Liquefaction Phenomena Induced by the 26 November 2019, Mw = 6.4 Durrës (Albania) Earthquake and Liquefaction Susceptibility Assessment in the Affected Area
Abstract
:1. Introduction
2. The 26 November 2019, Mw = 6.4, Durrës (Albania) Earthquake
3. Geology of the Earthquake-Affected Areas
3.1. Western Most Affected Area
3.2. Eastern Most Affected Area
4. Historical and Recent Seismicity of the November 2019 Durrës Earthquake-Affected Area
5. Liquefaction Induced by the November 2019 Durrës Earthquake
5.1. Liquefaction History of the Area Affected by the November 2019 Earthquake
5.2. Deformation Expected in Durrës Affected Area and its Liquefaction Potential
- Areas of big deformation on free surface, with predominant periods larger than 0.5–0.6 s and seismic intensities larger than IXMSK-64.
- Areas with predominant periods equal to 0.4–0.5 s and seismic intensities ranging from VIII½MSK-64 to IXMSK-64.
- Steep slopes more than 15°.
5.3. Liquefaction Phenomena Induced by the November 2019 Earthquake
5.3.1. Liquefaction Phenomena in the Coastal Part of Southern Durrës
5.3.2. Liquefaction Phenomena in Rinia—Fllakë Lagoon
5.3.3. Liquefaction Phenomena in the Lower Course of the Erzeni River
5.3.4. Liquefaction Phenomena Close to the Mati River Estuary
6. Liquefaction Susceptibility Mapping
6.1. Approach for Liquefaction Susceptibility Assessment in the Earthquake-Affected Area
6.1.1. Classification of Geological Formations
- Late Holocene deposits comprises marshy deposits with sand, gravels and peat and coastal marine deposits with sand and gravels;
- Early Holocene deposits includes alluvial deposits with sand and gravels and mixed alluvial and marshy deposits;
- Pleistocene deposits;
- Pliocene deposits, comprising clays, sandstones, and conglomerates;
- Miocene deposits comprising Lower Aquitanian marine clays, moraines and coal, Burdigalian marls, clays and limestones, Tortonian sandstones, clays and conglomerates and Messinian sandstones, clays, and sandstones.
6.1.2. Liquefaction Inventory Map of the 26 November 2019, Mw = 6.4 Earthquake-Affected Area
6.1.3. Seismic Hazard and Seismic Zonation of the 26 November 2019, Mw = 6.4 Earthquake-Affected Area
6.2. Liquefaction Susceptibility Classes
- The latest Holocene deposits in the Periadriatic and Tirana depressions (marshy deposits with sand gravel and peat and coastal marine deposits with sand and gravels) are classified into very highly, highly, and moderately susceptible formations, when they are located in areas with expected PGA values of 0.30–0.36 g, 0.24–0.30 g, and 0.16–0.24 g respectively.
- The early Holocene deposits (alluvial deposits with sand and gravels as well as mixed alluvial and marshy deposits) are classified into highly susceptible formations in seismic zones of 0.30–0.36 g and moderately susceptible formations in seismic zones of 0.24–0.30 g and 0.16–0.24 g, respectively.
- The Pleistocene deposits are classified into low and very low susceptible formations in areas where the expected peak ground acceleration values are 0.30–0.36 g and 0.24–0.30 g for the low and 0.16–0.24 g for the very low susceptibility.
- The Pliocene and Miocene deposits are classified into formations with no liquefaction susceptibility.
- The formations of the Kruja, Krassta, and Mirdita units are considered as solid basement formations and are excluded from the liquefaction susceptibility assessment.
- Very high susceptibility in areas comprising latest Holocene deposits in zones of expected PGA with values 0.30–0.36 g.
- High susceptibility in areas comprising latest Holocene deposits in zones of expected PGA with values 0.24–0.30 g and early Holocene deposits in zones of expected PGA with values 0.30–0.36 g.
- Moderate susceptibility in areas including latest Holocene deposits in zones of expected PGA with values 0.16–0.24 g and early Holocene deposits in zones of expected PGA with values 0.24–0.30 g and 0.16–0.24 g.
- Low susceptibility in areas including Pleistocene deposits in zones of expected PGA with values 0.30–0.36 g and 0.24–0.30 g.
- Very low susceptibility in areas composed of Pleistocene deposits located in zones of expected PGA with values 0.16–0.24 g.
