Gaussian Transformation Methods for Spatial Data
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bostan, P.A.; Heuvelink, G.B.M.; Akyurek, S.Z. Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 115–126. [Google Scholar] [CrossRef]
- Theodoridou, P.G.; Varouchakis, E.A.; Karatzas, G.P. Spatial analysis of groundwater levels using Fuzzy Logic and geostatistical tools. J. Hydrol. 2017, 555, 242–252. [Google Scholar] [CrossRef]
- Varouchakis, E.A.; Theodoridou, P.G.; Karatzas, G.P. Spatiotemporal geostatistical modeling of groundwater levels under a Bayesian framework using means of physical background. J. Hydrol. 2019, 575, 487–498. [Google Scholar] [CrossRef]
- Clark, I.; Harper, W.V. Practical Geostatistics 2000; Ecosse North America Llc: Columbus, OH, USA, 2000. [Google Scholar]
- Mcgrath, D.; Zhang, J.E.; Qu, L.T. Temporal and spatial distribution of sediment total organic carbon in an estuary river. J. Environ. Qual. 2004, 35, 93–100. [Google Scholar]
- Gringarten, E.; Deutsch, C.V. Teacher’s aide: Variogram interpretation and modeling. Math. Geol. 2001, 33, 507–534. [Google Scholar] [CrossRef]
- Armstrong, M. Basic Linear Geostatistics; Springer: Berlin, Germany, 1998. [Google Scholar]
- Pardo-Iguzquiza, E.; Dowd, P. Empirical maximum likelihood Kriging: The general case. Math. Geol. 2005, 37, 477–492. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Deutsch, C.V.; Journel, A.G. GSLIB. Geostatistical Software Library and User’s Guide; Oxford University Press: New York, NY, USA, 1992. [Google Scholar]
- Goovaerts, P.; AvRuskin, G.; Meliker, J.; Slotnick, M.; Jacquez, G.; Nriagu, J. Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Asa, E.; Saafi, M.; Membah, J.; Billa, A. Comparison of Linear and Nonlinear Kriging Methods for Characterization and Interpolation of Soil Data. J. Comput. Civ. Eng. 2012, 26, 11–18. [Google Scholar] [CrossRef]
- Varouchakis, E.A.; Hristopulos, D.T.; Karatzas, G.P. Improving kriging of groundwater level data using nonlinear normalizing transformations-a field application. Hydrol. Sci. J. 2012, 57, 1404–1419. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Marshall, L.; Sharma, A. The influence of data transformations in simulating Total Suspended Solids using Bayesian inference. Environ. Modell. Softw. 2019, 121, 104493. [Google Scholar] [CrossRef]
- Verdin, A.; Rajagopalan, B.; Kleiber, W.; Funk, C. A Bayesian kriging approach for blending satellite and ground precipitation observations. Water Resour. Res. 2015, 51, 908–921. [Google Scholar] [CrossRef]
- McInerney, D.; Thyer, M.; Kavetski, D.; Bennett, B.; Lerat, J.; Gibbs, M.; Kuczera, G. A simplified approach to produce probabilistic hydrological model predictions. Environ. Modell. Softw. 2018, 109, 306–314. [Google Scholar] [CrossRef]
- Wang, Q.J.; Shrestha, D.L.; Robertson, D.E.; Pokhrel, P. A log-sinh transformation for data normalization and variance stabilization. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Varouchakis, E.A.; Hristopulos, D.T.; Karatzas, G.P.; Corzo Perez, G.A.; Diaz, V. Spatiotemporal geostatistical analysis of precipitation combining ground and satellite observations. Hydrol. Res. 2021. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.C.; Brus, D.J.; Rico-Ramirez, M.A.; Heuvelink, G.B.M. Sampling design optimisation for rainfall prediction using a non-stationary geostatistical model. Adv. Water Resour. 2017, 107, 126–138. [Google Scholar] [CrossRef]
- Bárdossy, A.; Pegram, G. Interpolation of precipitation under topographic influence at different time scales. Water Resour. Res. 2013, 49, 4545–4565. [Google Scholar] [CrossRef]
- Markonis, Y.; Batelis, S.C.; Dimakos, Y.; Moschou, E.; Koutsoyiannis, D. Temporal and spatial variability of rainfall over Greece. Theor. Appl. Climatol. 2017, 130, 217–232. [Google Scholar] [CrossRef]
- Iliopoulou, T.; Koutsoyiannis, D.; Montanari, A. Characterizing and Modeling Seasonality in Extreme Rainfall. Water Resour. Res. 2018, 54, 6242–6258. [Google Scholar] [CrossRef]
- Iliopoulou, T.; Koutsoyiannis, D. Projecting the future of rainfall extremes: Better classic than trendy. J. Hydrol. 2020, 588, 125005. [Google Scholar] [CrossRef]
- Malamos, N.; Koutsoyiannis, D. Bilinear surface smoothing for spatial interpolation with optional incorporation of an explanatory variable. Part 2: Application to synthesized and rainfall data. Hydrol. Sci. J. 2016, 61, 527–540. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Paschalis, A.; Theodoratos, N. Two-dimensional Hurst–Kolmogorov process and its application to rainfall fields. J. Hydrol. 2011, 398, 91–100. [Google Scholar] [CrossRef]
- Diodato, N. The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Int. J. Climatol. 2005, 25, 351–363. [Google Scholar] [CrossRef]
- Ly, S.; Charles, C.; Degré, A. Geostatistical interpolation of daily rainfall at catchment scale: The use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrol. Earth Syst. Sci. 2011, 15, 2259–2274. [Google Scholar] [CrossRef] [Green Version]
- Special Water Secretariat of Greece. National Water Monitoring Network, Groundwater Data, Athens, Greece (In Greek). Available online: http://nmwn.ypeka.gr/?q=groundwater-stations (accessed on 20 October 2020).
