Elastic Full-Waveform Inversion Using Migration-Based Depth Reflector Representation in the Data Domain
Abstract
:1. Introduction
- (1)
- Determination of a macro velocity model (propagator) that describes the smooth distribution of the wave propagation velocity in the medium and determines the wave travel times.
- (2)
- Recovery of a sharply changing component (reflectors) corresponding to the medium’s interfaces, geometrical localisation, and reflection/transmission coefficients.
- a subspace of smoothly varying velocity functions that do not introduce any significant deviations in the direction of propagation of seismic energy excited the sources on the acquisition, but determine the wave propagation time;
- a subspace of abruptly changing functions describing the reflecting boundaries’ location within the macro velocity component.
2. Method and Theory
2.1. Data Space Reflectivity FWI Reformulation
2.2. The Validation of Propagator/Reflector Decomposition
2.3. Choice of Depth Reflectivity Parametrisation
3. Results
3.1. Experiment 1
3.2. Experiment 2
3.3. Experiment 3
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Gradients of the Modified Data Misfit Functional for the Propagator and Data Space Reflectivity
References
- Bamberger, A.; Chavent, G.; Hemon, C.; Lailly, P. Inversion of normal incidence seismograms. Geophysics 1982, 47, 757–770. [Google Scholar] [CrossRef]
- Lailly, P. The seismic inverse problem as a sequence of before stack migrations. In Conference on Inverse Scattering: Theory and Application; SIAM: Philadelphia, PA, USA, 1983; pp. 206–220. [Google Scholar]
- Tarantola, A. Inversion of seismic reflection data in the acoustic approximation. Geophysics 1984, 49, 1259–1266. [Google Scholar] [CrossRef]
- Gauthier, O.; Virieux, J.; Tarantola, A. Two-dimensional nonlinear inversion of seismic waveforms: Numerical results. Geophysics 1986, 51, 1387–1403. [Google Scholar] [CrossRef] [Green Version]
- Alekseev, A.S.; Avdeev, A.V.; Fatianov, A.G.; Cheverda, V.A. Wave processes in vertically inhomogeneous media: A new strategy for a velocity inversion. Inverse Probl. 1993, 9, 367–390. [Google Scholar] [CrossRef]
- Sirgue, L. The importance of low frequencies and large offset in waveform inversion. In Proceedings of the 68th EAGE Technical conference and Exhibition, Vienna, Austria, 12–15 June 2006. [Google Scholar]
- Castellanos, C.; Metivier, L.; Operto, S.; Brossier, R.; Virieux, J. Fast full waveform inversion with source encoding and second-order optimisation methods. Geophys. J. Int. 2015, 200, 718–742. [Google Scholar] [CrossRef] [Green Version]
- Bunks, C.; Saleck, F.M.; Zaleski, S.; Chavent, G. Multiscale seismic inversion. Geophysics 1995, 60, 1457–1473. [Google Scholar] [CrossRef]
- Pratt, G.; Shin, C.; Hicks, G.J. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion Geophys. J. Int. 1998, 133, 341–362. [Google Scholar]
- Li, Y.; Métivier, L.; Brossier, R.; Han, B.; Virieux, J. 2D and 3D frequency-domain elastic wave modeling in complex media with a parallel iterative solver. Geophysics 2015, 80, T101–T118. [Google Scholar] [CrossRef] [Green Version]
- Belonosov, M.; Dmitriev, M.; Kostin, V.; Neklyudov, D.; Tcheverda, V. An Iterative Solver for the 3D Helmholtz Equation. J. Comput. Phys. 2017, 345, 330–344. [Google Scholar] [CrossRef]
- Belonosov, M.; Kostin, V.; Neklyudov, D.; Tcheverda, V. 3D Numerical Simulation of Elastic Waves with a Frequency-Domain Iterative Solver. Geophysics 2018, 83, T333–T344. [Google Scholar] [CrossRef]
- Belonosov, M.; Cheverda, V.; Kostin, V.; Neklyudov, D. MPI+OpenMP parallelisation for elastic wave simulation with iterative solver. In Euro-Par 2019: Parallel Processing Workshops, Proceedings of the European Conference on Parallel Processing, Göttingen, Germany, 26–30 August 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 709–714. [Google Scholar]
- Chavent, G.; Clement, F. Waveform Inversion through MBTT Formulation; INRIA Research Report RR-1839; Inria: Bordeaux, France, 1993. [Google Scholar]