6.3. Liquefaction Phenomena and Susceptible Zones
7. Discussion
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lekkas, E.; Mavroulis, S.; Papa, D.; Carydis, P. The 26 November 2019 Mw = 6.4 Durrës (Albania) earthquake. Newsl. Environ. Disaster Cris. Manag. Strateg. 2019, 15, 80. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Agalos, A.; Carydis, P.; Lekkas, E.; Mavroulis, S.; Triantafyllou, I. The 26 November 2019 Mw = 6.4 Albania destructive earthquake. Seismol. Res. Lett. 2020, 91, 3129–3138. [Google Scholar] [CrossRef]
- Stefanidou, S.; Tsiatas, G.; Baltzopoulos, G.; Giarlelis, C.; Markogiannaki, O.; Skoulidou, D.; Fragiadakis, M.; Lombardi, L.; Mavroulis, S.; Plaka, A.; et al. Structural and Geotechnical damage due to Albania Earthquake (26.11.2019) based on Rapid Visual Screening. In Proceedings of the 2020 International Symposium on Durrës Earthquakes and Eurocodes, Polytechnic University of Tirana, Tirana, Albania, 11 April 2020. [Google Scholar]
- Sextos, A.; Lekkas, E.; Stefanidou, S.; Baltzopoulos, G.; Fragkiadakis, M.; Giarlelis, C.; Lombardi, L.; Markogiannaki, O.; Mavroulis, S.; Plaka, A.; et al. Albania Earthquake of 26 November 2019. Report on Structural and Geotechnical Damage; Hellenic Association of Earthquake Engineering: Athens, Greece, 2020; 47p. [Google Scholar] [CrossRef]
- Ganas, A.; Elias, P.; Briole, P.; Cannavo, F.; Valkaniotis, S.; Tsironi, V.; Partheniou, E.I. Ground deformation and seismic fault model of the M6.4 Durres (Albania) Nov. 26, 2019 earthquake, based on GNSS/INSAR observations. Geosciences 2020, 10, 210. [Google Scholar] [CrossRef]
- Moshou, A.; Dushi, E.; Argyrakis, P. A Preliminary Report on the 26 November 2019, Mw = 6.4 Durres, Albania; European-Mediterranean Seismological Centre: Essonne, France, 2019; 12p. [Google Scholar]
- Aliaj, S.; Baldassarre, G.; Shkupi, D. Quaternary subsidence zones in Albania: Some case studies. Bull. Eng. Geol. Environ. 2001, 59, 313–318. [Google Scholar] [CrossRef]
- Skrami, J. Structural and neotectonic features of the Periadriatic Depression (Albania) detected by seismic interpretation. Bull. Geol. Soc. Greece 2001, 34, 1601–1609. [Google Scholar] [CrossRef] [Green Version]
- Aliaj, S.; Melo, V.; Hyseni, A.; Skrami, J.; Mehillka, L.L.; Muço, B.; Sulstarova, E.; Prifti, K.; Pasko, P.; Prillo, S. Neotectonic Structure of Albania. Final Report; Archive of Seismological Institute of Academy of Sciences: Tirana, Albania, 1996. [Google Scholar]
- Puca, N. Scientific Report: Monitoring of Groundwater in the Main Aquifers of Albania-Erzen–Ishmi Aquifer; Archives of Geological Survey of Albania: Tirana, Albania, 2005. [Google Scholar]
- Eftimi, R. Permeability features of Rrogozhina suite. Bull. Albanian Geol. Surv. 1984, 3, 57–73. [Google Scholar]
- Hyseni, A. Structure and Geodynamic Evaluation of Pliocene Molasses of Pre-Adriatic Depression. Ph.D. Thesis, Polytechnic University of Tirana, Tirana, Albania, 1995. [Google Scholar]
- Gelati, R.; Diamanti, F.; Prence, J.; Cane, E.H. The stratigraphic record of Neogene events in the Tirana Depression. Riv. Ital. Paleontol. Stratigr. 1997, 103, 81–100. [Google Scholar]
- Institute of Geosciences. Geological Map of Albania in 1:200000 Scale; Institute of Geosciences: Tirana, Albania, 1983. [Google Scholar]
- Hysenaj, R.; Naco, P.; Bojaxhiu, M.; Ahmeti, H. Deep subsurface geological phenomena and related processes in the Elbasani-Tirana region, Albania. J. Int. Environ. Appl. Sci. 2009, 4, 191–197. [Google Scholar]
- Papazachos, B.C.; Savvaidis, A.S.; Papazachos, C.B.; Papaioannou, C.; Kiratzi, A.A.; Muco, B.; Koçiu, S.; Sulstarova, E. Atlas of Isoseismal Maps for Shallow Earthquakes in Albania and Surrounding Area (1851–1990); Publication No 10; Aristotle University of Thessaloniki, Geophysical Laboratory: Thessaloniki, Greece, 2001. [Google Scholar]
