Fault-Based Geological Lineaments Extraction Using Remote Sensing and GIS—A Review
Abstract
:1. Introduction
2. Remote Sensing Techniques
- Manual Lineament Extraction
- Semi-Automated Lineament Extraction
- Automated Lineament Extraction
2.1. Manual Lineament Extraction
2.1.1. Enhancement Techniques
2.1.2. Spatial Convolution Filtering
Low-Pass Filtering
High-Pass Filtering
Linear Edge Detection Filtering
Nonlinear Edge Detection Filtering
2.1.3. Multiband Analysis
Principal Component Analysis (PCA)
False Color Composite (FCC)
Band Rationing (BR)
2.2. Semi-Automated Lineament Extraction
2.3. Automated Lineament Extraction
3. Discussion and Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
No | Date | Method | Data | Place | Reference |
---|---|---|---|---|---|
1 | 1975 | Manual lineament extraction including high-pass filtering Computer-aided automated lineament extraction | Landsat 1 | Anadarko basin, Oklahoma, and Colorado Plateau | [29] |
2 | 1985 | Automated lineament extraction using an algorithm based on the maximum local brightness gradient | Landsat MSS | Cevennes, Southern France | [21] |
3 | 1986 | Geological lineament extraction using visual interpretation | Landsat MSS | Western England | [132] |
4 | 1989 | Automated lineament extraction following enhancement filter | Landsat 1 | Tamilnadu state, India | [125] |
5 | 1990 | Automated lineament mapping using Hough Transform | Landsat TM | Sudbury, Canada | [23] |
6 | 1991 | Manual lineament structures mapping using edge enhancement by high pass filtering in band 5 | Landsat TM | Al-Khabt Area, Southern Arabian Shield | [75] |
7 | 1992 | Automated lineament extraction using LESSA (Lineament Extraction and Stripe Statistical Analysis) | Landsat TM | Moscow Russia | [121] |
8 | 1995 | Automated lineament analysis using Segment Tracing Algorithm (STA) | Landsat TM and DEM | Japan | [62] |
9 | 1995 | Visual interpretation using OIF, FCC | Landsat TM | Abruzzi region Central Italy | [111] |
10 | 1998 | Manual lineament extraction using band combination Automated lineament extraction | Landsat TM | Ebro Basin NE Spain | [133] |
11 | 1998 | Manual geological lineament extraction using histogram equalization and stretching, PCA, Prewitt, and Sobel filters | Landsat TM | Central Turkey | [70] |
12 | 2000 | Geomorphic features detection by visual interpretation using PCA and FCC | Landsat TM | Lesvos Greece | [28] |
13 | 2001 | Automated lineament extraction using the SWIR bands and GeoAnalysis PCI EASI/PACE | Landsat TM | Natash area Egypt | [134] |
14 | 2001 | Manual interpretation for delineation of tectonic features | Landsat ETM | Northern half of Arabian Shield | [135] |
15 | 2002 | Automated lineament extraction using Hough transform | Landsat TM | Vermion Greece | [11] |
16 | 2002 | Automated lineament extraction using Hough transform | Landsat TM, JERS-1 SAR, DEM | Kyungsang basin, Korea | [45] |
17 | 2003 | Visual Interpretation using band 4 of Landsat 4 and 234 of IRS | Landsat 4 MSS, IRS LISS-I | Pranhita-Godavari basin, India | [136] |
18 | 2003 | Manual lineament extraction using Weighted Moving Average (WMA) for fracture pattern determination | Landsat TM | Coastal Cordillera, Northern Chile | [137] |
19 | 2003 | Manual lineament extraction using Laplacian, Ford, Sobel, Kirch, and directional filters. Automated lineament extraction using Canny multi-scale edge detector was applied for verification | Landsat 7 ETM+ | Alevrada, Central Greece | [76] |
20 | 2004 | Manual lineament extraction using visual interpretation of anaglyph images for fault system and geomorphological feature detection | Landsat TM, ASTER, DEM | SW Turkey | [58] |
21 | 2004 | Manual lineament extracting using FCC, PCA, edge detection filters | Landsat 5–TM | Bakircay plain, western Turkey | [90] |
22 | 2004 | Active fault mapping using visual interpretation | ASTER | Bam, SE Iran | [27] |
23 | 2004 | Discontinuity mapping using automated lineament extraction in LINE module of PCI Geomatica | IKONOS | Golbasi, Ankara, Turkey | [84] |
24 | 2005 | Automated lineament extraction and analysis after fusion using LINE module of PCI Geomatica | Landsat ETM+, ASTER | Suoimuoi catchment, Vietnam | [138] |
25 | 2005 | Morphotectonic lineament detection using wavelet analysis | DEM | Kali basin, Hungary | [114] |
26 | 2006 | Automated lineament mapping using segment tracing algorithm (STA) | Landsat ETM+ and DEM | Siwa region, NW Egypt | [139] |
27 | 2007 | Geological fault detection using object-based classification | DEM and SAR | Near lake Magadi, Kenya | [140] |
28 | 2009 | Active fault detection using interferometric analysis | ERS 1 & 2 | Peloponnese, Greece | [46] |
29 | 2010 | Enhancement using histogram equalization technique and automated lineament extraction using Canny algorithm and 3D visualization | Landsat TM and SRTM DEM | Sharjah, Emirates | [69] |
30 | 2010 | Automated lineament mapping shaded relief images using LINE module of PCI Geomatica | DEM | Maran–Sungi Lembing area, Malaysia | [129] |
31 | 2011 | Automated detection of tectonically significant lineament using enhancement, segment tracing algorithm (STA), segment grouping, and connecting | SRTM DEM | SW Sinai Peninsula, Egypt | [126] |
32 | 2011 | Semi-automated lineament extraction using edge filtering and object-based classification | SRTM DEM | Dead Sea, Israel | [117] |
33 | 2013 | Automated lineament extraction using panchromatic band using LINE module of PCI Geomatica | Landsat ETM+ | Northern Iraq | [33] |
34 | 2013 | Fault segmentation using overly analysis | Landsat ETM+ | Taiz area, Yemen | [115] |
35 | 2013 | Automated lineament extraction using LINE module of PCI Geomatica | Landsat ETM+ | SW part of Taiz area, Yemen | [141] |
36 | 2013 | Automated geological lineament extraction using MATLAB-based code | ASTER | North Chile | [122] |
