
- Gu, Y.; O’Neal, D.L. An Analytical Solution to Transient Heat Conduction in a Composite Region with a Cylindrical Heat Source. J. Sol. Energy Eng. 1995, 242–248. [Google Scholar] [CrossRef]
- Kavanaugh, S.P. Simulation and Experimental Verification of Vertical Ground-coupled Heat Pump Systems. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 1985. [Google Scholar]
- Lazzarotto, A.; Pallard, W.M. Thermal Response Test Performance Evaluation with Drifting Heat Rate and Noisy Measurements. In Proceedings of the European Geothermal Congress, Hague, The Netherlands, 11–14 June 2019; pp. 1–9. [Google Scholar]
- Javed, S.; Claesson, J. New analytical and numerical solutions for the short-term analysis of vertical ground heat exchangers. ASHRAE Trans. 2011, 117, 3–12. [Google Scholar]
- Lamarche, L.; Beauchamp, B. New solutions for the short-time analysis of geothermal vertical boreholes. Int. J. Heat Mass Transf. 2007, 50, 1408–1419. [Google Scholar] [CrossRef]
- Van de Ven, A.; Koenigsdorff, R.; Hofmann, S. Entwicklung konsistenter Auslegungsmodelle für oberflächennahe geothermische Quellensysteme. In Proceedings of the BauSIM 2018. 7. Deutsch-Österreichische IBPSA-Konferenz, Karlsruhe, Germany, 26–28 September 2018; Karlsruher Institut für Technologie: Karlsruhe, Germany, 2018; pp. 508–515. [Google Scholar]
- Wagner, V.; Bayer, P.; Bisch, G.; Kübert, M.; Blum, P. Hydraulic characterization of aquifers by thermal response testing: Validation by large-scale tank and field experiments. Water Resour. Res. 2014, 50, 71–85. [Google Scholar] [CrossRef]
Parameter Description | Unit | Value Range | |||
---|---|---|---|---|---|
Darcy velocity υDarcy | cm/day | 2.94 | up to | 881.28 | |
Thermal conductivity of the solid phase λs | W/(m∙K) | 1.0 | 2.0 | 3.0 | 4.0 |
Porosity of the subsurface Φ | - | 0.1 | 0.3 | 0.5 | |
Thermal conductivity of the grouting material λgrout | W/(m∙K) | 1.0 | 2.0 | ||
Borehole radius rb | m | 0.06 | 0.075 | 0.09 | 0.105 |
Resulting Péclet numbers Pe | - | 0.1 | up to | 10 | |
Initial and boundary temperature | °C | 10 | |||
heat extraction rate | W/m | −20 |
Borehole Radius rb | Thermal Conductivity of the Grout λgrout | Darcy Velocity υDarcy | Numerical Simulation with Advection | Numerical Simulation without Advection | Analytical Solution | ||
---|---|---|---|---|---|---|---|
Thermal Borehole Resistance Rb | Thermal Borehole Resistance Rb | Percentage Deviation | Thermal Borehole Resistance Rb | Percentage Deviation | |||
m | W/(m·K) | m/s | (m·K)/W | (m·K)/W | % | (m·K)/W | % |
0.060 | 1.0 | 3.40 × 10−6 | 0.2102 | 0.2096 | −0.26% | 0.2104 | 0.09% |
2.0 | 3.40 × 10−6 | 0.1051 | 0.1048 | −0.26% | 0.1052 | 0.09% | |
1.0 | 1.70 × 10−5 | 0.2102 | 0.2096 | −0.26% | 0.2104 | 0.09% | |
2.0 | 1.70 × 10−5 | 0.1051 | 0.1048 | −0.26% | 0.1052 | 0.09% | |
1.0 | 3.40 × 10−5 | 0.2102 | 0.2096 | −0.26% | 0.2104 | 0.09% | |
2.0 | 3.40 × 10−5 | 0.1051 | 0.1048 | −0.26% | 0.1052 | 0.09% | |
1.0 | 1.70 × 10−4 | 0.2102 | 0.2096 | −0.26% | 0.2104 | 0.09% | |
2.0 | 1.70 × 10−4 | 0.1051 | 0.1048 | −0.26% | 0.1052 | 0.09% | |
0.105 | 1.0 | 3.40 × 10−6 | 0.2991 | 0.2973 | −0.61% | 0.2994 | 0.10% |
2.0 | 3.40 × 10−6 | 0.1496 | 0.1487 | −0.59% | 0.1497 | 0.10% | |
1.0 | 1.70 × 10−5 | 0.2991 | 0.2973 | −0.61% | 0.2994 | 0.10% | |