- Enomoto, C.; Lohr, C.; Hackley, P.; Valentine, B.; Dulong, F.; Hatcherian, J. Petroleum Geology Data from Mesozoic Rock Samples in the Eastern US Gulf Coast Collected 2011 to 2017. US Geol. Survey Data Release 2018. [Google Scholar] [CrossRef]
- Osborne, J. Improving your data transformations: Applying the Box-Cox transformation. Pract. Assess. Res. Eval. 2010, 15, 12. [Google Scholar]
- Hristopulos, D.T. Random Fields for Spatial Data Modeling; Springer/Nature: Dordrecht, The Netherlands, 2020. [Google Scholar]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B 1964, 26, 211–252. [Google Scholar] [CrossRef]
- Sakia, R.M. The Box-Cox transformation technique: A review. JRSSD 1992, 41, 169–178. [Google Scholar] [CrossRef]
- Yeo, I.K.; Johnson, R.A. A new family of power transformations to improve normality or symmetry. Biometrika 2000, 87, 954–959. [Google Scholar] [CrossRef]
- Weisberg, S. Yeo-Johnson power transformations. Dep. Appl. Stat. Univ. Minn. Retrieved June 2001, 1, 2003. [Google Scholar]
- Atkinson, A.B. The box-cox transformation: Review and extensions. Stat. Sci. 2020, 36, 239–255. [Google Scholar]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Varouchakis, E.A. Evarouchakis/Modified-Box-Cox: Modified Box-Cox. Available online: https://zenodo.org/record/4688056#.YIy4jvkzaUk (accessed on 20 October 2020).
Method | Advantages | Disadvantages |
---|---|---|
Log | Right skewed data, log10(x) is especially good at handling higher order powers of 10 | Zero values Negative values |
Square Root | Right skewed data | Negative values |
Square | Left skewed data | Negative values |
Cube Root | Right skewed data Negative values | Not as effective at normalizing as log transform |
1/x | Making small values bigger and big values smaller | Zero values Negative values |
Statistical Metrics | Original Data | Cube Root | Box-Cox | Yeo and Johnson Box-Cox Extension | Modified Box-Cox |
---|---|---|---|---|---|
Kurtosis (k) | 5.78 | 3.31 | 2.61 | 3.21 | 3.00 |
Skewness (s) | 1.41 | 0.6 | 0.12 | 0.27 | 0.22 |
Detrended Data | Cube Root | Box-Cox | Yeo and Johnson Box-Cox Extension | Modified Box-Cox | |
Kurtosis (k) | 5.46 | 1.5 | NA | 4.34 | 4.17 |
Skewness (s) | 0.98 | 0.29 | NA | 0.18 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varouchakis, E.A. Gaussian Transformation Methods for Spatial Data. Geosciences 2021, 11, 196. https://doi.org/10.3390/geosciences11050196
Varouchakis EA. Gaussian Transformation Methods for Spatial Data. Geosciences. 2021; 11(5):196. https://doi.org/10.3390/geosciences11050196
Chicago/Turabian StyleVarouchakis, Emmanouil A. 2021. "Gaussian Transformation Methods for Spatial Data" Geosciences 11, no. 5: 196. https://doi.org/10.3390/geosciences11050196
APA StyleVarouchakis, E. A. (2021). Gaussian Transformation Methods for Spatial Data. Geosciences, 11(5), 196. https://doi.org/10.3390/geosciences11050196