37 | 2014 | Automated tectonic lineament extraction using MATLAB-based toolbox | DEM | Andarab, Afghanistan | [123] |
38 | 2014 | Semi-automated fault detection | UAV | - | [119] |
39 | 2015 | Visual interpretation of lineaments using PCA, FCC, BR | Landsat ETM+ and OLI | Central Kenya | [106] |
40 | 2015 | Manual extraction of bedrock lineaments by consideration of scale, illumination azimuth, and operation factors | LiDAR DEM | Goddo island, Norway | [36] |
41 | 2015 | Manual geological structure mapping using directional filters | PALSAR | Peninsular, Malaysia | [35] |
42 | 2015 | Manual structural mapping using SOBEL directional filters | Landsat ETM+ | Western Africa | [77] |
43 | 2015 | Semi-automated linear feature extraction using Curvatool | DTM | Monferrato domain, NW Italy | [120] |
44 | 2015 | Automated lineament extraction using enhancement, filtering, and LINE module of PCI Geomatica | Landsat TM | Zahret Medien, Northern Tunisia | [131] |
45 | 2016 | Automated and manual lineament extraction using Sobel and Kernal filters and user–suggested parameters on Panchromatic band | Landsat 8 OLI | Northeastern Cairo, Egypt | [59] |
46 | 2016 | Automated lineament extraction using LINE module of PCI Geomatica | DEM | Some areas in Slovakia and the Czech | [142] |
47 | 2017 | Lineament tracing detection using visual interpretation and aeromagnetic lineaments | Landsat OLI, SPOT 5, and SRTM DEM | SW Saudi Arabia | [143] |
48 | 2017 | Automated lineament extraction using enhancement and edge detection using LINE module of PCI Geomatica | Landsat 8 OLI, ASTER, Sentinel 1, and DEM | Moroccan Anti Atlas | [34] |
49 | 2017 | Automated lineament extraction using a self-developed program LINDA (Lineament Detection and Analysis) | Landsat 7 ETM+ and DEM | Eastern Desert of Egypt | [124] |
50 | 2017 | Automated geological lineament extraction using azimuth angle | DEM | Tamil Nadu, India | [144] |
51 | 2017 | Semi-automated lineament extraction using Curvatool and visual interpretation | DTM | Cuneo, NW Italy | [145] |
52 | 2018 | Automated lineament extraction using Gaussian high pass filtering and Hough Transform | Landsat 8 OLI and DEM | Northern Baoji, China | [9] |
53 | 2018 | Manual lineament extraction in scale 1:100,000 | Landsat 8 OLI and ASTER, SRTM, Cartosat DEM | Konkan region, India | [54] |
54 | 2018 | Automated lineament extraction based on the different azimuth angle | Cartosat DEM | Parvara Basin, Maharashtra, India | [146] |
55 | 2019 | Manual lineament extraction aiming to determine fault using spatial and spectral enhancement | Sentinel 2A and DEM | Crete Island, Greece | [13] |
56 | 2019 | Manual lineament extraction using Laplacian and Sobel enhancement filters | Landsat ETM+, OLI, 49LISS IV, and DEM | Himalayan segment | [78] |
57 | 2019 | Automated lineament extraction using multiple illumination directions using LINE module of PCI Geomatica | DEM | Khyber-Pakhtunkhwa, Pakistan | [130] |
58 | 2019 | Semi-automated lineament extraction using enhancement and object-based classification | DEM | SW England | [118] |
59 | 2020 | Manual lineament mapping using PCA and Sobel filter in four directions on a single band | Landsat ETM+ | Ikare area, Southwestern Nigeria | [105] |
60 | 2020 | Automated lineament extraction using dimension reduction (PCA, ICA, MNF), Laplacian filter, Canny edge detector, also LINE module of PCI Geomatica | Landsat 8 OLI | Yinnetharra, Western Australia | [79] |
61 | 2021 | Manual geological lineament extraction using image fusion approach | Landsat 8 OLI, ALOS/PALSAR, SRTM DEM | West Gulf of Suez, Egypt | [18] |
62 | 2021 | Automatic lineament extraction using LINE module | DEM | Olele area, Gorontalo, Indonesia | [38] |
63 | 2021 | Automatic lineament extraction using a topographic fabric algorithm | SRTM DEM | Bau Mining district, Sarawak, Eastern Malaysia | [19] |
64 | 2021 | Automatic lineament extraction using LINE module | Sentinel–1, ALOS-2, PALSAR -2 | Indo-Burma ranges of Manopur region, Northeastern India | [37] |
65 | 2021 | Automatic lineament extraction using LINE module | ASTER DEM, Landsat OLI | Ugwueme, Southeastern Nigeria | [147] |
References
- Hobbs, W.H. Lineaments of the Atlantic Border region. Bull. Geol. Soc. Am. 1904, 15, 483–506. [Google Scholar] [CrossRef]
- Soliman, A.; Han, L. Effects of vertical accuracy of digital elevation model (DEM) data on automatic lineaments extraction from shaded DEM. Adv. Space Res. 2019, 64, 603–622. [Google Scholar] [CrossRef]
- Solomon, S.; Ghebreab, W. Lineament characterization and their tectonic significance using Landsat TM data and field studies in the central highlands of Eritrea. J. African Earth Sci. 2006, 46, 371–378. [Google Scholar] [CrossRef]
- de Oliveira Andrades Filho, C.; de Fáltima Rossetti, D. Effectiveness of SRTM and ALOS-PALSAR data for identifying morphostructural lineaments in northeastern Brazil. Int. J. Remote Sens. 2012, 33, 1058–1077. [Google Scholar] [CrossRef]
- O’leary, D.W.; Friedman, J.D.; Pohn, H.A. Lineament, linear, lineation: Some proposed new standards for old terms: Discussion. Bull. Geol. Soc. Am. 1976, 89, 1463–1469. [Google Scholar] [CrossRef]
- Koç, A. Remote Sensing Study of Sürgü Fault Zone (Malatya, Turkey). Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2005. [Google Scholar]
- Adhab, S.S. Lineament automatic extraction analysis for Galal Badra river basin using Landsat 8 satellite image. Iraqi J. Phys. 2019, 12, 44–55. [Google Scholar] [CrossRef]
- Papadaki, E.; Mertikas, S.; Sarris, A. Identification of Lineaments with Possible Structural Origin Using aster Images and DEM Derived Products in Westerm Crete, Greece. EARSeL eProceedings 2011, 10, 9–26. [Google Scholar]
- Yusof, N.; Ramli, M.F.; Pirasteh, S.; Shafri, H.Z.M. Landslides and lineament mapping along the Simpang Pulai to Kg Raja highway, Malaysia. Int. J. Remote Sens. 2011, 32, 4089–4105. [Google Scholar] [CrossRef]
