Burial and Heat Flux Modelling along a Southern Vøring Basin Transect: Implications for the Petroleum Systems and Thermal Regimes in the Deep Mid-Norwegian Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Setup and Parameterization
2.2. Thermal Model Calibration
2.3. Mid-Norway Margin Heat Flux and Thermal Regimes
3. Results
3.1. Heat Flux History
3.2. Maturity History
- The uppermost Turonian horizon (90 Ma) is predicted to reach mid- to late-oil maturity in the distal margin (Vigrid Syncline and Gjallar Ridge) during Cenozoic burial (late Eocene onwards), with some potential for recent oil expulsion depending on kerogen type (Figure 7b). However, across most of the Vigrid Syncline and Rås Basin, the model predicts an immature or early-oil maturity late Turonian (or Coniacian-Santonian) horizon.
- Pervasive oil and/or gas maturity is predicted for the late Albian–Cenomanian horizon (98 Ma) in the intermediate and distal sectors of the margin during the latest Cretaceous–Cenozoic burial (Figure 7c). In the Rås Basin, mid-oil maturity is reached between the Paleocene and the Oligocene, with the potential for recent oil and some gas generation, depending on the kerogen kinetics. In the Vigrid Syncline and Fenris Graben, gas window maturity is predicted during the late stages of rifting and continental break-up, and the recent oil and gas generation and expulsion is likely to focus along the flanks of these basins and the Gjallar Ridge.
- The Aptian–Albian horizon (113 Ma) is predicted to reach gas maturity and post-maturity during the latest Cretaceous–Eocene burial over most of the deep margin, with the exception of the Gjallar Ridge area, where there is potential for recent oil and/or gas generation and expulsion (Figure 7d).
4. Discussion
4.1. Hot and Cold Models
4.2. Timing and Style of Rifting
4.3. Deep-Seated Thermal Anomalies and Hydrothermal Circulation
4.4. Maturity (Charge) Risk Analysis
4.5. Future Work and Model Improvements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Dore, A.; Lundin, E.R.; Jensen, L.N.; Birkeland, O.; Eliassen, P.E.; Fichler, C. Principal tectonic events in the evolution of the northwest European Atlantic margin. In Petroleum Geology of Northwest Europe: Proceedings of the Fifth Conference; Fleet, A.J., Boldy, S.A.R., Eds.; Geological Society: London, UK, 1999; pp. 41–61. [Google Scholar]
- Brekke, H. The tectonic evolution of the Norwegian Sea Continental Margin with emphasis on the Vøring and More Basins. In Dynamics of the Norwegian Margin; Nøttvedt, A., Larsen, B.T., Olaussen, S., Tørudbakken, B., Skogseid, J., Gabnelson, R.H., Brekke, H., Birkeland, O., Eds.; Geological Society Special Publication: London, UK, 2000; Volume 167, pp. 327–378. [Google Scholar]
- Reemst, P.; Cloetingh, S. Polyphase rift evolution of the Vøring margin (mid-Norway): Constraints from forward tectonostatigraphic modeling. Tectonophysics 2000, 19, 225–240. [Google Scholar] [CrossRef]
- Blystad, P.; Brekke, H.; Færseth, R.B.; Larsen, B.T.; Skogseid, J.; Tørudbakken, B. Structural elements of the Norwegian continental shelf. Nor. Pet. Dir. Bull. 1995, 8, 45. [Google Scholar]
- Scheck-Wenderoth, M.; Maystrenko, Y. 3D lithospheric-scale structural model of the Norwegian continental margin (the Vøring and Møre basins)—Data. GFZ Data Serv. 2008. [Google Scholar] [CrossRef]
