Calcite-Mineralized Fossil Wood from Vancouver Island, British Columbia, Canada
Abstract
:1. Introduction
2. Geologic Setting
3. Materials and Methods
4. Results
5. Discussion
5.1. Fossilization Processes
5.2. Calcite Mineralization
5.3. Formation of Calcareous Concretions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mindell, R.A.; Stockey, R.A.; Beard, G. Permineralized Fagus nuts from the Eocene of Vancouver Island, Canada. Int. J. Plant Sci. 2009, 170, 551–560. [Google Scholar] [CrossRef]
- Atkinson, B.A.; Stockey, R.A.; Rothwell, G.W. The early phylogenetic diversification of Cornales: Permineralized cornalean fruits from the Campanian (upper Cretaceous) of western North America. Int. J. Plant Sci. 2017, 178, 556–566. [Google Scholar] [CrossRef]
- Stockey, R.A.; Rothwell, G.W.; Atkinson, B. Late Cretaceous diversification of cupressaceous conifers: A taiwanoid seed cone from the Eden Main, Vancouver Island, British Columbia, Canada. Int. J. Plant Sci. 2020, 181, 529–541. [Google Scholar] [CrossRef]
- Jud, N.A.; Wheeler, E.A.; Rothwell, G.W.; Stockey, R.A. Angiosperm wood from the upper Cretaceous (Coniacian) of British Columbia. IAWA J. 2017, 38, 141–161. [Google Scholar] [CrossRef] [Green Version]
- Brink, K.S.; Stockey, R.A.; Beard, G.; Wehr, W.C. Cunninghamia hornbeyensis sp. nov.: Permineralized twigs and leaves from the upper Cretaceous of Hornby Island, British Columbia, Canada. Rev. Paleobotany Palynol. 2009, 155, 89–98. [Google Scholar] [CrossRef]
- Ludvigsen, R.; Beard, G. West Coast Fossils. A Guide to Ancient Life of Vancouver Island; Whitecap Books: Vancouver, BC, Canada, 1994. [Google Scholar]
- Siurek, J.; Chevalier, P.; Ro, C.; Chun, H.Y.; Zieba, E.; Kuczomow, A. Studies on the wood tissue substitution by silica and calcite during preservation of fossil wood. J. Alloys Compd. 2004, 36, 107–115. [Google Scholar] [CrossRef]
- Buurman, P. Mineralization of fossil wood. Scr. Geol. 1972, 12, 1–43. [Google Scholar]
- Sweeney, I.J.; Chin, K.; Hower, J.C.; Budd, D.; Wolfe, D.G. Fossil wood from the middle Cretaceous Moreno Hill Formation: Unique expressions of wood mineralization and implications for the processes of wood preservation. Int. J. Coal Geol. 2009, 79, 1–17. [Google Scholar] [CrossRef]
- Greenland, C.W. The replacement of wood by calcite. Econ. Geol. 1918, 13, 116–119. [Google Scholar] [CrossRef]
- Galwitz, H. Verkalung und Verskisalung von Hölzern in der Braunkohle des Geiseltale. Wissenschaftliche Zeitschrift der Martin-Luther-Universität Halle- Wittenberg Mathematische-Naturwissenschaftliche Reihe 1954, 4, 41–44. [Google Scholar]
- Francis, J.E. A 50-million-year-old fossil forest from Strathcona Fiord, Ellesmere Island, Arctic Canada: Evidence for a warm polar climate. Arctic 1988, 41, 314–318. [Google Scholar] [CrossRef]
- Boyce, C.K.; Hazen, R.M.; Knoll, A.H. Nondestructive, in situ, cellular-scale mapping of elemental abundances in permineralized fossils. Proc. Natl. Acad. Sci. USA 2001, 9, 5970–5974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustoe, G.E. Wood petrifaction: A new view of permineralization and replacement. Geosciences 2017, 17, 119. [Google Scholar] [CrossRef] [Green Version]
- Scott, A.C.; Collinson, M.E. Non-destructive multiple approaches to interpret the preservation of plant fossils: Implications for calcium-rich permineralizations. J. Geol. Soc. Lond. 2003, 160, 857–862. [Google Scholar] [CrossRef]