- Tirén, S. Lineament Interpretation Short Review and Methodology; Swedish Radiation Safety Authority: Stockholm, Sweden, 2010. [Google Scholar]
- Vassilas, N.; Perantonis, S.; Charou, E.; Tsenoglou, T. Delineation of Lineaments from Satellite Data Based on Efficient Neural Network and Pattern Recognition Techniques. In Proceedings of the 2nd Hellenic Conference on AI, SETN-2002, Thessaloniki, Greece, 11–12 April 2002; pp. 355–366. [Google Scholar]
- Caumon, G.; Collon-Drouaillet, P.; Le Carlier De Veslud, C.; Viseur, S.; Sausse, J. Surface-based 3D modeling of geological structures. Math. Geosci. 2009, 41, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Elhag, M.; Alshamsi, D. Integration of remote sensing and geographic information systems for geological fault detection on the island of Crete, Greece. Geosci. Instrum. Methods Data Syst. 2019, 8, 45–54. [Google Scholar] [CrossRef]
- Sukamar, M.; Venkatesan, N.; Babu, C.N.K. A review of various lineament detection techniques for high resolution satellite images. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2014, 4, 72–78. [Google Scholar]
- Saepuloh, A.; Haeruddin, H.; Heriawan, M.N.; Kubo, T.; Koike, K.; Malik, D. Application of lineament density extracted from dual orbit of synthetic aperture radar (SAR) images to detecting fluids paths in the Wayang Windu geothermal field (West Java, Indonesia). Geothermics 2018, 72, 145–155. [Google Scholar] [CrossRef]
- Raj, K.; Syed Ahmed, A.; RajS, K. Lineament Extraction from Southern Chitradurga Schist Belt using Landsat TM, ASTERGDEM and Geomatics Techniques. Int. J. Comput. Appl. 2014, 93, 12–20. [Google Scholar]
- Takorabt, M.; Toubal, A.C.; Haddoum, H.; Zerrouk, S. Determining the role of lineaments in underground hydrodynamics using Landsat 7 ETM+ data, case of the Chott El Gharbi Basin (western Algeria). Arab. J. Geosci. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Abdelkareem, M.; Hamimi, Z.; El-Bialy, M.Z.; Khamis, H.; Abdel Wahed, S.A. Integration of remote-sensing data for mapping lithological and structural features in the Esh El-Mallaha area, west Gulf of Suez, Egypt. Arab. J. Geosci. 2021, 14. [Google Scholar] [CrossRef]
- Elmahdy, S.I.; Mohamed, M.M.; Ali, T.A. Automated detection of lineaments express geological linear features of a tropical region using topographic fabric grain algorithm and the SRTM DEM. Geocarto Int. 2021, 36, 76–95. [Google Scholar] [CrossRef]
- Panagiotakis, C.; Kokinou, E. Linear pattern detection of geological faults via a topology and shape optimization method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3–11. [Google Scholar] [CrossRef]
- Abrams, M.J.; Blusson, A.; Carrere, V.; Nguyen, P.T.; Rabu, Y. Image processing applications for geologic mapping. IBM J. Res. Dev. 1985, 29, 177–187. [Google Scholar] [CrossRef]
- Vanderbrug, G.J. Line Detection in Satellite Imagery. IEEE Trans. Geosci. Electron. 1976, 14, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Howarth, P.J. Use of the Hough Transform in Automated Lineament Detection. IEEE Trans. Geosci. Remote Sens. 1990, 28, 561–567. [Google Scholar] [CrossRef]
- El-Qassas, R.A.Y.; Ahmed, S.B.; Abd-Elsalam, H.F.; Abu-Donia, A.M.; El-Qassas, R.A.Y. Integrating of Remote Sensing and Airborne Magnetic Data to Outline the Geologic Structural Lineaments That Controlled Mineralization Deposits for the Area around Gabal El-Niteishat, Central Eastern Desert, Egypt. Geomaterials 2021, 11, 1–21. [Google Scholar] [CrossRef]
- Sichugova, L.V.; Jamolov, A.T.; Movlanov, J.J. Statistical Analysis of Lineaments Using Landsat 8 Data: A Case Study of The Fergana Valley (East Uzbekistan). Am. J. Appl. Sci. 2021, 3, 83–92. [Google Scholar] [CrossRef]
- Baker, R.N. Landsat data: A new perspective for geology. Photogramm. Eng. Remote Sens. 1975, 41, 1233–1239. [Google Scholar]
- Fu, B.; Ninomiya, Y.; Lei, X.; Toda, S.; Awata, Y. Mapping active fault associated with the 2003 Mw 6.6 Bam (SE Iran) earthquake with ASTER 3D images. Remote Sens. Environ. 2004, 92, 153–157. [Google Scholar] [CrossRef]
- Novak, I.D.; Soulakellis, N. Identifying geomorphic features using LANDSAT-5/TM data processing techniques on Lesvos, Greece. Geomorphology 2000, 34, 101–109. [Google Scholar] [CrossRef]
- Podwysocki, M.; Moik, J.; Shoup, W. Quantification of Geological Lineaments by Manual and Machine Processing Technique. In Proceedings of the NASA Earth Resources Survey Symposium, Houston, TX, USA, 8–13 June 1975; pp. 885–903. [Google Scholar]
- Rajan Girija, R.; Mayappan, S. Mapping of mineral resources and lithological units: A review of remote sensing techniques. Int. J. Image Data Fusion 2019, 10, 79–106. [Google Scholar] [CrossRef]
- Ramli, M.F.; Yusof, N.; Yusoff, M.K.; Juahir, H.; Shafri, H.Z.M. Lineament mapping and its application in landslide hazard assessment: A review. Bull. Eng. Geol. Environ. 2010, 69, 215–233. [Google Scholar] [CrossRef]
- Rowan, L.C.; Mars, J.C. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens. Environ. 2003, 84, 350–366. [Google Scholar] [CrossRef]
- Thannoun, R.G. Automatic Extraction and Geospatial Analysis of Lineaments and their Tectonic Significance in some areas of Northern Iraq using Remote Sensing Techniques and GIS. Int. J. Enhanc. Res. Schience Technol. Eng. 2013, 2, 1–11. [Google Scholar] [CrossRef]
- Adiri, Z.; El Harti, A.; Jellouli, A.; Lhissou, R.; Maacha, L.; Azmi, M.; Zouhair, M.; Bachaoui, E.M. Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: A case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas. Adv. Space Res. 2017, 60, 2355–2367. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M. Structural mapping using PALSAR data in the Central Gold Belt, Peninsular Malaysia. Ore Geol. Rev. 2015, 64, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Scheiber, T.; Fredin, O.; Viola, G.; Jarna, A.; Gasser, D.; Łapińska-Viola, R. Manual extraction of bedrock lineaments from high-resolution LiDAR data: Methodological bias and human perception. GFF 2015, 137, 362–372. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Sivasankar, T.; Anand, G. Performance evaluation of multi-parametric synthetic aperture radar data for geological lineament extraction. Int. J. Remote Sens. 2021, 42, 2574–2593. [Google Scholar] [CrossRef]