- Riis, F.; Fjeldskaar, W. On the magnitude of the Late Tertiary and Quaternary erosion and its significance for the uplift of Scandinavia and the Barents Sea. In Structural and Tectonic Modelling and Its Application to Petroleum Geology; Larsen, R.M., Brekke, H., Larsen, B.T., Talleraas, E., Eds.; Elsevier: Amsterdam, The Netherlands, 1992; pp. 163–185. [Google Scholar]
- Matapour, Z.; Karlsen, D.A. Ages of Norwegian oils and bitumen based on age-specific. Pet. Geosci. 2018, 24, 92–101. [Google Scholar] [CrossRef]
- Cunha, T.A.; Rasmussen, H.; Akinwumiju, A.A.; Farrimond, P. Geochemistry and Basin Modelling in the Deep Vøring Margin: Implications for the Petroleum Systems and Basin Prospectivity. In Proceedings of the Norwegian Petroleum Society Petroleum Systems Conference, Oslo, Norway, 2–3 February 2021. [Google Scholar]
- Brekke, H.; Dahlgren, S.; Nyland, B.; Magnus, C. The prospectivity of the Vøring and Møre basins on the Norwegian Sea continental margin. In Petroleum Geology of Northwest Europe: Proceedings of the Fifth Conference; Fleet, A.J., Boldy, S.A.R., Eds.; Geological Society: London, UK, 1999; pp. 261–274. [Google Scholar]
- Wangen, M.; Fjeldskaar, W.; Faleide, J.I.; Wilson, J.; Zweigel, J.; Austegard, A. Forward modeling of stretching episodes and paleo heat flow of the Vøring Margin, NE Atlantic. J. Geodyn. 2008, 45, 83–98. [Google Scholar] [CrossRef]
- Theissen, S.; Rüpke, L.H. Feedbacks of sedimentation on crustal heat flow: New insights from the Vøring Basin, Norwegian Sea. Basin Res. 2010, 22, 976–990. [Google Scholar] [CrossRef]
- Rüpke, L.H.; Schmid, D.W.; Perez-Gussinye, M.; Hartz, E. Interrelation between rifting, faulting, sedimentation, and mantle serpentinization during continental margin formation—including examples from the Norwegian Sea. Geochem. Geophys. Geosyst. 2013, 14, 4351–4369. [Google Scholar] [CrossRef] [Green Version]
- Maystrenko, Y.P.; Gernigon, L. 3D temperature distribution beneath the Mid-Norwegian continental margin (the Vøring and Møre basins). Geophys. J. Int. 2018, 212, 694–724. [Google Scholar] [CrossRef]
- Sundvor, E.; Eldholm, O.; Gladczenko, T.P.; Planke, S. Norwegian–Greenland Sea thermal field. In Dynamics of the Norwegian Margin; Nøttvedt, A., Ed.; Geological Society Special Publication: London, UK, 2000; Volume 167, pp. 397–410. [Google Scholar]
- Ritter, U.; Zielinski, G.W.; Weiss, H.M.; Zielinski, R.L.B.; Sættem, J. Heat flow in the Vøring Basin, mid. Norwegian shelf. Pet. Geosci. 2004, 10, 353–365. [Google Scholar] [CrossRef]
- Rüpke, L.H.; Schmalholz, S.M.; Schmid, D.W.; Podiadchikov, Y.Y. Automated thermo-tectonostratigraphic basin reconstruction: Viking Graben case study. AAPG Bull. 2008, 92, 309–326. [Google Scholar] [CrossRef]
- Souche, A.; Schmid, D.W.; Rupke, L. Interrelation between surface and basement heat flow in sedimentary basins. AAPG Bull. 2017, 101, 1697–1713. [Google Scholar] [CrossRef]
- Kim, Y.; Huh, M.; Lee, E.Y. Numerical Modelling to Evaluate Sedimentation Effects on Heat Flow and Subsidence during Continental Rifting. Geosciences 2020, 10, 451. [Google Scholar] [CrossRef]
- Gernigon, L.; Franke, D.; Geoffroy, L.; Schiffer, C.; Foulger, G.R.; Stoker, M. Crustal fragmentation, magmatism, and the diachronous opening of the Norwegian-Greenland Sea. Earth Sci. Rev. 2019. [Google Scholar] [CrossRef]
