Characteristics and Distribution of Landslides in the Populated Hillslopes of Bujumbura, Burundi
Abstract
:1. Introduction
2. Landslide Processes in the NTK Rift and Environmental Characteristics of Bujumbura
3. Data and Methods
3.1. Landslide Inventory: Types and Processes
3.2. Landslide Controlling and Triggering Factors
4. Results
4.1. Landslides Types and Characteristics
4.2. Landslide Causes and Triggers
5. Discussion
5.1. Landslide Inventory and Data Reliability
5.2. Landslide Processes: Causes and Triggers
5.3. Landslide Impacts and Disaster Risk Reduction Strategies
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bizimana, H.; Sönmez, O. Landslide occurrences in the hilly areas of Rwanda, their causes and protection measures. Disaster Sci. Eng. 2015, 1, 1–7. [Google Scholar]
- Kervyn, M.; Jacobs, L.; Maes, J.; Che, V.B.; de Hontheim, A.; Dewitte, O.; Isabirye, M.; Sekajugo, J.; Kabaseke, C.; Poesen, J.; et al. Landslide resilience in Equatorial Africa: Moving beyond problem identification! Belgeo 2015, 1, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Michellier, C.; Pigeon, P.; Kervyn, F.; Wolff, E. Contextualizing vulnerability assessment: A support to geo-risk management in central Africa. Nat. Hazards 2016, 82, 27–42. [Google Scholar] [CrossRef]
- Balegamire, C.; Michellier, C.; Muhigwa, J.B.; Delvaux, D.; Imani, G.; Dewitte, O. Vulnerability of buildings exposed to landslides: A spatio-temporal assessment in Bukavu (DR Congo). Geo- Eco-Trop 2017, 41, 263–278. [Google Scholar]
- Broeckx, J.; Vanmaercke, M.; Duchateau, R.; Poesen, J. A data-based landslide susceptibility map of Africa. Earth Sci. Rev. 2018, 185, 102–121. [Google Scholar] [CrossRef]
- Emberson, R.; Kirschbaum, D.; Stanley, T. New global characterisation of landslide exposure. Nat. Hazards Earth Syst. Sci. 2020, 20, 3413–3424. [Google Scholar] [CrossRef]
- Maes, J.; Kervyn, M.; de Hontheim, A.; Dewitte, O.; Jacobs, L.; Mertens, K.; Vanmaercke, M.; Vranken, L.; Poesen, J. Landslide risk reduction measures: A review of practices and challenges for the tropics. Prog. Phys. Geogr. Earth Environ. 2017, 41, 191–221. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Lacroix, P.; Handwerger, A.L.; Bièvre, G. Life and death of slow-moving landslides. Nat. Rev. Earth Environ. 2020, 1, 404–419. [Google Scholar] [CrossRef]
- Che, V.B.; Kervyn, M.; Ernst, G.G.J.; Trefois, P.; Ayonghe, S.; Jacobs, P.; Van Ranst, E.; Suh, E. Systematic documentation of landslide events in Limbe area (Mt Cameroon Volcano, SW Cameroon): Geometry, controlling, and triggering factors. Nat. Hazards 2011, 59, 47–74. [Google Scholar] [CrossRef]
- Jacobs, L.; Maes, J.; Mertens, K.; Sekajugo, J.; Thiery, W.; Van Lipzig, N.; Poesen, J.; Kervyn, M.; Dewitte, O. Reconstruction of a flash flood event through a multi-hazard approach: Focus on the Rwenzori Mountains, Uganda. Nat. Hazards 2016, 84, 851–876. [Google Scholar] [CrossRef]
- van Westen, C.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide inventory maps: New tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef] [Green Version]
- Sidle, R.C.; Bogaard, T. Dynamic earth system and ecological controls of rainfall-initiated landslides. Earth-Sci. Rev. 2016, 159, 275–291. [Google Scholar] [CrossRef]
- Dewitte, O.; Dille, A.; Depicker, A.; Kubwimana, D.; Maki Mateso, J.-C.; Mugaruka Bibentyo, T.; Uwihirwe, J.; Monsieurs, E. Constraining landslide timing in a data-scarce context: From recent to very old processes in the tropical environment of the North Tanganyika-Kivu Rift region. Landslides 2021, 18, 161–177. [Google Scholar] [CrossRef]