- Abduh, A.G.; Usman, F.C.A.; Tampoy, W.M.; Manyoe, I.N. Remote Sensing Analysis of Lineaments using Multidirectional Shaded Relief from Digital Elevation Model (DEM) in Olele Area, Gorontalo. J. Phys. Conf. Ser. 2021, 1783, 012095. [Google Scholar] [CrossRef]
- Berlin, G.L.; Schaber, G.G.; Horstman, K.C. Possible fault detection in cottonball basin, California: An application of radar remote sensing. Remote Sens. Environ. 1980, 10, 33–42. [Google Scholar] [CrossRef]
- Cetin, E.; Cakir, Z.; Meghraoui, M.; Ergintav, S.; Akoglu, A.M. Extent and distribution of aseismic slip on the Ismetpaşa segment of the North Anatolian Fault (Turkey) from Persistent Scatterer InSAR. Geochem. Geophys. Geosyst. 2014, 15, 2883–2894. [Google Scholar] [CrossRef] [Green Version]
- Elliott, J.R.; Biggs, J.; Parsons, B.; Wright, T.J. InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Furuya, M.; Satyabala, S.P. Slow earthquake in Afghanistan detected by InSAR. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Method for Detecting Surface Motions and Mapping Small Terrestrial or Planetary Surface Deformations with Synthetic Aperture Radar. U.S. Patent 4,975,704, 4 December 1990. [Google Scholar]
- Hu, L.; Dai, K.; Xing, C.; Li, Z.; Tomás, R.; Clark, B.; Shi, X.; Chen, M.; Zhang, R.; Qiu, Q.; et al. Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101886. [Google Scholar] [CrossRef]
- Lee, T.H.; Moon, W.M. Lineament extraction from Landsat TM, JERS-1 SAR, and DEM for geological applications. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Toronto, ON, Canada, 24–28 June 2002; Volume 6, pp. 3276–3278. [Google Scholar]
- Parcharidis, I.; Kokkalas, S.; Fountoulis, I.; Foumelis, M. Detection and monitoring of active faults in urban environments: Time series interferometry on the cities of Patras and Pyrgos (Peloponnese, Greece). Remote Sens. 2009, 1, 676–696. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, S.; Nasir, S. ASTER capability in mapping of mineral resources of arid region: A review on mapping of mineral resources of the Sultanate of Oman. Ore Geol. Rev. 2019, 108, 33–53. [Google Scholar] [CrossRef]
- Ahmadi, H.; Uygucgil, H. Targeting iron prospective within the Kabul Block (SE Afghanistan) via hydrothermal alteration mapping using remote sensing techniques. Arab. J. Geosci. 2021, 14. [Google Scholar] [CrossRef]
- Ahmadi, H.; Kalkan, K. Mapping of Ophiolitic Complex in Logar and Surrounding Areas (SE Afghanistan) with ASTER Data. J. Indian Soc. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Das, S.; Pardeshi, S.D. Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: A study of Pravara basin, Maharashtra, India. Appl. Water Sci. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Jena, R.; Pradhan, B.; Beydoun, G.; Al-Amri, A.; Sofyan, H. Seismic hazard and risk assessment: A review of state-of-the-art traditional and GIS models. Arab. J. Geosci. 2020, 13, 1–21. [Google Scholar] [CrossRef]
- Azman, A.I.; Talib, J.A.; Sokiman, M.S. The Integration of Remote Sensing Data for Lineament Mapping in the Semanggol Formation, Northwest Peninsular Malaysia. In IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Kuala Lumpur, Malaysia, 2020; Volume 540. [Google Scholar]
- Ibrahim, U.; Mutua, F. Lineament Extraction using Landsat 8 (OLI) in Gedo, Somalia. Int. J. Sci. Res. 2014, 3, 291–296. [Google Scholar]
- Das, S.; Pardeshi, S.D.; Kulkarni, P.P.; Doke, A. Extraction of lineaments from different azimuth angles using geospatial techniques: A case study of Pravara basin, Maharashtra, India. Arab. J. Geosci. 2018, 11, 1–13. [Google Scholar] [CrossRef]
- Burns, K.L.; Brown, G.H. The human perception of geological lineaments and other discrete features in remote sensing imagery: Signal strengths, noise levels and quality. Remote Sens. Environ. 1978, 7, 163–176. [Google Scholar] [CrossRef]
- Huntington, J.F.; Raiche, A.P. A multi-attribute method for comparing geological lineament interpretations. Remote Sens. Environ. 1978, 7, 145–161. [Google Scholar] [CrossRef]
- Chaabouni, R.; Bouaziz, S.; Peresson, H.; Wolfgang, J. Lineament analysis of South Jenein Area (Southern Tunisia) using remote sensing data and geographic information system. Egypt. J. Remote Sens. Space Sci. 2012, 15, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Akman, A.Ü.; Tüfekçi, K. Determination and characterisation of fault systems and geomorphological features by RS and GIS techniques in the WSW. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2004, 35, 899–904. [Google Scholar]
- El-Sawy, K.; Atef, M.I.; Mohamed, A.; Waleed, A. Automated, manual lineaments extraction and geospatial analysis for Cairo-Suez district (Northeastern Cairo-Egypt), using remote sensing and GIS. Int. J. Innov. Sci. Eng. Technol. 2016, 3, 491–500. [Google Scholar]
- SARP, G. Lineament Analysis from Satellite Images, North-West of Ankara. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2005. [Google Scholar]
- Alshayef, M.; Mohammed, A.; Javed, A.; Albaroot, M. Manual and Automatic Extraction of Lineaments From Multispectral Image in Part of Al-Rawdah, Shabwah, Yemen by Using Remote Sensing and GIS Technology. Int. J. New Technol. Res. 2017, 3, 263346. [Google Scholar]
- Koike, K.; Nagano, S.; Ohmi, M. Lineament analysis of satellite images using a Segment Tracing Algorithm (STA). Comput. Geosci. 1995, 21, 1091–1104. [Google Scholar] [CrossRef]
- Irons, J.R.; Taylor, M.P.; Rocchio, L. Landsat 1 «Landsat Science». Available online: https://landsat.gsfc.nasa.gov/landsat-1-3/landsat-1. (accessed on 1 January 2018).