- Higgins, C.G. Calcification of some California Cretaceous wood. Geol. Soc. Am. Bull. 1960, 71, 1887–1888. [Google Scholar]
- Higgins, C.G. Significance of some fossil wood from California. Science 1961, 134, 473–479. [Google Scholar] [CrossRef]
- Brand, L.S. Calcified wood found in Pleistocene sand. Ohio Acad. Sci. Proc. 1930, 8, 409. [Google Scholar]
- Brand, L.S. Calcified wood in upland sand near Cincinnati, Ohio. Ohio J. Sci. 1932, 32, 55–62. [Google Scholar]
- Lorenz, V.J.; Röβler, R.; Schmidt, R.T. Fossiles Holz aus Fluorapatit und Calcit von der Tjornes-Halbinsel, Nord-Island. Der Aufschluss 2010, 61, 17–25. [Google Scholar]
- Lange, P.; Steiner, W. Rasterelektronenmikroskopichse Untersuchung an verkalyten Holzeresten aus dem pleitozanen Travertin von Weimar. Quartaenaepaleontologie 1984, 5, 225–236. [Google Scholar]
- Muller, J.E.; Jeletsky, J.A. Geology of the Upper Cretaceous Nanaimo Group, Vancouver Island and Gulf Islands, British Columbia. Geol. Surv. Canada, Paper 1970, 69, 1–77. [Google Scholar]
- Mustard, P.S. The Upper Cretaceous Nanaimo Group, Georgia Basin. In Geology and Geologic Hazards of the Vancouver Region, Southwestern British Columbia; Monger, J.H.W., Ed.; Bulletin 481; Geological Survey of Canada: Ottawa, ON, Canada, 1994; pp. 27–95. [Google Scholar]
- Kent, B.A.P.; Dashtgard, S.E.; Huang, C.; MacEachern, J.A.; Gibson, H.D.; Cathyl-Huhn, G. Initiation and early evolution of a forearc basin: Georgia Basin, Canada. Basin Res. 2020, 32, 163–185. [Google Scholar] [CrossRef]
- Irving, E. Whence British Columbia? Nature 1985, 314, 673–674. [Google Scholar] [CrossRef]
- Ward, P.D.; Hurtado, J.M.; Kirschvink, J.L.; Verosub, K.L. Measurements of the Cretaceous paleolatitude of Vancouver Island: Consistent with the Baja-British Columbia hypothesis. Science 1997, 277, 1642–1645. [Google Scholar] [CrossRef] [Green Version]
- Housen, B.A.; Beck, M.E. Testing terrane transport: An inclusive approach to the Baja B.C. controversy. Geology 1979, 27, 1143–1146. [Google Scholar] [CrossRef]
- Keppie, F.; Dostal, J. Evaluation of the Baja controversy using paleomagnetic and faunal data, plume magmatism, and piercing points. Tectonophysics 2001, 339, 427–442. [Google Scholar] [CrossRef]
- Butler, R.F.; Gehrels, G.E.; Kodama, K.P. Baja British Columbia hypothesis. GSA Today 2001, 11, 4–10. [Google Scholar] [CrossRef]
- Kim, B.Y.; Kodma, K.P. A compaction correction for the paleomagnetism of the Nanaimo Group sedimentary rocks: Implications for the Baja British Columbia hypothesis. J. Geophys. Res. 2004, 109, 1–17. [Google Scholar] [CrossRef]
- Bell, W.A. Flora of the Upper Cretaceous Nanaimo Group of Vancouver Island, British Columbia; Memoir 293; Geological Survey of Canada: Ottawa, ON, Canada, 1956; 84p. [Google Scholar]
- Haggart, J.W. Latest Jurassic and Cretaceous paleogeography of the Northern Insular Belt, British Columbia. In Mesozoic Paleogeography of the Western United States II; Pacific Coast Paleogeography Symposium 2, Special Volume 71; Dunne, G., McDougal, K.A., Eds.; Pacific Section Society of Economic Paleontologists and Mineralogists: Los Angeles, CA, USA, 1993; pp. 463–475. [Google Scholar]
- Nicholls, E.L.; Meckert, D. Marine reptiles from the Nanaimo Group (Upper Cretaceous) of Vancouver Island. Can. J. Earth Sci. 2002, 39, 1591–1603. [Google Scholar] [CrossRef]