- Jacobs, L.; Dewitte, O.; Poesen, J.; Maes, J.; Mertens, K.; Sekajugo, J.; Kervyn, M. Landslide characteristics and spatial distribution in the Rwenzori Mountains, Uganda. J. Afr. Earth Sci. 2017, 134, 917–930. [Google Scholar] [CrossRef]
- Monsieurs, E.; Kirschbaum, D.; Thiery, W.; van Lipzig, N.; Kervyn, M.; Demoulin, A.; Jacobs, L.; Kervyn, F.; Dewitte, O. Constraints on Landslide-Climate Research Imposed by the Reality of Fieldwork in Central Africa. In Proceedings of the 3rd North American Symposium Landslides, Landslides: Putting Experience, Knowledge and Emerging Technologies into Practice, Roanoke, VA, USA, 4–8 June 2017; pp. 158–168. [Google Scholar]
- Roering, J.J.; Kirchner, J.W.; Dietrich, W.E. Characterizing structural and lithologic controls on deep-seated landsliding: Implications for topographic relief and landscape evolution in the Oregon Coast Range, USA. GSA Bull. 2005, 117, 654–668. [Google Scholar] [CrossRef] [Green Version]
- McColl, S.T. Landslide Causes and Triggers. In Landslides Hazards, Risks and Disasters; Schroder, J.F., Davies, T., Eds.; Academic Press: London, UK, 2015; pp. 17–42. [Google Scholar]
- Glade, T.; Crozier, M.J. The nature of landslide hazard impact. In Landslide Hazard and Risk; Glade, T., Anderson, M.G., Crozier, M.J., Eds.; John Wiley & Sons: Chichester, UK, 2005; pp. 43–74. [Google Scholar]
- Bogaard, T.A.; Greco, R. Landslide hydrology: From hydrology to pore pressure. Wiley Interdiscip. Rev. Water 2016, 3, 439–459. [Google Scholar] [CrossRef]
- Keefer, D.K. The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions. Geomorphology 1994, 10, 265–284. [Google Scholar] [CrossRef]
- Casagli, N.; Guzzetti, F.; Jaboyedoff, M.; Nadim, F.; Petley, D. Science for Disaster Risk Management: Knowing Better and Losing Less. In Hydrological Risk: Landslides; Poljanšek, K., Marín Ferrer, M., De Groeve, T., Clark, I., Eds.; Publications Office of the European Union: Luxembourg, 2017; p. 209. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Michoud, C.; Derron, M.H.; Voumard, J.; Leibundgut, G.; Sudmeier-Rieux, K.; Nadim, F.; Leroi, E. Human-Induced Landslides: Toward the analysis of anthropogenic changes of the slope environment. Landslides Eng. Slopes Exp. Theory Pract. 2016, 1, 217–232. [Google Scholar]
- Yunus, A.P.; Fan, X.; Subramanian, S.S.; Jie, D.; Xu, Q. Unraveling the drivers of intensified landslide regimes in Western Ghats, India. Sci. Total Environ. 2021, 770, 145357. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Poesen, J.; Dewitte, O.; Demoulin, A.; De Bo, H.; Vanmaercke-Gottigny, M.C. Reactivation of old landslides: Lessons learned from a case-study in the Flemish Ardennes (Belgium). Soil Use Manag. 2007, 23, 200–211. [Google Scholar] [CrossRef]
- Troncone, A.; Pugliese, L.; Lamanna, G.; Conte, E. Prediction of rainfall-induced landslide movements in the presence of stabilizing piles. Eng. Geol. 2021, 288, 106143. [Google Scholar] [CrossRef]
- Moeyerson, J.; Trefois, P. La Protection du Site Curgo–Kabezi–Bujumbura Contre les Risques Hydrologiques dans le Bassin de la Rivière Nyabage Etude de Formulation d’une Opération de Conservation; Section de Géomorphologie, Tervuren, Belgium. 2012. Available online: https://repository.tudelft.nl/islandora/object/uuid:3e6a844d-e90e-4234-b83e-6215846ca652?collection=research (accessed on 16 June 2021).