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.; Pearson: New York, NY, USA, 2015; ISBN 0132058405. [Google Scholar]
- Han, L.; Liu, Z.; Ning, Y.; Zhao, Z. Extraction and analysis of geological lineaments combining a DEM and remote sensing images from the northern Baoji loess area. Adv. Space Res. 2018, 62, 2480–2493. [Google Scholar] [CrossRef]
- Mah, A.; Taylor, G.R.; Lennox, P.; Balia, L. Lineament anlysis of Landsat Thematic Mapper images, Northern Territory, Australia. Photogramm. Eng. Remote Sens. 1995, 61, 761–773. [Google Scholar]
- Walsh, G.J.; Clark, S.F. Contrasting methods of fracture trend characterization in crystalline metamorphic and igneous rocks of the Windham quadrangle, New Hampshire. Northeast. Geol. Environ. Sci. 2000, 22, 109–120. [Google Scholar]
- Marghany, M.; Mansor, S.; Hashim, M. Geologic mapping of United Arab Emirates using multispectral remotely sensed data. Am. J. Eng. Appl. Sci. 2009, 2, 476–480. [Google Scholar] [CrossRef]
- Marghany, M.; Hashim, M. Lineament mapping using multispectral remote sensing satellite data. Int. J. Phys. Sci. 2010, 5, 1501–1507. [Google Scholar] [CrossRef]
- Suzen, M.L.; Toprak, V. Filtering of satellite images in geological lineament analyses: An application to a fault zone in Central Turkey. Int. J. Remote Sens. 1998, 19, 1101–1114. [Google Scholar] [CrossRef]
- Perfetto, S.; Wilder, J.; Walther, D.B. Effects of spatial frequency filtering choices on the perception of filtered images. Vision 2020, 4. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.; Yeung, A.K. Concepts and Techniques of Geographic Information Systems, 2nd ed.; Prentice-Hall, Inc.: New Jersey, NY, USA, 2006. [Google Scholar]
- Richards, J.A. Remote Sensing Digital Image Analysis: An Introduction; Springer Science & Business Media: Berlin, Germany, 2013; Volume 9783642300, ISBN 9783642300622. [Google Scholar]
- Pratt, W. Digital Image Processing; Elsevier: Amsterdam, The Netherlands, 1991. [Google Scholar]
- Qari, M.Y. Application of Landsat TM data to geological studies, Al-Khabt area, southern Arabian shield. Photogramm. Eng. Remote Sens. 1991, 57, 421–429. [Google Scholar]
- Mavrantza, O.; Argialas, D.P. Implementation and evaluation of spatial filtering and edge detection techniques for lineament mapping: Case study-Alevrada, Central Greece. Remote Sens. Environ. Monit. GIS Appl. Geol. II 2003, 4886, 417. [Google Scholar]
- Allou, G.; Ouattara, G.; Coulibaly, Y.; Bonin, B. The Landsat 7 Etm+ Remote Sensing Imagery for Lithological and Structural Mapping in the Central Côte D’Ivoire (West Africa): Case of Dabakala Area. Eur. Sci. J. 2015, 11, 141–163. [Google Scholar]
- Mohmood, A.; Bukhari, K. Earthquake phenomenon and the delineation of faults/lineaments through remote sensing techniques. A case study from Himalayan segment. J. Civil Eng. Technol. 2019, 6, 203–209. [Google Scholar]
- Farahbakhsh, E.; Chandra, R.; Olierook, H.K.H.; Scalzo, R.; Clark, C.; Reddy, S.M.; Müller, R.D. Computer vision-based framework for extracting tectonic lineaments from optical remote sensing data. Int. J. Remote Sens. 2020, 41, 1760–1787. [Google Scholar] [CrossRef]
- Tyan, C.Y.; Wang, P.P. Image processing-enhancement, filtering and edge detection using the fuzzy logic approach. In Proceedings of the International Conference on Fuzzy Theory and Technology, San Diego, CA, USA, 8–12 March 1992; p. 326. [Google Scholar]
- Huang, W.; Wang, R.; Zu, S.; Chen, Y. Low-frequency noise attenuation in seismic and microseismic data using mathematical morphological filtering. Geophys. J. Int. 2020, 222, 1728–1749. [Google Scholar] [CrossRef]
- Hashim, M.; Ahmad, S.; Johari, M.A.M.; Pour, A.B. Automatic lineament extraction in a heavily vegetated region using Landsat Enhanced Thematic Mapper (ETM+) imagery. Adv. Space Res. 2013, 51, 874–890. [Google Scholar] [CrossRef]
- Najafzadeh, E.; Farnia, P.; Lavasani, S.N.; Basij, M.; Yan, Y.; Ghadiri, H.; Ahmadian, A.; Mehrmohammadi, M. Photoacoustic image improvement based on a combination of sparse coding and filtering. J. Biomed. Opt. 2020, 25. [Google Scholar] [CrossRef]
- Koçal, A. A Methodology for Detection and Evaluation of Lineaments from Satellite Imagery. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2004. [Google Scholar]
- Campbell, J.B. Introduction to Remote Sensing; The Guilford Press: New York, NY, USA, 1996; ISBN 0898627761. [Google Scholar]
- Romani, L.; Rossini, M.; Schenone, D. Edge detection methods based on RBF interpolation. J. Comput. Appl. Math. 2019, 349, 532–547. [Google Scholar] [CrossRef]
- Xu, J.; Wen, X.; Zhang, H.; Luo, D.; Li, J.; Xu, L.; Yu, M. Automatic extraction of lineaments based on wavelet edge detection and aided tracking by hillshade. Adv. Space Res. 2020, 65, 506–517. [Google Scholar] [CrossRef]
- Han, M.; Yang, X.; Jiang, E. An Extreme Learning Machine based on Cellular Automata of edge detection for remote sensing images. Neurocomputing 2016, 198, 27–34. [Google Scholar] [CrossRef]
- Pratt, W.K. Digital Image Processing, 4th ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Ölgen, M.K. Determining Lineaments and Geomorphic Features Using Landsat 5-TM Data on the Lower Bakirçay Plain, Western Turkey. Aegean Geogr. J. 2004, 3, 47–57. [Google Scholar]
- Davis, L.S. A survey of edge detection techniques. Comput. Graph. Image Process. 1975, 4, 248–270. [Google Scholar] [CrossRef]
- Rosenfeld, A. A Nonlinear Edge Detection Technique. Proc. IEEE 1970, 58, 814–816. [Google Scholar] [CrossRef]
- Kocal, A.; Duzgun, H.S.; Karpuz, C. Discontinuity mapping with automatic lineament extraction from high resolution satellite imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2004, 35, 1073–1078. [Google Scholar]