- Ambraseys, N. Earthquakes in the Mediterranean and Middle East: A Multidisciplinary Study of Seismicity up to 1900; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Aliaj, S.; Koçiu, S.; Muço, B.; Sulstarova, E. Seismicity, Seismotectonics and Seismic Hazard Assessment in Albania; Academy of Sciences of Albania: Tirana, Albania, 2010. [Google Scholar]
- Muço, B.; Kiratzi, A.; Aliaj, S.; Sulstarova, E.; Koçiu, S.; Peçi, V. Seismic hazard assessment of Albania using probabilistic approach. In Proceedings of the 28th General Assembly of European Seismological Society, Book of Abstracts, University of Genoa, Genoa, Italy, 1–6 September 2002. [Google Scholar]
- Sulstarova, E.; Koçiaj, S.; Muço, B.; Peci, V. The Albanian Earthquakes Catalogue for Historical and Instrumental Data with Magnitude M ≥ 4.5; Internal Report (on behalf of NATO Project “Seismotectonic and Seismic Hazard Assessment in Albania”, 1999–2002); Seismological Institute: Tirana, Albania, 2003. [Google Scholar]
- Fundo, A.; Duni, L.; Kuka, S.; Begu, E.; Kuka, N. Probabilistic seismic hazard assessment of Albania. Acta Geod. Geophys. Hung. 2012, 47, 465–479. [Google Scholar] [CrossRef]
- Sulstarova, E.; Koçiaj, S.; Aliaj, A. Seismic Zonation of Albania; Archive of Seismological Institute: Tirana, Albania, 1980. [Google Scholar]
- Aliaj, S. Seismic Source Zones in Albania. In Proceedings of the Albanian Seminar, Paris, France, 26–28 June 2003; Archive of Seismological Institute: Tirana, Albania, 2003. [Google Scholar]
- Sulstarova, E.; Koçiaj, S. The Dibra (Albania) earthquake of November 30, 1967. Tectonophysics 1980, 67, 333–343. [Google Scholar] [CrossRef]
- Carydis, P.G.; Vougioukas, E.A. The Tirana, Albania, Earthquake of January 9, 1988; Special Earthquake Report; Earthquake Engineering Research Institute: Oakland, CA, USA, 1988. [Google Scholar]
- Papazachos, B.; Papazachou, C. The Earthquakes of Greece; Ziti Publications: Thessaloniki, Greece, 1997. [Google Scholar]
- Sulstarova, E.; Koçiu, S.; Muço, B.; Peçi, V. The Revised Catalogue of Albanian Earthquakes with Ms ≥ 4.5 (Prepared into the Framework of NATO’s ALB-SEIS Project); Institute of Seismology: Tirana, Albania, 2001. [Google Scholar]
- Koçiu, S. Induced seismic impacts observed in coastal area of Albania: Case studies. In Proceedings of the 5th International Conference on Case Histories in Geotechnical Engineering, Missouri University of Science and Technology, New York, NY, USA, 13–17 April 2004. [Google Scholar]
- Duni, L.L.; Kuka, N. The earthquake of September 5, 2007 (Mw = 4.8) in Albania. Analysis of the accelerographic data recorded in Durresi town. In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008. [Google Scholar]
- Sulstarova, E.; Koçiaj, S. The Catalogue of Albanian Earthquakes; Academy of Sciences of Albania: Tirana, Albania, 1975. [Google Scholar]
- Koçiu, S.; Pitarka, A. A check-up on seismic hazard assessment: Tirana case study. Nat. Hazards 1990, 3, 293–305. [Google Scholar]
- Duni, L.; Bozo, L.; Kuka, N.; Begu, E. An upgrade of the microzonation study of the centre of Tirana city. In Proceedings of the 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics and Symposium in Honor of Professor I.M. Idriss, San Diego, CA, USA, 24–29 May 2010. Paper No. 6.05b. [Google Scholar]
- Petrovski, J.; Paskalov, T. The Earthquake of Montenegro-Yugoslavia of April 15, 1979; IEEES: New York, NY, USA, 1980; p. 65. [Google Scholar]
- Koçiaj, S.; Sulstarova, E. The earthquake of June 1, 1905, Shkodra, Albania. Tectonophysics 1980, 67, 319–332. [Google Scholar] [CrossRef]
- Shehu, V.; Dhima, N. The influence of engineering–geological conditions on the intensity distribution of the April 15, 1979 earthquake in Shkodra-Lezha region. In The Earthquake of April 15, 1979; The ‘‘8 Nentori’’ Publishing House: Tirana, Albania, 1983. [Google Scholar]