- Nibigira, L.; Draidia, S.; Havenith, H.-B. GIS-Based Landslide Susceptibility Mapping in the Great Lakes Region of Africa, Case Study of Bujumbura Burundi. In Engineering Geology for Society and Territory; Springer: Berlin/Heidelberg, Germany, 2015; Volume 2, pp. 985–988. [Google Scholar] [CrossRef]
- Nibigira, L.; Havenith, H.-B.; Archambeau, P.; Dewals, B. Formation, breaching and flood consequences of a landslide dam near Bujumbura, Burundi. Nat. Hazards Earth Syst. Sci. 2018, 18, 1867–1890. [Google Scholar] [CrossRef] [Green Version]
- Désiré, K.; Lahsen, A.B.; Mahfoud, B.; Olivier, D.; Abdellah, A.; Tarik, B. Landslides Susceptibility Assessment Using AHP method in Kanyosha Watershed (Bujumbura-Burundi): Urbanisation and Management Impacts. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 149, p. 02071. [Google Scholar]
- Monsieurs, E.; Jacobs, L.; Michellier, C.; Basimike Tchangaboba, J.; Bamulezi Ganza, G.; Kervyn, F.; Maki Mateso, J.-C.; Mugaruka Bibentyo, T.; Kalikone Buzera, C.; Nahimana, L.; et al. Landslide inventory for hazard assessment in a data-poor context: A regional-scale approach in a tropical African environment. Landslides 2018, 15, 2195–2209. [Google Scholar] [CrossRef] [Green Version]
- Shirambere, G.; Nyadawa, M.; Masekanya, J.; Nyomboi, T. Comparative assessment of landslide susceptibility by logistic regression and first order second moment method: Case study of Bujumbura Peri-Urban Area, Burundi. J. Eng. Res. Appl. 2018, 8, 28–37. [Google Scholar]
- Depicker, A.; Jacobs, L.; Delvaux, D.; Havenith, H.-B.; Maki Mateso, J.-C.; Govers, G.; Dewitte, O. The added value of a regional landslide susceptibility assessment: The western branch of the East African Rift. Geomorphology 2020, 353, 106886. [Google Scholar] [CrossRef]
- Smets, B.; Delvaux, D.; Ross, K.A.; Poppe, S.; Kervyn, M.; d’Oreye, N.; Kervyn, F. The role of inherited crustal structures and magmatism in the development of rift segments: Insights from the Kivu basin, western branch of the East African Rift. Tectonophysics 2016, 683, 62–76. [Google Scholar] [CrossRef]
- Delvaux, D.; Mulumba, J.-L.; Sebagenzi, M.N.S.; Bondo, S.F.; Kervyn, F.; Havenith, H.-B. Seismic hazard assessment of the Kivu rift segment based on a new seismotectonic zonation model (western branch, East African Rift system). J. Afr. Earth Sci. 2017, 134, 831–855. [Google Scholar] [CrossRef]
- Depicker, A.; Govers, G.; Jacobs, L.; Campforts, B.; Uwihirwe, J.; Dewitte, O. Interactions between deforestation, landscape rejuvenation, and shallow landslides in the North Tanganyika–Kivu rift region, Africa. Earth Surf. Dyn. 2021, 9, 445–462. [Google Scholar] [CrossRef]
- Jacobs, L.; Dewitte, O.; Poesen, J.; Delvaux, D.; Thiery, W.; Kervyn, M. The Rwenzori Mountains, a landslide-prone region? Landslides 2016, 13, 519–536. [Google Scholar] [CrossRef] [Green Version]
- Dille, A.; Kervyn, F.; Mugaruka Bibentyo, T.; Delvaux, D.; Bamulezi Ganza, G.; Ilombe Mawe, G.; Kalikone Buzera, C.; Safari Nakito, E.; Moeyersons, J.; Monsieurs, E.; et al. Causes and triggers of deep-seated hillslope instability in the tropics—Insights from a 60-year record of Ikoma landslide (DR Congo). Geomorphology 2019, 345, 106835. [Google Scholar] [CrossRef]
- Pollock, W.; Wartman, J. Human Vulnerability to Landslides. GeoHealth 2020, 4, e2020GH000287. [Google Scholar] [CrossRef] [PubMed]
- Mackey, B.H.; Roering, J.J. Sediment yield, spatial characteristics, and the long-term evolution of active earthflows determined from airborne LiDAR and historical aerial photographs, Eel River, California. GSA Bull. 2011, 123, 1560–1576. [Google Scholar] [CrossRef]
- Poesen, J. Soil erosion in the Anthropocene: Research needs. Earth Surf. Process. Landf. 2018, 43, 64–84. [Google Scholar] [CrossRef]
- Makanzu Imwangana, F.; Dewitte, O.; Ntombi, M.; Moeyersons, J. Topographic and road control of mega-gullies in Kinshasa (DR Congo). Geomorphology 2014, 217, 131–139. [Google Scholar] [CrossRef]
- Kirasa Energy. Etude de l’évaluation de la vulnérabilité de l’aménagement hydroélectrique de deux centrales en cascade sur la rivière Kirasa à la variabilité et aux changements climatiques de la région, unpublished.