- Salawu, N.B.; Dada, S.S.; Orosun, M.M.; Adebiyi, L.S.; Fawale, O. Influence of Pan-African tectonics on older Precambrian basement structural fabrics as revealed from the interpretation of aeromagnetic and remote sensing data of Ikole/Kabba region, southwestern Nigeria. J. Afr. Earth Sci. 2021, 179, 104189. [Google Scholar] [CrossRef]
- Sedrette, S.; Rebaï, N. Automatic extraction of lineaments from Landsat Etm+ images and their structural interpretation: Case Study in Nefza region (North West of Tunisia). J. Res. Environ. Earth Sci. 2016, 4, 139–145. [Google Scholar]
- Mohammadpour, M.; Bahroudi, A.; Abedi, M. Automatic Lineament Extraction Method in Mineral Exploration Using CANNY Algorithm and Hough Transform. Geotectonics 2020, 54, 366–382. [Google Scholar] [CrossRef]
- Yang, L.; Wu, X.; Zhao, D.; Li, H.; Zhai, J. An improved Prewitt algorithm for edge detection based on noised image. In Proceedings of the 2011 4th International Congress on Image and Signal Processing, Shanghai, China, 15–17 October 2011; Volume 3, pp. 1197–1200. [Google Scholar]
- Boutrika, R.; Ducrot, D.; Aissa, D.E. Contribution of remote sensing to mapping In-Abeggui gold deposit (Central Hoggar, South Algeria). Arab. J. Geosci. 2019, 12. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Mittal, A. A Survey on Various Edge Detector Techniques. Procedia Technol. 2012. [Google Scholar] [CrossRef]
- Chaple, G.N.; Daruwala, R.D.; Gofane, M.S. Comparisions of Robert, Prewitt, Sobel operator based edge detection methods for real time uses on FPGA. In Proceedings of the Proceedings-International Conference on Technologies for Sustainable Development, ICTSD 2015, Mumbai, India, 4–6 February 2015. [Google Scholar]
- Vijaya Kumar Reddy, R.; Prudvi Raju, K.; Jogendra Kumar, M.; Ravi Kumar, L.; Ravi Prakash, P.; Sai Kumar, S. Comparative analysis of common edge detection algorithms using pre-processing technique. Int. J. Electr. Comput. Eng. 2017. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Pour, A. Lithological mapping and hydrothermal alteration using Landsat 8 data: A case study in ariab mining district, red sea hills, Sudan. Int. J. Basic Appl. Sci. 2014, 3. [Google Scholar] [CrossRef]
- Loughlin, W.P. Principal component analysis for alteration mapping. Photogramm. Eng. Remote Sens. 1991, 57, 1163–1169. [Google Scholar]
- Singh, A.; Harrison, A. Standardized principal components. Int. J. Remote Sens. 1985. [Google Scholar] [CrossRef]
- Oyawale, A.A.; Adeoti, F.O.; Ajayi, T.R.; Omitogun, A.A. Applications of remote sensing and geographic information system (GIS) in regional lineament mapping and structural analysis in Ikare Area, Southwestern Nigeria. J. Geol. Min. Res. 2020, 12, 13–24. [Google Scholar] [CrossRef]
- Mwaniki, M.W.; Moeller, M.S.; Schellmann, G. A comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in mapping geology and visualising lineaments: A case study of central region Kenya. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives, Berlin, Germany, 11–15 May 2015; Volume 40, pp. 897–903. [Google Scholar]
- Abdelaziz, R.; Abd El-Rahman, Y.; Wilhelm, S. Landsat-8 data for chromite prospecting in the Logar Massif, Afghanistan. Heliyon 2018, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masoumi, F.; Eslamkish, T.; Honarmand, M.; Abkar, A.A. A Comparative Study of Landsat-7 and Landsat-8 Data Using Image Processing Methods for Hydrothermal Alteration Mapping. Resour. Geol. 2017, 67, 72–88. [Google Scholar] [CrossRef]
- Shirazi, A.; Hezarkhani, A.; Shirazy, A. Remote Sensing Studies for Mapping of Iron Oxide Regions, South of Kerman, IRAN. Int. J. Sci. Eng. Appl. 2018, 7, 045–051. [Google Scholar] [CrossRef]
- Chavez, P.S.; Berlin, G.L.; Sowers, L.B. Statistical method for selecting landsat mss ratios. J. Appl. Photogr. Eng. 1982, 8, 23–30. [Google Scholar]
- Salvi, S. Analysis and interpretation of Landsat synthetic stereo pair for the detection of active fault zones in the Abruzzi region (Central Italy). Remote Sens. Environ. 1995, 53, 153–163. [Google Scholar] [CrossRef]
- Yetkin, E. Alteration Mapping by Remote Sensing: Application to Hasandağ–Melendiz Volcanic Complex; Middle East Technical University: Ankara, Turkey, 2003. [Google Scholar]
- Sabins, F.F. Remote Sensing: Principles and Interpretation, 3rd ed.; W. H. Freeman and Company: New York, NY, USA, 1996. [Google Scholar]
- Jordan, G.; Schott, B. Application of wavelet analysis to the study of spatial pattern of morphotectonic lineaments in digital terrain models. A case study. Remote Sens. Environ. 2005, 94, 31–38. [Google Scholar] [CrossRef]
- Abdullah, A.; Nassr, S.; Ghaleeb, A. Landsat ETM-7 for Lineament Mapping using Automatic Extraction Technique in the SW part of Taiz area, Yemen. Globa J. Hum. Soc. Sci. Geogr. Geo-Sci. Environ. Disaster Manag. 2013, 13, 35–37. [Google Scholar]
- Middleton, M.; Schnur, T.; Sorjonen-ward, P.; Hyvönen, E. Geological lineament interpretation using the Object-Based Image Analysis Approach: Results of semi-automated analyses versus visual interpretation. Geol. Surv. Finland, Spec. Pap. 2015, 57, 135–154. [Google Scholar]
- Mallast, U.; Gloaguen, R.; Geyer, S.; Rüdiger, T.; Siebert, C. Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data. Hydrol. Earth Syst. Sci. 2011. [Google Scholar] [CrossRef] [Green Version]
- Yeomans, C.M.; Middleton, M.; Shail, R.K.; Grebby, S.; Lusty, P.A.J. Integrated Object-Based Image Analysis for semi-automated geological lineament detection in southwest England. Comput. Geosci. 2019. [Google Scholar] [CrossRef]
- Vasuki, Y.; Holden, E.J.; Kovesi, P.; Micklethwaite, S. Semi-automatic mapping of geological Structures using UAV-based photogrammetric data: An image analysis approach. Comput. Geosci. 2014. [Google Scholar] [CrossRef]
- Bonetto, S.; Facello, A.; Ferrero, A.M.; Umili, G. A tool for semi-automatic linear feature detection based on DTM. Comput. Geosci. 2015. [Google Scholar] [CrossRef]