- Dibra, Z. Some phenomena of the soil liquefaction of the April 15, 1979 earthquake. In The Earthquake of April 15, 1979; The ‘‘8 Nentori’’ Publishing House: Tirana, Albania, 1983. [Google Scholar]
- Papathanassiou, G.; Pavlides, S.; Christaras, B.; Pitilakis, K. Liquefaction case histories and empirical relations of earthquake magnitude versus distance from the broader Aegean Region. J. Geodyn. 2005, 40, 257–278. [Google Scholar] [CrossRef]
- Lekkas, E.; Mavroulis, S.; Filis, C.; Carydis, P. The September 21, 2019 Mw 5.6 Albania earthquake. Newsl. Environ. Disaster Cris. Manag. Strateg. 2019, 13. [Google Scholar] [CrossRef]
- Lamaj, M.; Frashëri, N.; Bushati, S.; Moisiu, L.; Beqiraj, G.; Avxhi, A. Application of differential interferometry for analysis of ground movements in Albania. In Proceedings of the 9th International Workshop Fringe 2015 Advances in the Science and Applications of SAR Interferometry and Sentinel-1 InSAR Workshop, ESA-ESRIN, ESA SP-731, Frascati, Italy, 23–27 March 2015. [Google Scholar]
- Medvedev, S.V. Engineering Seismology; Moscow, English Translation; Israel Program for Scientific Translation: Jerusalem, Israel, 1965. [Google Scholar]
- Bedini, E.; Naco, P. Automated change detection from remote sensing data. A case study at the Pali Cape—Erzen River Mouth Coastal Sector. In Conference on Water Observation and Information System for Decision Support; Morell, M., Popovska, C., Morell, O., Stojov, V., Kostoski, G., Dimitrov, D., Drobot, R., Radic, Z., Selenica, A., Eds.; BALWOIS: Ohrid, North Macedonia, 2008. [Google Scholar]
- De Leo, F.; Besio, G.; Zolezzi, G.; Bezzi, M.; Floqi, T.; Lami, I. Coastal erosion triggered by political and socio-economical abrupt changes: The case of Lalzit Bay, Albania. In Proceedings of the 35th Conference on Coastal Engineering, Antalya, Turkey, 17–20 November 2016. [Google Scholar] [CrossRef] [Green Version]
- Bruci, E.; Kay, R.; Adhami, E.; Gjini, J.; Brew, D.; Mucaj, L.; Mullaj, A.; Ndini, M.; Diku, A.; Laci, S.; et al. Identification and Implementation of Adaptation Response Measures in the Drini–Mati River Deltas; Project Synthesis Support; Global Environment Fund (GEF), Albanian Government and United Nations Development Program (UNDP): Tirana, Albania, 2013. [Google Scholar]
- Papathanassiou, G.; Valkaniotis, S.; Chaztipetros, A.; Pavlides, S. Liquefaction susceptibility map of Greece. Bull. Geol. Soc. Greece 2010, 43, 1383–1392. [Google Scholar] [CrossRef] [Green Version]
- Papathanassiou, G.; Kiratzi, A.; Valkaniotis, S.; Pavlides, S. Scenario liquefaction hazard map of the gulf of Corinth. In Proceedings of the 2nd European Conference on Earthquake and Engineering Seismology, Istanbul, Turkey, 25–29 August 2014; pp. 639–647. [Google Scholar]
- Lozios, S.; Lekkas, E.; Mavroulis, S.; Alexoudi, V.; Sretskovits, M. Actions to Reduce Seismic Risk of the Katerini Municipality—Planning, Selection, Definition Organization of Emergency Shelters; Applied Research Program, National and Kapodistrian University of Athens: Athens, Greece, 2016; 285p. [Google Scholar]
- Mavroulis, S.; Diakakis, M.; Kotsi, E.; Vassilakis, E.; Lekkas, E. Susceptibility and hazard assessment in the Ionian Islands for highlighting sites of significant earthquake-related hazards. In Proceedings of the 6th International Conference on Civil Protection & New Technologies, Safe Corfu 2019, Corfu, Greece, 6–9 November 2019; pp. 21–24, ISSN 2654-1823. [Google Scholar]
- Papathanassiou, G.; Pavlides, S. GIS-based database of historical liquefaction occurrences in the broader Aegean Region, DALO v1.0. Quat. Int. 2011, 242, 115–125. [Google Scholar] [CrossRef]
- Ministry of Construction. Earthquake Resistant Design Regulations; Ministry of Construction, Department of Design, Academy of Science of Albania, Seismic Center: Tirana, Albania, 1989.