- Sekiguchi, K. A method for determining terrestrial heat flow in oil basinal areas. Tectonophysics 1984, 103, 67–79. [Google Scholar] [CrossRef]
- Gernigon, L.; Lucazeau, F.; Brigaud, F.; Ringenbachd, J.-C.; Planke, S.; Le Gall, B. A moderate melting model for the Vøring margin (Norway) based on structural observations and a thermo-kinematical modelling: Implications for the meaning of the lower crustal bodies. Tectonophysics 2006, 412, 255–278. [Google Scholar] [CrossRef] [Green Version]
- Olesen, O.; Brönner, M.; Ebbing, J.; Gellein, J.; Gernigon, L.; Koziel, J.; Lauritsen, T.; Myklebust, R.; Pascal, C.; Sand, M. New aeromagnetic and gravity compilations from Norway and adjacent areas: Methods and applications. In Geological Society, London, Petroleum Geology Conference Series; Geological Society: London, UK, 2010; pp. 559–586. [Google Scholar]
- Gernigon, L.; Blischke, A.; Nasuti, A.; Sand, M. Conjugate volcanic rifted margins, seafloor spreading, and microcontinent: Insights from new high-resolution aeromagnetic surveys in the Norway Basin. Tectonics 2015, 34, 907–933. [Google Scholar] [CrossRef]
- Berndt, C.; Planke, S.; Alvestad, E.; Tsikalas, F.; Rasmussen, T. Seismic volcanostratigraphy of the Norwegian Margin: Constraints on tectonomagmatic break-up processes. J. Geol. Soc. 2001, 158, 413–426. [Google Scholar] [CrossRef] [Green Version]
- Maystrenko, Y.P.; Gernigon, L.; Nasuti, A.; Olesen, O. Deep structure of the Mid-Norwegian continental margin (the Vøring and Møre basins) according to 3D density and magnetic modelling. Geophys. J. Int. 2018, 212, 1696–1721. [Google Scholar] [CrossRef]
- Eldholm, O.; Gladczenko, T.P.; Skogseid, J.; Planke, S. Atlantic volcanic margins: A comparative study. In Dynamics of the Norwegian Margin; Nøttvedt, A., Larsen, B.T., Olaussen, S., Tørudbakken, B., Skogseid, J., Gabnelson, R.H., Brekke, H., Birkeland, O., Eds.; Geological Society Special Publication: London, UK, 2000; Volume 167, pp. 411–428. [Google Scholar]
- Gernigon, L.; Ringenbach, J.C.; Planke, S.; Le Gall, B. Deep structures and breakup along volcanic rifted margins: Insights from integrated studies along the outer Vøring Basin (Norway). Marine Pet. Geol. 2004, 21, 363–372. [Google Scholar] [CrossRef]
- Lundin, E.R.; Dore, A.G. Hyperextension, serpentinization, and weakening: A new paradigm for rifted margin compressional deformation. Geology 2011, 39, 347–350. [Google Scholar] [CrossRef]
- Peron-Pinvidic, G.; Osmundsen, P.T. The Mid Norwegian—NE Greenland conjugate margins: Rifting evolution, margin segmentation, and breakup. Marine Pet. Geol. 2018, 98, 162–184. [Google Scholar] [CrossRef]
- Zastrozhnov, D.; Gernigon, L.; Gogin, I.; Abdelmalak, M.M.; Planke, S.; Faleide, J.I.; Eide, S.; Myklebust, R. Cretaceous-paleocene evolution and crustal structure of the northern Vøring margin (offshore mid-Norway): Results from integrated geological and geophysical study. Tectonics 2018, 37, 497–528. [Google Scholar] [CrossRef]
- Nielsen, S.B.; Clausen, O.R.; McGregor, E. basin%Ro: A vitrinite reflectance model derived from basin and laboratory data. Basin Res. 2017, 29, 515–536. [Google Scholar] [CrossRef]
- Pascal, C. Heat flow of Norway and its continental shelf. Marine Pet. Geol. 2015, 66, 956–969. [Google Scholar] [CrossRef]
- IHFC the International Heat Flow Commission. Available online: http://ihfc-iugg.org/ (accessed on 31 January 2021).