- Bidou, J.E.; Ndayirukiye, S.; Ndayishimiye, J.P.; Sirven, P. Géographie du Burundi; Hatier: Paris, France, 1991. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Mboga, N.; Grippa, T.; Georganos, S.; Vanhuysse, S.; Smets, B.; Dewitte, O.; Wolff, E.; Lennert, M. Fully convolutional networks for land cover classification from historical panchromatic aerial photographs. ISPRS J. Photogramm. Remote Sens. 2020, 167, 385–395. [Google Scholar] [CrossRef]
- Bakker, M.; Lane, S.N. Archival photogrammetric analysis of river-floodplain systems using Structure from Motion (SfM) methods. Earth Surf. Process. Landf. 2017, 42, 1274–1286. [Google Scholar] [CrossRef] [Green Version]
- Smets, B.; Dewitte, O.; Michellier, C.; Munganga, G.; Dille, A.; Kervyn, F. Insights into the SfM photogrammetric processing of historical panchromatic aerial photographs without camera calibration information. ISPRS Int. J. Geo-Inform. (manuscript in preparation).
- Agisoft Metashape Pro’. 2020. Available online: https://www.agisoft.com (accessed on 16 June 2021).
- Rupnik, E.; Daakir, M.; Deseilligny, M.P. MicMac—A free, open-source solution for photogrammetry. Open Geospat. Data Softw. Stand. 2017, 2, 14. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Laghmouch, M.; Nimpagaritse, G.; Mudende, L.; Minani, M.; Ndereyimana, J.; Icitegetse, I.; Naahimana, A.; Ndarihonyoye, P.; Niyongabo, J.B.; Kervyn, F. Numérisation de la Carte Géologique au 50,000 ème; Ministère de l’Hydraulique, de l’Energie et des Mines; République du Burundi & Musée royal de l’Afrique Ccentrale (MRAC): Tervuren, Belgium, 2018; ISBN 978949224429. [Google Scholar]
- Dewitte, O.; Chung, C.-J.; Cornet, Y.; Daoudi, M.; Demoulin, A. Combining spatial data in landslide reactivation susceptibility mapping: A likelihood ratio-based approach in W Belgium. Geomorphology 2010, 122, 153–166. [Google Scholar] [CrossRef]
- Jacobs, L.; Dewitte, O.; Poesen, J.; Sekajugo, J.; Nobile, A.; Rossi, M.; Thiery, W.; Kervyn, M. Field-based landslide susceptibility assessment in a data-scarce environment: The populated areas of the Rwenzori Mountains. Nat. Hazards Earth Syst. Sci. 2018, 18, 105–124. [Google Scholar] [CrossRef] [Green Version]
- Hussin, H.Y.; Zumpano, V.; Reichenbach, P.; Sterlacchini, S.; Micu, M.; van Westen, C.; Bălteanu, D. Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model. Geomorphology 2016, 253, 508–523. [Google Scholar] [CrossRef]
- Lee, S.; Pradhan, B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 2006, 4, 33–41. [Google Scholar] [CrossRef]
- Crosta, G.; Frattini, P.; Agliardi, F. Deep seated gravitational slope deformations in the European Alps. Tectonophysics 2013, 605, 13–33. [Google Scholar] [CrossRef]
- Santangelo, M.; Gioia, D.; Cardinali, M.; Guzzetti, F.; Schiattarella, M. Interplay between mass movement and fluvial network organization: An example from southern Apennines, Italy. Geomorphology 2013, 188, 54–67. [Google Scholar] [CrossRef]
- Guns, M.; Vanacker, V. Shifts in landslide frequency–area distribution after forest conversion in the tropical Andes. Anthropocene 2014, 6, 75–85. [Google Scholar] [CrossRef]
- Oth, A.; Barrière, J.; d’Oreye, N.; Mavonga, G.; Subira, J.; Mashagiro, N.; Kadufu, B.; Fiama, S.; Celli, G.; Bigirande, J.D.D.; et al. KivuSNet: The First Dense Broadband Seismic Network for the Kivu Rift Region (Western Branch of East African Rift). Seism. Res. Lett. 2016, 88, 49–60. [Google Scholar] [CrossRef]