- Barghoorn, E.S. Degradation of plant fossils in organic sediments. J. Sediment. Petrol. 1952, 22, 34–41. [Google Scholar]
- Kirk, T.K.; Cowling, E.B. Biological decomposition of solid wood. In The Chemistry of Solid Wood; Rowell, E.B., Ed.; Advances in Chemistry Series 207; American Chemical Society: Washington, DC, USA, 1984; pp. 455–487. [Google Scholar]
- Treu, A.; Zimmer, K.; Brischke, C.; Laney, E.; Gobakken, L.R.; Aloui, F.; Cragg, S.M.; Flæte, P.O.; Humar, M.; Westin, M.; et al. Timber in marine environments. BioResources 2019, 4, 10161–10184. [Google Scholar]
- Christensen, M.; Frosch, M.; Jensen, P.; Schnell, U.; Shashoua, Y.; Nielsen, O.F. Waterlogged archaeological wood—Chemical changes by conservation and degradation. J. Raman Spectrosc. 2006, 37, 1171–1178. [Google Scholar] [CrossRef]
- Mustoe, G.E. Mineralogy of non-silicified fossil wood. Geosciences 2018, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- Luczaj, J.A.; Leavitt, S.W.; Csank, A.Z.; Panyuskina, I.P.; Wright, W.E. Comment on “Nonmineralized fossil wood” by George, E. Mustoe (Geosciences, 2018). Geosciences 2018, 6, 1–7. [Google Scholar]
- Zeebe, R.E.; Wolf-Gladrow, D. CO2 in Sea Water; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Kump, L.R.; Bralower, T.J. Ocean acidification in deep time. Oceanography 2009, 22, 94–107. [Google Scholar] [CrossRef] [Green Version]
- Gazeau, F.; Parker, L.M.; Comeau, S.; Gattuso, J.; O’Conner, H.; Martin, S.; Pörtner, H.; Ross, P. Impact of ocean acidification on marine shelled molluscs. Mar. Biol. 2013, 160, 2207–2245. [Google Scholar] [CrossRef] [Green Version]
- Leo, R.F.; Barghoorn, E.S. Silicification of Wood. Bot. Mus. Leafl. Harv. Univ. 1976, 25, 1–46. [Google Scholar]
- Mustoe, G.E. Late Tertiary petrified wood from Nevada, USA: Evidence of multiple silicification pathways. Geosciences 2015, 5, 286–309. [Google Scholar] [CrossRef] [Green Version]
- Mustoe, G.E. Density and loss on ignition as indicators of fossilization of silicified wood. IAWA J. 2016, 37, 98–111. [Google Scholar] [CrossRef]
- Mustoe, G.E.; Acosta, M. Origin of petrified wood color. Geosciences 2016, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- McBride, E.F.; Picard, M.D.; Milliken, K. Calcite-cemented concretions in Cretaceous sandstone, Wyoming and Utah, USA. J. Sediment. Res. 2003, 73, 462–483. [Google Scholar] [CrossRef]
- Morita, R.Y. Calcite precipitation by marine bacteria. Geomicrobiol. J. 1980, 2, 63–82. [Google Scholar] [CrossRef]
- Dickson, J.A.D.; Barber, C. Petrography, chemistry, and origin of early diagentic concretions in the Lower Carboniferous of the Isle of Man. Sedimentology 1976, 23, 147–283. [Google Scholar] [CrossRef]
- Pratt, B.R. Septarian concretions: Internal cracking caused by synsedimentary earthquakes. Sedimentology 2001, 489, 189–213. [Google Scholar] [CrossRef]
- Raiswell, R.; Fisher, Q. Mudrock-hosted carbonate concretions: A review of growth mechanisms and their influence on chemical and isotopic composition. J. Geol. Soc. 1999, 157, 239–251. [Google Scholar] [CrossRef]
- Popa, R.; Kinkle, B.K.; Badescu, A. Pyrite framboids as biomarkers for iron-sulfur systems. Geomicrobiol. J. 2004, 21, 193–206. [Google Scholar] [CrossRef]