- Sundvor, E.; Myhre, A.M.; Eldholm, O. Norway: Offshore and north-east Atlantic. In Geothermal Atlas of Europe; Hurtig, E., Cermak, W., Haenel, R., Zul, V., Eds.; GeoForschungZentrum: Potsdam, Germany, 1991; Volume 1, pp. 63–66. [Google Scholar]
- Sundvor, E.; Myhre, A.M.; Eldholm, O. Heat Flow Measurements on the Norwegian Continental Margin during the FLUNORGE Project; Seismo-Series; University of Bergen: Bergen, Norway, 1989; Volume 27. [Google Scholar]
- Eldholm, O.; Sundvor, E.; Vogt, P.R.; Hjelstuen, B.O.; Crane, K.; Nilsen, A.K.; Gladczenko, T.P. SW Barents Sea continental margin heat flow and Haskon Mosby Mud Volcano. Geo-Marine Lett. 1999, 19, 29–37. [Google Scholar] [CrossRef]
- Bryn, P.; Berg, K.; Forberg, C.F.; Solheim, A.; Kvalstad, T.J. Explaining the Storegga Slide. Marine Pet. Geol. 2005, 22, 11–19. [Google Scholar] [CrossRef]
- Jarvis, G.T.; McKenzie, D.P. Sedimentary basin formation with finite extension rates. Earth Planet. Sci. Lett. 1980, 48, 42–52. [Google Scholar] [CrossRef]
- Cochran, J.R. Effects of finite rifting times on the development of sedimentary basins. Earth Planet. Sci. Lett. 1983, 66, 289–302. [Google Scholar] [CrossRef]
- Davis, M.; Kusznir, N. Depth-dependent lithospheric stretching at rifted margins. In Rheology and Deformation of the Lithosphere at Continental Margins; Karner, G.D., Taylor, B., Driscol, N.W., Kohlstedt, D.L., Eds.; Columbia University Press: New York, NY, USA, 2004; pp. 92–137. [Google Scholar]
- Kusznir, N.J.; Hunsdale, R.; Roberts, A.M.; iSIMM Team. Timing and magnitude of depth-dependent lithosphere stretching on the S. Lofoten and N. Vøring continental margins offshore mid-Norway: Implications for subsidence and hydrocarbon maturation at volcanic rifted margins. In Geological Society, London, Petroleum Geology Conference Series; Dore, A.G., Vining, B.A., Eds.; Geological Society: London, UK, 2005; pp. 767–783. [Google Scholar]
- Crosby, A.G.; White, N.J.; Edwards, G.R.H.; Thompson, M.; Corfield, R.; Mackay, L. Evolution of deep-water rifted margins: Testing depth-dependent extensional models. Tectonics 2011, 30. [Google Scholar] [CrossRef]
- Reston, T.J. Polyphase faulting during the development of West Galicia rifted margin. Earth Planet. Sci. Lett. 2005, 237, 561–576. [Google Scholar] [CrossRef]
- Ranero, C.R.; Perez-Gussinye, M. Sequential faulting explains the asymmetry and extension discrepancy of conjugate margins. Nature 2010, 468, 294–299. [Google Scholar] [CrossRef]
- Fernandez, M.; Torne, M.; Garcia-Castellanos, D.; Verges, J.; Wheeler, W.; Karpuz, R. Deep structure of the Vøring Margin: The transition from a continental shield to a young oceanic lithosphere. Earth Planet. Sci. Lett. 2000, 221, 131–144. [Google Scholar] [CrossRef]
- Fernandez, M.; Ayala, C.; Torne, M.; Verges, J.; Gomez, M.; Karpuz, R. Lithospheric structure of the mid-Norwegian margin: Comparison between the Møre and Vøring margins. J. Geol. Soc. 2005, 162, 1005–1012. [Google Scholar] [CrossRef]
- Clift, P.D.; Turner, J. Dynamic support by the Icelandic plume and vertical tectonics of the Northeast Atlantic continental margins. J. Geophys. Res. 1995, 100, 24473–24486. [Google Scholar] [CrossRef]