- Zlatopolsky, A.A. Program LESSA (Lineament Extraction and Stripe Statistical Analysis) automated linear image features analysis-experimental results. Comput. Geosci. 1992, 18, 1121–1126. [Google Scholar] [CrossRef]
- Soto-Pinto, C.; Arellano-Baeza, A.; Sánchez, G. A new code for automatic detection and analysis of the lineament patterns for geophysical and geological purposes (ADALGEO). Comput. Geosci. 2013. [Google Scholar] [CrossRef]
- Rahnama, M.; Gloaguen, R. TecLines: A matlab-based toolbox for tectonic lineament analysis from satellite images and DEMs, part 1: Line segment detection and extraction. Remote Sens. 2014, 6, 5938–5958. [Google Scholar] [CrossRef] [Green Version]
- Masoud, A.; Koike, K. Applicability of computer-aided comprehensive tool (LINDA: LINeament Detection and Analysis) and shaded digital elevation model for characterizing and interpreting morphotectonic features from lineaments. Comput. Geosci. 2017, 106, 89–100. [Google Scholar] [CrossRef]
- Joshi, A.K. Automatic detection of lineaments from Landsat data. Dig.-Int. Geosci. Remote Sens. Symp. 1989, 1, 85–88. [Google Scholar] [CrossRef]
- Masoud, A.A.; Koike, K. Auto-detection and integration of tectonically significant lineaments from SRTM DEM and remotely-sensed geophysical data. ISPRS J. Photogramm. Remote Sens. 2011, 66, 818–832. [Google Scholar] [CrossRef]
- Rahnama, M.; Gloaguen, R. TecLines: A MATLAB-based toolbox for tectonic lineament analysis from satellite images and DEMs, part 2: Line segments linking and merging. Remote Sens. 2014. [Google Scholar] [CrossRef] [Green Version]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986. [Google Scholar] [CrossRef]
- Abdullah, A.; Akhir, J.M.; Abdullah, I. Automatic Mapping of Lineaments Using Shaded Relief Images Derived from Digital Elevation Model (DEMs) in the Maran-Sungi Lembing Area, Malaysia. Electron. J. Geotech. Eng. 2010, 15, 949–958. [Google Scholar]
- Akram, M.S.; Mirza, K.; Zeeshan, M.; Ali, I. Correlation of Tectonics with Geologic Lineaments Interpreted from Remote Sensing Data for Kandiah Valley, Khyber-Pakhtunkhwa, Pakistan. J. Geol. Soc. India 2019, 93, 607–613. [Google Scholar] [CrossRef]
- Gannouni, S.; Gabtni, H. Structural Interpretation of Lineaments by Satellite Image Processing (Landsat TM) in the Region of Zahret Medien (Northern Tunisia). J. Geogr. Inf. Syst. 2015. [Google Scholar] [CrossRef] [Green Version]
- Parsons, A.J.; Yearley, R.J. An analysis of geologic lineaments seen on LANDSAT MSS imagery. Int. J. Remote Sens. 1986, 7, 1773–1782. [Google Scholar] [CrossRef]
- Arlegui, L.E.; Soriano, M.A. Characterizing lineaments from satellite images and field studies in the central Ebro basin (NE Spain). Int. J. Remote Sens. 1998, 19, 3169–3185. [Google Scholar] [CrossRef]
- Madani, A. Selection of the Optimum Landsat Thematic Mapper Bands for Automatic Lineaments Extraction, Wadi Natash Area, South Eastern Desert, Egypt. Asian Conf. Remote Sens. 2001, 2, 5–9. [Google Scholar]
- Divi, R.S.; Zakir, F.A. Delineation of Tectonic Features Utilizing Satellite Remote Sensing Data: I-The Southern-Half of the Arabian Shield. Gondwana Res. 2001, 4, 159–161. [Google Scholar] [CrossRef]
- Das, D.P.; Chakraborty, D.K.; Sarkar, K. Significance of the regional lineament tectonics in the evolution of the Pranhita-Godavari sedimentary basin interpreted from the satellite data. J. Asian Earth Sci. 2003, 21, 553–556. [Google Scholar] [CrossRef]
- Leech, D.P.; Treloar, P.J.; Lucas, N.S.; Grocott, J. Landsat TM analysis of fracture patterns: A case study from the Coastal Cordillera of northern Chile. Int. J. Remote Sens. 2003, 24, 3709–3726. [Google Scholar] [CrossRef]
- Hung, L.; Batelaan, O.; Smedt, D.F. Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam. Proc. SPIE Int. Soc. Opt. Eng. 2005, 5983, 59830t. [Google Scholar] [CrossRef]
- Masoud, A.; Koike, K. Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt. J. African Earth Sci. 2006, 45, 467–477. [Google Scholar] [CrossRef]
- Gloaguen, R.; Marpu, P.R.; Niemeyer, I. Automatic extraction of faults and fractal analysis from remote sensing data. Nonlinear Process. Geophys. 2007, 14, 131–138. [Google Scholar] [CrossRef]
- Abdullah, A.; Nassr, S.; Ghaleeb, A. Remote Sensing and Geographic Information System for Fault Segments Mapping a Study from Taiz Area, Yemen. J. Geol. Res. 2013, 2013, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Šilhavý, J.; Minár, J.; Mentlík, P.; Sládek, J. A new artefacts resistant method for automatic lineament extraction using Multi-Hillshade Hierarchic Clustering (MHHC). Comput. Geosci. 2016. [Google Scholar] [CrossRef]
- Benaafi, M.; Hariri, M.; Abdullatif, O.; Makkawi, M.; Al-Shaibani, A. Analysis of lineaments within the Wajid Group, SW Saudi Arabia, and their tectonic significance. Arab. J. Geosci. 2017, 10. [Google Scholar] [CrossRef]
- Raj, N.J.; Prabhakaran, A.; Muthukrishnan, A. Extraction and analysis of geological lineaments of Kolli hills, Tamil Nadu: A study using remote sensing and GIS. Arab. J. Geosci. 2017, 10. [Google Scholar] [CrossRef]
- Bonetto, S.; Facello, A.; Umili, G. A new application of curvatool semi-automatic approach to qualitatively detect geological lineaments. Environ. Eng. Geosci. 2017. [Google Scholar] [CrossRef]
- Das, S.; Pardeshi, S.D. Comparative analysis of lineaments extracted from Cartosat, SRTM and ASTER DEM: A study based on four watersheds in Konkan region, India. Spat. Inf. Res. 2018, 26, 47–57. [Google Scholar] [CrossRef]
- Enoh, M.A.; Okeke, F.I.; Okeke, U.C. Automatic lineaments mapping and extraction in relationship to natural hydrocarbon seepage in Ugwueme, South-Eastern Nigeria. Geod. Cartogr. 2021, 47, 34–44. [Google Scholar] [CrossRef]
Satellite/Senor | Lunch Year | Band Number | Band Name | Wavelength (µ) | Spatial Resolution | Radiometric Resolution | Spectral Resolution | Temporal Resolution | Swath Width (km) |