- Mozley, P.S.; Davis, J.M. Internal structure and mode of growth of elongate calcite concretions: Evidence for small-scale chemical heterogeneity in groundwater. Geol. Soc. Am. Bull. 2005, 117, 1400–1412. [Google Scholar] [CrossRef]
- Thauer, R.K. Biochemistry of methanogenesis: A tribute to Marjory Stephenson. Microbiology 1998, 144, 2377–2406. [Google Scholar] [CrossRef] [Green Version]
- Berner, R.A. Rate of concretion growth. Geochim. Cosmochim. Acta 1968, 32, 447–483. [Google Scholar] [CrossRef]
Location | Age | Reference |
---|---|---|
Lucknow, Poland | Jurassic | [7] |
Isle of Weight, England | Cretaceous | [8] |
New Mexico, USA | Cretaceous | [9] |
Kansas, USA | Cretaceous | [10] |
Vancouver Island, Canada | Cretaceous, Paleocene | This report |
Geiseltal, Germany | Eocene | [11] |
Ellesmere Island, Arctic Canada | Eocene | [12] |
Washington, USA | Miocene | [13] |
Florida, USA | Neogene | [14] |
Dunrobba, Italy | Pliocene | [15] |
California, USA | Pleistocene | [16,17] |
Ohio, USA | Pleistocene | [18,19] |
Northern Ireland | Pleistocene | [20] |
Weimar, Germany | Pleistocene | [21] |
North Vancouver Island | |||||
Formation | Fossil Locality | Lithologies | Depositional Environment | Age | |
Unnamed strata | Port Hardy | sandstone | shallow marine | Campanian 72–94 Ma | |
Longarm equivalent | Apple Bay | sandstone | Shallow marine | Valengian-Barremian 140 Ma | |
South Vancouver Island | |||||
Oyster Bay | Oyster Bay | sandstone | Shallow marine | Paleocene 60 Ma | |
unconformity | |||||
Nanaimo Group | Gabriola | sandstone | submarine fan, high energy | Maastrichtian 66–72 Ma | |
Spray | Shelter Point | siltstone & mudstone | submarine fan, low energy | ||
Geoffrey | conglomerate & sandstone | submarine fan, high energy | Campanian-Maastrichtian Campanian 72–84 Ma Santonian-Campanian | ||
Northumberland | Hornby Island | siltstone & mudstone | submarine fan, low energy | ||
De Courcy | conglomerate & sandstone | submarine fan, High energy | |||
Cedar District | Cranberry Arms | siltstone & mudstone | submarine fan, low energy | ||
Protection | sandstone, minor conglomerate and siltstone | shallow marine to deep submarine fan | |||
Pender | siltstone, mudstone | marine outer shelf and slope | |||
Extension | conglomerate, minor sandstone and coal | nearshore marine and onshore deltaic and fluvial | |||
Haslam | siltstone & mudstone | marine outer shelf and slope | Santonian 84–86 Ma | ||
Comox | Puntledge River | conglomerate, sandstone, mudstone, coal | nearshore marine and fluvial | ||
Unnamed strata | Eden Main | Sandstone, mudstone | nearshore marine | Turonian-Coniacian 90 MA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustoe, G.E.; Beard, G. Calcite-Mineralized Fossil Wood from Vancouver Island, British Columbia, Canada. Geosciences 2021, 11, 38. https://doi.org/10.3390/geosciences11020038
Mustoe GE, Beard G. Calcite-Mineralized Fossil Wood from Vancouver Island, British Columbia, Canada. Geosciences. 2021; 11(2):38. https://doi.org/10.3390/geosciences11020038
Chicago/Turabian StyleMustoe, George E., and Graham Beard. 2021. "Calcite-Mineralized Fossil Wood from Vancouver Island, British Columbia, Canada" Geosciences 11, no. 2: 38. https://doi.org/10.3390/geosciences11020038
APA StyleMustoe, G. E., & Beard, G. (2021). Calcite-Mineralized Fossil Wood from Vancouver Island, British Columbia, Canada. Geosciences, 11(2), 38. https://doi.org/10.3390/geosciences11020038