- Glavatović, B.; Akkar, S.; Hoxha, I.; Kuk, V.; Zoranić, A.; Garevski, M.; Kovačević, S. NATO SfP Project Number 983054. Harmonization of Seismic Hazard Maps for the Western Balkan Countries (BSHAP). Final Report. NATO. Available online: http://www.seismo.co.me/documents/NATO%20SfP%20No.983054%20FINAL%20REPORT.pdf (accessed on 30 January 2020).
- Gülerce, Z.; Šalić, R.; Kuka, N.; Markušić, S.; Mihaljević, J.; Kovačević, V.; Sandıkkaya, A.; Milutinović, Z.; Duni, L.; Stanko, D.; et al. Seismic hazard maps for the Western Balkan. Inženjerstvo Okoliša 2017, 4, 7–17. [Google Scholar]
- Salic, R.; Gülerce, Z.; Kuka, N.; Markusic, S.; Mihaljevic, J.; Kovacevic, V.; Sandikaya, A.; Milutinovic, Z.; Duni, L.; Stanko, D.; et al. Harmonized seismic hazard maps for the western Balkan countries. In Proceedings of the 16th European Conference on Earthquake Engineering, Thessaloniki, Greece, 18–21 June 2018. [Google Scholar]
- Youd, T.L. Screening Guide for Rapid Assessment of Liquefaction Hazard at Highway Bridge Site; Technical Report; Multidisciplinary Center for Earthquake Engineering Research (MCEER-98-0005): Buffalo, NY, USA, 1998; 58p. [Google Scholar]
- Vittori, E.; Blumetti, A.M.; Comerci, V.; Di Manna, P.; Piccardi, L.; Gega, D.; Hoxha, I. Geological effects and tectonic environment of the 26 November 2019, Mw = 6.4 Durres earthquake (Albania). Geophys. J. Int. 2021, 225, 1174–1191. [Google Scholar] [CrossRef]
- Tang, X.-W.; Hu, J.-L.; Qiu, J.-N. Identifying significant influence factors of seismic soil liquefaction and analyzing their structural relationship. KSCE J. Civ. Eng. 2016, 20, 2655–2663. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, M. Chapter 2: Macroscopic characteristics of seismic liquefaction. In Hazard Analysis of Seismic Soil Liquefaction; Springer Natural Hazards; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Faculty of Societal Safety Sciences of Kansai University. Chapter 8—Liquefaction with the Great East Japan Earthquake. In The Fukushima and Tohoku Disaster—A Review of the Five-Year Reconstruction Efforts; Elsevier Science: Amsterdam, The Netherlands, 2018; pp. 147–159. [Google Scholar] [CrossRef]
- Cao, Z.; Youd, T.L.; Yuan, X. Gravelly soils that liquefied during 2008 Wenchuan, China earthquake, Ms = 8.0. Soil Dyn. Earthq. Eng. 2011, 31, 1132–1143. [Google Scholar] [CrossRef]
- Cubrinovski, M.; Robinson, K.; Taylor, M.; Hughes, M.; Orense, R. Lateral spreading and its impacts in urban areas in the 2010–2011 Christchurch earthquakes. N. Z. J. Geol. Geophys. 2012, 55, 255–269. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Mori, T.; Kazama, M.; Yoshida, N. Liquefaction in Tohoku district during the 2011 off the Pacific Coast of Tohoku Earthquake. Soils Found. 2012, 52, 811–829. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Hu, W.; Cao, Z.; Yuan, X. Comparative analysis of soil liquefaction macro-phenomena in Bachu earthquake. J. Earthq. Eng. Eng. Vib. 2010, 30, 179–187. [Google Scholar]
- Shi, Z.; Wang, G.; Wang, C.-Y.; Manga, M.; Liu, C. Comparison of hydrological responses to the Wenchuan and Lushan earthquakes. Earth Planet. Sci. Lett. 2014, 391, 193–200. [Google Scholar] [CrossRef]