- Skogseid, J.; Planke, S.; Faleide, J.I.; Pedersen, T.; Eldholm, O.; Neverdal, F. NE Atlantic continental rifting and volcanic margin formation. In Dynamics of the Norwegian Margin; Nøttvedt, A., Larsen, B.T., Olaussen, S., Tørudbakken, B., Skogseid, J., Gabnelson, R.H., Brekke, H., Birkeland, O., Eds.; Geological Society Special Publication: London, UK, 2000; Volume 167, pp. 52–82. [Google Scholar]
- King, S.D.; Anderson, D.L. Edge-driven convection. Earth Planet. Sci. Lett. 1998, 160, 289–296. [Google Scholar] [CrossRef]
- Boutilier, R.R.; Keen, C.E. Small-scale convection and divergent plate boundaries. J. Geophys. Res. 1999, 104, 7389–7403. [Google Scholar] [CrossRef]
- Planke, S.; Rasmussen, T.; Rey, S.S.; Myklebust, R. Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. In Geological Society, London, Petroleum Geology Conference Series; Dore, A.G., Vining, B.A., Eds.; Geological Society: London, UK, 2005; pp. 833–844. [Google Scholar]
- Simoneit, B.R.T. Hydrothermal Activity and its Effects on Sedimentary Organic Matter. In Bitumens in Ore Deposits; Parnell, J., Kucha, H., Landais, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; Volume 9. [Google Scholar] [CrossRef]
- Duddy, I.R.; Green, P.F.; Hegarty, K.A.; Bray, R.J.; O’Brien, G.W. Dating and duration of hot fluid flow events determined using AFTA. In Dating and Duration of Fluid Flow and Fluid-Rock Interaction; Parnell, J., Ed.; Geological Society Special Publication: London, UK, 1998; Volume 144, pp. 41–51. [Google Scholar]
- Osmundsen, P.T.; Peron-Pinvidic, G. Crustal-Scale Fault Interaction at Rifted Margins and the Formation of Domain-Bounding Breakaway Complexes: Insights from Offshore Norway. Tectonics 2018, 37, 935–964. [Google Scholar] [CrossRef]
- Grollimund, B.; Zoback, M. Post glacial lithospheric flexure and induced stresses and pore pressure changes in the northern North Sea. Tectonophysics 2000, 327, 61–81. [Google Scholar] [CrossRef]
- Berndt, C.; Bunz, S.; Clayton, T.; Mienert, M.; Saunders, M. Seismic character of bottom simulating reflectors: Examples from the Mid-Norwegian margin. Marine Pet. Geol. 2004, 21, 723–733. [Google Scholar] [CrossRef]
- Osmundsen, P.T.; Peron-Pinvidic, G.; Ebbing, J.; Erratt, D.; Fjellanger, E.; Bergslien, D.; Syvertsen, S.E. Extension, hyperextension and mantle exhumation offshore Norway: A discussion based on 6 crustal transects. Nor. J. Geol. 2016, 96, 343–372. [Google Scholar] [CrossRef]
- Gardiner, D.; Schofield, N.; Finlay, A.; Mark, M.; Holt, L.; Grove, C.; Forster, C.; Moore, J. Modeling petroleum expulsion in sedimentary basins: The importance of igneous intrusion timing and basement composition. Geology 2019, 47, 904–908. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.Y.; Wolfgring, E.; Tejada, M.L.G.; Harry, D.L.; Wainman, C.C.; Chun, S.S.; Schnetger, B.; Brumsack, H.-J.; Maritati, A.; Martinez, M.; et al. IODP Expedition 369 Science Party. Early Cretaceous subsidence of the Naturaliste Plateau defined by a new record of volcaniclastic-rich sequence at IODP Site U1513. Gondwana Res. 2020, 82, 1–11. [Google Scholar] [CrossRef]