---|---|---|---|---|---|---|---|---|---|
Landsat 1–MSS | 1972 | 4 | Green | 0.5–0.6 | 80 | 6 bits | 4 bands | 18 days | 185 |
5 | Red | 0.6–0.7 | |||||||
6 | Near–IR | 0.7–0.8 | |||||||
7 | Near-IR | 0.8–1.1 | |||||||
Landsat 2–MSS | 1975 | 4 | Green | 0.5–0.6 | 80 | 6 bits | 4 bands | 18 days | 185 |
5 | Red | 0.6–0.7 | |||||||
6 | Near–IR | 0.7–0.8 | |||||||
7 | Near-IR | 0.8–1.1 | |||||||
Landsat 3–MSS | 1978 | 4 | Green | 0.5–0.6 | 80 | 6 bits | 5 bands | 18 days | 185 |
5 | Red | 0.6–0.7 | |||||||
6 | Near–IR | 0.7–0.8 | |||||||
7 | Near-IR | 0.8–1.1 | |||||||
8 | TIR | 10.4–12.6 | |||||||
Landsat 4–TM | 1982 | 1 | Blue | 0.45–0.52 | 30 | 8 bits | 7 bands | 16 days | 185 |
2 | Green | 0.52–0.60 | |||||||
3 | Red | 0.63–0.69 | |||||||
4 | Near–IR | 0.76–0.90 | |||||||
5 | SWIR-1 | 1.55–1.75 | |||||||
6 | TIR | 10.40–12.50 | 120 | ||||||
7 | SWIR-2 | 2.08–2.35 | 30 | ||||||
Landsat 5–TM | 1984 | 1 | Blue | 0.45–0.52 | 30 | 8 bits | 7 bands | 16 days | 185 |
2 | Green | 0.52–0.60 | |||||||
3 | Red | 0.63–0.69 | |||||||
4 | Near–IR | 0.76–0.90 | |||||||
5 | SWIR-1 | 1.55–1.75 | |||||||
6 | TIR | 10.40–12.50 | 120 | ||||||
7 | SWIR-2 | 2.08–2.35 | 30 | ||||||
Landsat 7–ETM+ | 1999 | 1 | Blue | 0.45–0.52 | 30 | 8 bits | 8 bands | 16 days | 185 |
2 | Green | 0.52–0.60 | |||||||
3 | Red | 0.63–0.69 | |||||||
4 | NIR | 0.77–0.90 | |||||||
5 | SWIR–1 | 1.55–1.75 | |||||||
6 | TIR | 10.40–12.50 | 60 (30) | ||||||
7 | SWIR–2 | 2.09–2.35 | 30 | ||||||
8 | Panchromatic | 0.52–0.90 | 15 | ||||||
Landsat 8 OLI | 2013 | 1 | Coastal/ Aerosol | 0.43–0.45 | 30 | 12 bits Level 1–16 bits | 11 bands | 16 days | 185 |
2 | Blue | 0.45–0.51 | |||||||
3 | Green | 0.53–0.59 | |||||||
4 | Red | 0.64–0.67 | |||||||
5 | NIR | 0.85–0.88 | |||||||
6 | SWIR–1 | 1.57–1.65 | |||||||
7 | SWIR–2 | 2.11–2.29 | |||||||
8 | Panchromatic | 0.50–0.68 | 15 | ||||||
9 | Cirrus | 1.36–1.38 | 30 | ||||||
10 | TIRS–1 | 10.60–11.19 | 100 (30) | ||||||
11 | TIRS–2 | 11.50–12.51 | |||||||
ASTER | 1999 | 1 | VNIR | 0.52–0.60 | 15 | 8 bits | 14 bands | 16 days | 60 |
2 | 0.63–0.69 | ||||||||
3N | 0.78–0.86 | ||||||||
3B | 0.78–0.86 | ||||||||
4 | SWIR | 1.60–1.70 | 30 | 8 bits | |||||
5 | 2.145–2.185 | ||||||||
6 | 2185–2.225 | ||||||||
7 | 2.235–2.285 | ||||||||
8 | 2.295–2.365 | ||||||||
9 | 2.360–2.430 | ||||||||
10 | TIR | 8.125–8.475 | 90 | 12 bits | |||||
11 | 8.475–8.825 | ||||||||
12 | 8.925–9.275 | ||||||||
13 | 10.25–10.95 | ||||||||
14 | 10.95–11.65 | ||||||||
Sentinel 2 | 2017 | 1 | Coastal aerosol | 0.433–0.453 | 60 | 12 bits | 12 bands | 5 days | 290 |
2 | Blue | 0.458–0.523 | 10 | ||||||
3 | Green | 0.543–0.578 | |||||||
4 | Red | 0.650–0.680 | |||||||
5 | Vegetation red edge | 0.698–0.713 | 20 | ||||||
6 | Vegetation red edge | 0.733–0.748 | |||||||
7 | Vegetation red edge | 0.773–0.793 | |||||||
8 | NIR | 0.785–0.900 | 10 | ||||||
8A | Vegetation red edge | 0.855–0.875 | 20 | ||||||
9 | Water vapor | 0.935–0.955 | 60 | ||||||
10 | SWIR–Cirrus | 1.360–1.390 | 60 | ||||||
11 | SWIR | 1.565–1.655 | 20 | ||||||
12 | SWIR | 2.100–2.280 | |||||||
SPOT 5 | 2002 | 1 | Panchromatic | 0.51–0.73 | 2.5 & 5 | 8 bits | 5 bands | 2–3 days | 120 |
2 | Green | 0.50–0.59 | 10 | ||||||
3 | Red | 0.61–0.68 | |||||||
4 | NIR | 0.79–0.89 | |||||||
5 | Mid IR | 1.58–1.73 | 20 | ||||||
ASTER GDEM | - | 1 | - | - | 1 arc-sec | - | - | - | 1° × 1° |
SRTM DEM | - | 1 | - | - | 3 arc-sec | - | - | - | 5° × 5° |
CartoDEM | 2005 | 1 | - | - | 1 arc-sec | - | - | - | 1° × 1° |
JERS-1 SAR | 1992 | 1 | L | 2.35e + 7 (23.5 cm) | 18 | 3 bits | 1 band | 44 | 75 |
IRS LISS III | 1995 | 2 | Green | 0.52–0.59 | 23.5 | 7 bits | 5 bands | 24 | 142 |
3 | Red | 0.62–0.68 | |||||||
4 | NIR | 0.77–0.86 | |||||||
5 | SWIR | 1.55–1.70 | 70 | 148 | |||||
ERS-1 SAR | 1991 | 1 | C | 5,660,000 (5.66 cm) | 10–30 | 5 bits | 1 band | 35 | 100 |
ERS-2 SAR | 1995 | 1 | C | 5,660,000 (5.66 cm) | 10–30 | 5 bits | 1 band | 35 | 100 |
PALSAR | 2006 | 1 | L | 2.29e + 7 (22.9 cm) | 10 30 100 | 5 bits | 1 band | 45 | 30 70 250–350 |
Sentinel 1 | 2014 | 1 | C | 3.75 0 7.5 cm | 5 × 5 5 × 20 20 × 40 | 1 band | 12 | 80 250 400 100 |
North | 1 | 1 | 1 | Northeast | 1 | 1 | 1 |
1 | −2 | 1 | −1 | −2 | 1 | ||
−1 | −1 | −1 | −1 | −1 | 1 | ||
East | −1 | 1 | 1 | Southeast | −1 | −1 | 1 |
−1 | −2 | 1 | −1 | −2 | 1 | ||
−1 | 1 | 1 | 1 | 1 | 1 | ||
South | −1 | −1 | −1 | Southwest | 1 | −1 | −1 |
1 | −2 | 1 | 1 | −2 | −1 | ||
1 | 1 | 1 | 1 | 1 | 1 | ||
West | 1 | 1 | −1 | Northwest | 1 | 1 | 1 |
1 | −2 | −1 | 1 | −2 | −1 | ||
1 | 1 | −1 | 1 | −1 | −1 |
N-S | NW-SW | E-W | NW-SE | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sobel filter window | −1 | 0 | 1 | −2 | −1 | 0 | −1 | −2 | −1 | 0 | 1 | 2 |
−2 | 0 | 2 | −1 | 0 | 1 | 0 | 0 | 0 | −1 | 0 | 1 | |
−1 | 0 | 1 | 0 | 1 | 2 | 1 | 2 | 1 | −2 | −1 | 0 | |
Prewitt filter window | −1 | 0 | 1 | −1 | −1 | 0 | −1 | −1 | −1 | 0 | 1 | 1 |
−1 | 0 | 1 | −1 | 0 | 1 | 0 | 0 | 0 | −1 | 0 | 1 | |
−1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | −1 | −1 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi, H.; Pekkan, E. Fault-Based Geological Lineaments Extraction Using Remote Sensing and GIS—A Review. Geosciences 2021, 11, 183. https://doi.org/10.3390/geosciences11050183
Ahmadi H, Pekkan E. Fault-Based Geological Lineaments Extraction Using Remote Sensing and GIS—A Review. Geosciences. 2021; 11(5):183. https://doi.org/10.3390/geosciences11050183
Chicago/Turabian StyleAhmadi, Hemayatullah, and Emrah Pekkan. 2021. "Fault-Based Geological Lineaments Extraction Using Remote Sensing and GIS—A Review" Geosciences 11, no. 5: 183. https://doi.org/10.3390/geosciences11050183
APA StyleAhmadi, H., & Pekkan, E. (2021). Fault-Based Geological Lineaments Extraction Using Remote Sensing and GIS—A Review. Geosciences, 11(5), 183. https://doi.org/10.3390/geosciences11050183