2.0 | 1.70 × 10−5 | 0.1496 | 0.1487 | −0.59% | 0.1497 | 0.10% | |
1.0 | 3.40 × 10−5 | 0.2991 | 0.2973 | −0.61% | 0.2994 | 0.10% | |
2.0 | 3.40 × 10−5 | 0.1496 | 0.1487 | −0.59% | 0.1497 | 0.10% | |
1.0 | 1.70 × 10−4 | 0.2991 | 0.2973 | −0.61% | 0.2994 | 0.10% | |
2.0 | 1.70 × 10−4 | 0.1496 | 0.1487 | −0.59% | 0.1497 | 0.10% |
Material | Thermal Conductivity λ | Vol. Heat Capacity cv | Porosity Φ | Darcy Velocity υDarcy | Borehole Radius rb | Péclet Number Pe |
---|---|---|---|---|---|---|
W/(m∙K) | MJ/(m3∙K) | - | m/yr | - | ||
Groundwater * | 0.60 | 4.18 | ||||
Karst limestone * | 3.40 | 13.40 | 0.275 | 31.63 | 0.054 | 0.09 |
Sand (coarse) * | 0.8 | 1.40 | 0.385 | 23.14 | 0.054 | 0.23 |
Gravel * | 0.8 | 1.40 | 0.310 | 945.50 | 0.054 | 9.17 |
Gravel (modified) ** | 0.8 | 1.40 | 0.310 | 74.25 | 0.075 | 1.00 |
Heat Injection Rate | 8.00 | kW | |||||
---|---|---|---|---|---|---|---|
Borehole Resistance | 0.08 | (m·K)/W | |||||
Maximum Temperature Change of the Subsurface | 10 | K | |||||
Péclet Number | Model Selection | g- Function | Borehole Length | Percentage Deviation of the Borehole Length | Specific Heat Injection Rate | Percentage Deviation of the Heat Injection Rate | |
- | - | - | m | % | W/m | % | |
Karst limestone * | 0.09 | FLS | 6.6 | 383.52 | 74.39% | 20.86 | 42.66% |
IMLS without correction | 3.22 | 219.93 | 0.00% | 36.38 | 0.00% | ||
IMLS with correction | 3.32 | 224.60 | 2.13% | 35.62 | 2.08% | ||
Sand (coarse) * | 0.23 | FLS | 6.6 | 1226.29 | 161.34% | 6.52 | 61.74% |
IMLS without correction | 2.30 | 469.24 | 0.00% | 17.05 | 0.00% | ||
IMLS with correction | 2.49 | 501.66 | 6.91% | 15.95 | 6.46% | ||
Gravel * | 9.17 | FLS | 6.6 | 1202.67 | 1350.07% | 6.65 | 93.10% |
IMLS without correction | 0.11 | 82.94 | 0.00% | 96.46 | 0.00% | ||
IMLS with correction | 0.42 | 137.10 | 65.31% | 58.35 | 39.51% | ||
Gravel (modified) ** | 1.00 | FLS | 6.6 | 1202.67 | 414.82% | 6.65 | 80.58% |
IMLS without correction | 0.98 | 233.61 | 0.00% | 34.25 | 0.00% | ||
IMLS with correction | 1.34 | 2954.67 | 26.14% | 27.15 | 20.72% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van de Ven, A.; Koenigsdorff, R.; Bayer, P. Enhanced Steady-State Solution of the Infinite Moving Line Source Model for the Thermal Design of Grouted Borehole Heat Exchangers with Groundwater Advection. Geosciences 2021, 11, 410. https://doi.org/10.3390/geosciences11100410
Van de Ven A, Koenigsdorff R, Bayer P. Enhanced Steady-State Solution of the Infinite Moving Line Source Model for the Thermal Design of Grouted Borehole Heat Exchangers with Groundwater Advection. Geosciences. 2021; 11(10):410. https://doi.org/10.3390/geosciences11100410
Chicago/Turabian StyleVan de Ven, Adinda, Roland Koenigsdorff, and Peter Bayer. 2021. "Enhanced Steady-State Solution of the Infinite Moving Line Source Model for the Thermal Design of Grouted Borehole Heat Exchangers with Groundwater Advection" Geosciences 11, no. 10: 410. https://doi.org/10.3390/geosciences11100410
APA StyleVan de Ven, A., Koenigsdorff, R., & Bayer, P. (2021). Enhanced Steady-State Solution of the Infinite Moving Line Source Model for the Thermal Design of Grouted Borehole Heat Exchangers with Groundwater Advection. Geosciences, 11(10), 410. https://doi.org/10.3390/geosciences11100410