- Villinger, H.W.; Trehu, A.M.; Grevemeyer, I. Chapter 18: Seafloor marine heat flux measurements and estimation of heat flux from seismic observations of bottom simulating reflectors. In Geophysical Characterization of Gas Hydrates; Riedel, M., Willoughby, E.C., Chopra, S., Eds.; Society of Exploration Geophysicists: Tulsa, OK, USA, 2010; Volume 279. [Google Scholar]
- Lucazeau, F.; Brigaud, F.; Bouroullec, J.L. High-resolution heat flow density in the lower Congo basin. Geochem. Geophys. Geosyst. 2004, 5, Q03001. [Google Scholar] [CrossRef]
- Bünz, S.; Mienert, J.; Berndt, C. Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin. Earth Planet. Sci. Lett. 2003, 209, 291–307. [Google Scholar] [CrossRef]
Model Layer | Density (km∙m−3) | Thermal Expansion (K−1) | RHP (W∙m−3) | Thermal Conductivity (W∙m−1∙K−1) | Surface Porosity (%) | Compaction Length (km−1) |
---|---|---|---|---|---|---|
Mantle lithosphere | 3340 | 3.2 × 10−5 | 3.0 × 10−8 | 6.0 | -- | -- |
Oceanic crust | 2800 | 2.4 × 10−5 | 5.0 × 10−7 | 2.0 | -- | -- |
Lower crust | 2900 | 2.4 × 10−5 | 8.0 × 10−7 | 3.0 | -- | -- |
Upper crust | 2700 | 2.4 × 10−5 | 3.0 × 10−6 | 3.5 | -- | -- |
Underplating | 2900 | 2.4 × 10−5 | 5.0 × 10−7 | 2.5 | -- | -- |
1. Miocene-Recent (23-0 Ma) | 2715 | - | 1.0 × 10−6 | 1.8 | 60 | 0.22 |
2. Oligocene Ooze (28-23 Ma) | 2720 | - | 5.0 × 10−7 | 0.8 | 60 | 0.20 |
3. Eocene-Oligocene (52-28 Ma) | 2715 | - | 1.3 × 10−6 | 1.6 | 62 | 0.21 |
4. Paleocene (66-52 Ma) | 2600 | - | 1.1 × 10−6 | 2.1 | 57 | 0.24 |
5. Campanian-Maastricht. (84-66 Ma) | 2710 | - | 1.2 × 10−6 | 1.9 | 59 | 0.23 |
6. Coniacian-Santonian (90-84 Ma) | 2700 | - | 0 | 3.0 | 42 | 0.25 |
7. Cenomanian-Turonian (98-90 Ma) | 2710 | - | 1.0 × 10−6 | 1.9 | 59 | 0.23 |
8. Albian-Cenomanian (113-98 Ma) | 2705 | - | 1.0 × 10−6 | 2.15 | 56 | 0.26 |
9. Early Cretaceous (145-113 Ma) | 2715 | - | 1.4 × 10−6 | 2.05 | 60 | 0.22 |
10. Late Jurassic (160-145 Ma) | 2700 | - | 1.0 × 10−6 | 2.0 | 56 | 0.26 |
11. Triassic-Jurassic (250-160 Ma) | 2700 | - | 8.0 × 10−7 | 2.5 | 55 | 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, T.A.; Rasmussen, H.; Villinger, H.; Akinwumiju, A.A. Burial and Heat Flux Modelling along a Southern Vøring Basin Transect: Implications for the Petroleum Systems and Thermal Regimes in the Deep Mid-Norwegian Sea. Geosciences 2021, 11, 190. https://doi.org/10.3390/geosciences11050190
Cunha TA, Rasmussen H, Villinger H, Akinwumiju AA. Burial and Heat Flux Modelling along a Southern Vøring Basin Transect: Implications for the Petroleum Systems and Thermal Regimes in the Deep Mid-Norwegian Sea. Geosciences. 2021; 11(5):190. https://doi.org/10.3390/geosciences11050190
Chicago/Turabian StyleCunha, Tiago Abreu, Henrik Rasmussen, Heinrich Villinger, and Akinniyi Akintoye Akinwumiju. 2021. "Burial and Heat Flux Modelling along a Southern Vøring Basin Transect: Implications for the Petroleum Systems and Thermal Regimes in the Deep Mid-Norwegian Sea" Geosciences 11, no. 5: 190. https://doi.org/10.3390/geosciences11050190
APA StyleCunha, T. A., Rasmussen, H., Villinger, H., & Akinwumiju, A. A. (2021). Burial and Heat Flux Modelling along a Southern Vøring Basin Transect: Implications for the Petroleum Systems and Thermal Regimes in the Deep Mid-Norwegian Sea. Geosciences, 11(5), 190. https://doi.org/10.3390/geosciences11050190