- IFRC. Burundi: Floods—DREF Operation No. MDRBI010; Final Report; IFRC: Bujumbura, Burundi, 2014. [Google Scholar]
- Samia, J.; Temme, A.; Bregt, A.; Wallinga, J.; Guzzetti, F.; Ardizzone, F.; Rossi, M. Do landslides follow landslides? Insights in path dependency from a multi-temporal landslide inventory. Landslides 2017, 14, 547–558. [Google Scholar] [CrossRef] [Green Version]
- Dini, B.; Daout, S.; Manconi, A.; Loew, S. Classification of slope processes based on multitemporal DInSAR analyses in the Himalaya of NW Bhutan. Remote Sens. Environ. 2019, 233, 111408. [Google Scholar] [CrossRef]
- Nobile, A.; Dille, A.; Monsieurs, E.; Basimike, J.; Mugaruka Bibentyo, T.; d’Oreye, N.; Kervyn, F.; Dewitte, O. Multi-Temporal DInSAR to Characterise Landslide Ground Deformations in a Tropical Urban Environment: Focus on Bukavu (DR Congo). Remote Sens. 2018, 10, 626. [Google Scholar] [CrossRef] [Green Version]
- Dille, A.; Kervyn, F.; Handwerger, A.; d’Oreye, N.; Derauw, D.; Mugaruka Bibentyo, T.; Samsonov, S.; Malet, J.-P.; Kervyn, M.; Dewitte, O. When correlation is needed: Unravelling the complex dynamics of a slow-moving landslide in the tropics with dense radar and optical time series. Remote Sens. Environ. 2021, 258, 112402. [Google Scholar] [CrossRef]
- Handwerger, A.L.; Fielding, E.J.; Huang, M.; Bennett, G.L.; Liang, C.; Schulz, W.H. Widespread Initiation, Reactivation, and Acceleration of Landslides in the Northern California Coast Ranges due to Extreme Rainfall. J. Geophys. Res. Earth Surf. 2019, 124, 1782–1797. [Google Scholar] [CrossRef] [Green Version]
- Larsen, I.J.; Montgomery, D.R. Landslide erosion coupled to tectonics and river incision. Nat. Geosci. 2012, 5, 468–473. [Google Scholar] [CrossRef]
- Clarke, B.A.; Burbank, D.W. Quantifying bedrock-fracture patterns within the shallow subsurface: Implications for rock mass strength, bedrock landslides, and erodibility. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Marc, O.; Behling, R.; Andermann, C.; Turowski, J.M.; Illien, L.; Roessner, S.; Hovius, N. Long-term erosion of the Nepal Himalayas by bedrock landsliding: The role of monsoons, earthquakes and giant landslides. Earth Surf. Dyn. 2019, 7, 107–128. [Google Scholar] [CrossRef] [Green Version]
- Felton, A.A.; Russell, J.M.; Cohen, A.S.; Baker, M.E.; Chesley, J.T.; Lezzar, K.E.; McGlue, M.M.; Pigati, J.S.; Quade, J.; Stager, J.C.; et al. Paleolimnological evidence for the onset and termination of glacial aridity from Lake Tanganyika, Tropical East Africa. Palaeogeogr. Palaeoclim. Palaeoecol. 2007, 252, 405–423. [Google Scholar] [CrossRef]
- Wassmer, P.; Schwartz, D.; Gomez, C.; Ward, S.; Barrere, P. Geomorphology and sedimentary structures of Upper Pleistocene to Holocene alluvium within the Nyabarongo valley (Rwanda). Palaeo-climate and palaeo-environmental implications. Geogr. Fis. Din. Quat. 2013, 36, 199–210. [Google Scholar] [CrossRef]
- Lahusen, S.R.; Duvall, A.R.; Booth, A.M.; Grant, A.; Mishkin, B.A.; Montgomery, D.R.; Struble, W.; Roering, J.J.; Wartman, J. Rainfall triggers more deep-seated landslides than Cascadia earthquakes in the Oregon Coast Range, USA. Sci. Adv. 2020, 6, eaba6790. [Google Scholar] [CrossRef] [PubMed]