- Quigley, M.; Hughes, M.; Bradley, B.; van Ballegooy, S.; Reid, C.; Morgenroth, J.; Horton, T.; Duffy, B.; Pettinga, J. The 2010–2011 Canterbury earthquake sequence. Environmental effects, seismic triggering thresholds and geologic legacy. Tectonophysics 2016, 672–673, 228–274. [Google Scholar] [CrossRef] [Green Version]
- Schmid, S.M.; Bernoulli, D.; Fügenschuh, B.; Matenco, L.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K. The Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss J. Geosci. 2008, 101, 139–183. [Google Scholar] [CrossRef] [Green Version]
- Mavroulis, S.D.; Fountoulis, I.G.; Skourtsos, E.N.; Lekkas, E.L.; Papanikolaou, I.D. Seismic intensity assignments for the 2008 Andravida (NW Peloponnese, Greece) strike-slip event (June 8, Mw = 6.4) based on the application of the Environmental Seismic Intensity scale (ESI 2007) and the European Macroseismic scale (EMS-98). Geological structure, active tectonics, earthquake environmental effects and damage pattern. Ann. Geophys. 2013, 56, S0681. [Google Scholar] [CrossRef]
- Lekkas, E.L.; Mavroulis, S.D. Earthquake environmental effects and ESI 2007 seismic intensities of the early 2014 Cephalonia (Ionian Sea, Western Greece) earthquakes (January 26 and February 3, Mw 6.0). Nat. Hazards 2015, 78, 1517–1544. [Google Scholar] [CrossRef]
- Lekkas, E.L.; Mavroulis, S.D. Fault zones ruptured during the early 2014 Cephalonia Island (Ionian Sea, Western Greece) earthquakes (January 26 and February 3, Mw 6.0) based on the associated co-seismic surface ruptures. J. Seismol. 2016, 20, 63–78. [Google Scholar] [CrossRef]
- Lekkas, E.; Mavroulis, S.; Carydis, P.; Alexoudi, V. The 17 November 2015 Mw = 6.4 Lefkas (Ionian Sea, Western Greece) Earthquake: Impact on Environment and Buildings. Geotech. Geol. Eng. 2018, 36, 2109–2142. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Lefkopoulos, G. Magnitude-distance relations for liquefaction in soil from earthquakes. Bull. Seismol. Soc. Am. 1993, 83, 925–938. [Google Scholar]
- Galli, P. New empirical relationships between magnitude and distance for liquefaction. Tectonophysics 2000, 324, 169–187. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavroulis, S.; Lekkas, E.; Carydis, P. Liquefaction Phenomena Induced by the 26 November 2019, Mw = 6.4 Durrës (Albania) Earthquake and Liquefaction Susceptibility Assessment in the Affected Area. Geosciences 2021, 11, 215. https://doi.org/10.3390/geosciences11050215
Mavroulis S, Lekkas E, Carydis P. Liquefaction Phenomena Induced by the 26 November 2019, Mw = 6.4 Durrës (Albania) Earthquake and Liquefaction Susceptibility Assessment in the Affected Area. Geosciences. 2021; 11(5):215. https://doi.org/10.3390/geosciences11050215
Chicago/Turabian StyleMavroulis, Spyridon, Efthymios Lekkas, and Panayotis Carydis. 2021. "Liquefaction Phenomena Induced by the 26 November 2019, Mw = 6.4 Durrës (Albania) Earthquake and Liquefaction Susceptibility Assessment in the Affected Area" Geosciences 11, no. 5: 215. https://doi.org/10.3390/geosciences11050215
APA StyleMavroulis, S., Lekkas, E., & Carydis, P. (2021). Liquefaction Phenomena Induced by the 26 November 2019, Mw = 6.4 Durrës (Albania) Earthquake and Liquefaction Susceptibility Assessment in the Affected Area. Geosciences, 11(5), 215. https://doi.org/10.3390/geosciences11050215