- Clement, F.; Chavent, G.; Gomez, S. Migration-based traveltime waveform inversion of 2-D simple structures: A synthetic example. Geophysics 2001, 66, 845–860. [Google Scholar] [CrossRef]
- Tcheverda, V.; Chavent, G.; Gadylshin, K. Macrovelocity reconstruction by reflection FWI. In Proceedings of the 78th EAGE Conference & Exhibition, Vienna, Austria, 30 May–2 June 2016. [Google Scholar]
- Wapenaar, C.P.A.; Verschuur, D.J.; Herrmann, P. Amplitude preprocessing of single and multicomponent seismic data. Geophysics 1992, 57, 117–188. [Google Scholar] [CrossRef] [Green Version]
- Beylkin, G. Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalised Radon transform. J. Math. Phys. 1985, 26, 99–108. [Google Scholar] [CrossRef]
- Kiyashchenko, D.; Plessix, R.-E.; Kashtan, B.; Troyan, V. A modified imaging principle for true-amplitude wave-equation migration. Geophys. J. Int. 2007, 168, 1093–1104. [Google Scholar] [CrossRef] [Green Version]
- Protasov, M.; Tcheverda, V. True ampitude imaging by inverse generalised Radon transform based on Gaussian beam decomposition of the acoustic Green’s function. Geophys. Prospect. 2011, 59, 197–209. [Google Scholar] [CrossRef]
- Protasov, M.I.; Tcheverda, V.A.; Pravduhin, A.P. 3D true-amplitude anisoropic elastic Gaussian beam migration of 3D irregular data. J. Seism. Explor. 2019, 28, 121–146. [Google Scholar]
- Hernandez, V.; Roman, J.E.; Vidal, V. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems ACM Trans. Math. Softw. 2005, 31, 351–362. [Google Scholar] [CrossRef]
- Cheverda, V.A.; Kostin, V.I. R–pseudoinverses for compact operators in hilbert spaces: Existence and stability. J. Inverse Ill Posed Probl. 1995, 3, 131–148. [Google Scholar] [CrossRef]
- Silvestrov, I.; Neklyudov, D.; Kostov, C.; Tcheverda, V. Full-Waveform Inversion for Macro Velocity Model Reconstruction in Look-Ahead Offset Vertical Seismic Profile: Numerical Singular Value Decomposition–Based Analysis. Geophys. Prospect. 2013, 61, 1099–1113. [Google Scholar] [CrossRef]
- Operto, S.; Gholami, Y.; Prieux, V.; Ribodetti, A.; Brossier, R.; Metivier, L.; Virieux, J. A guided tour of multi-parameter full-waveform inversion with multicomponent data: From theory to practice. Lead. Edge 2013, 32, 1040–1054. [Google Scholar] [CrossRef]
- Forgues, E.; Lambaré, G. Parameterization study for acoustic and elastic ray + Born inversion. J. Seism. Explor. 1997, 6, 253–278. [Google Scholar]
- Aminzadeh, F.; Brac, J.; Kunz, T. Society of Exploration Geophysicists.. SEG/EAGE 3D Modeling Series. 3D Salt and Overthrust Model. Society of Exploration Geophysicists. 1997. USA. Available online: https://wiki.seg.org/images/8/86/SEG-EAGE_3-D_salt_overthrust_models.pdf (accessed on 4 February 2021).
- Yielding, G.; Overland, J.A.; Byberg, G. Characterization of Fault Zones for Reservoir Modeling: An Example from the Gullfaks Field, Northern North Sea. AAPG Bull. 1999, 83, 925–951. [Google Scholar]
- Martin, G.S.; Wiley, R.; Marfurt, K.J. Marmousi2: An Elastic Upgrade for Marmousi. Lead. Edge 2006, 25, 156–166. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tcheverda, V.; Gadylshin, K. Elastic Full-Waveform Inversion Using Migration-Based Depth Reflector Representation in the Data Domain. Geosciences 2021, 11, 76. https://doi.org/10.3390/geosciences11020076
Tcheverda V, Gadylshin K. Elastic Full-Waveform Inversion Using Migration-Based Depth Reflector Representation in the Data Domain. Geosciences. 2021; 11(2):76. https://doi.org/10.3390/geosciences11020076
Chicago/Turabian StyleTcheverda, Vladimir, and Kirill Gadylshin. 2021. "Elastic Full-Waveform Inversion Using Migration-Based Depth Reflector Representation in the Data Domain" Geosciences 11, no. 2: 76. https://doi.org/10.3390/geosciences11020076
APA StyleTcheverda, V., & Gadylshin, K. (2021). Elastic Full-Waveform Inversion Using Migration-Based Depth Reflector Representation in the Data Domain. Geosciences, 11(2), 76. https://doi.org/10.3390/geosciences11020076