- Tanyaş, H.; Allstadt, K.E.; Van Westen, C.J. An updated method for estimating landslide-event magnitude. Earth Surf. Process. Landf. 2018, 43, 1836–1847. [Google Scholar] [CrossRef] [Green Version]
- Temme, A.; Guzzetti, F.; Samia, J.; Mirus, B.B. The future of landslides’ past—A framework for assessing consecutive landsliding systems. Landslides 2020, 17, 1519–1528. [Google Scholar] [CrossRef]
Types | Year | Scale and Resolution | Associated Data | Sources |
---|---|---|---|---|
Historical aerial photographs | 1957–1959, 1974 | ~1:40,000 | Landslide inventory | RMCA |
Orthomosaics from historical aerial photographs | 1957–1959 | 1 m | Landslide inventory | RMCA |
Orthomosaics from aerial photographs | 08–09/2012 | 0.5 m | Landslide inventory | BCG |
Satellite images | 2000–2021 | 0.3 to 0.6 m | Landslide inventory | ©Google Earth imagery |
Pléiades images | 09/07/2013, 01/2016 | 0.5 m in pansharpened | Landslide inventory | Airbus |
DEM Burundi | 08–09/2012 | 10 m | Slope angle, slope aspect, hillshade, contour lines landslide inventory | BCG |
DEM from (tri-) stereo Pléiades | 09/07/2013 | 1 m | Slope angle, slope aspect, hillshade, contour lines, landslide inventory | This study |
News/media reports | 2014–2018 | N.A. | Landslide impacts | Medias, blogs |
Geological map | 2018 | 1:50,000 | Lithology, faults | [54] |
Types | Number # | Area (km2) | Timing | Depth | Activity | CRi | CRo | R | LR | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tot | Rej | Rel | Tot | Rej | Rel | VO | Old | Re | DL | SL | AL | NL | Y | N | Y | N | |||
Debris flows | 10 | 7 | 3 | 0.5 | 0.51 | 0.01 | 0 | 0 | 10 | 7 | 3 | 10 | 0 | 10 | 0 | 4 | 6 | 0 | 0 |
Debris slide, debris avalanche, flowslides | 919 | 773 | 146 | 7.1 | 5.5 | 1.6 | 0 | 181 | 738 | 558 | 361 | 866 | 53 | 706 | 213 | 89 | 830 | 76 | 385 |
Earthflow and slide—earthflows | 64 | 45 | 19 | 11.6 | 8.9 | 2.7 | 0 | 58 | 6 | 64 | 0 | 26 | 38 | 60 | 4 | 14 | 50 | 6 | 0 |
Rock slides and rock avalanches | 189 | 142 | 47 | 38.2 | 31.5 | 6.7 | 5 | 138 | 46 | 189 | 0 | 124 | 65 | 183 | 6 | 29 | 160 | 0 | 5 |
Mountain and rock slope deformation | 11 | 10 | 1 | 47.8 | 31.5 | 16.4 | 11 | 0 | 0 | 11 | 0 | 0 | 11 | 11 | 0 | 5 | 6 | 0 | 0 |
Gully with landslide processes | 93 | 83 | 10 | 1.9 | 1.79 | 0.07 | 0 | 38 | 55 | 54 | 39 | 79 | 14 | 62 | 31 | 15 | 78 | 0 | 0 |
Total | 1286 | 1060 | 226 | 107 | 79.6 | 27.4 | 16 | 415 | 855 | 883 | 403 | 1105 | 181 | 1032 | 254 | 156 | 1130 | 82 | 494 |
Type of Landslide | ID | Description of the Impacts |
---|---|---|
Debris flows, flash floods | 1 | 09/02/2014: the heavy rainfall that occured in five communes in the northern part of Bujumbura triggered many landslides, several debris flows and related flash floods (Section 4.1, Figure 5). Key facts; 940 houses and a large market were destroyed, around 20,000 people were made homeless, there were 64 fatalities, and damage to RN1 and other roads, bridges and electricity systems [63]. |
Debris/soil slides, debris avalanches, flowslides | 2 | 3/2018: six fatalities in a debris slide in northern of Bujumbura (Radio Isanganiro, www.isanganiro.org (accessed on 17 June 2021)) that occurred after heavy rainfall |
3 | 2010: destruction of Muyira primary school, 10 houses | |
4 | 2010: destruction of Nyamutenderi primary school | |
5 | 2016: large cracks in the building of a health center above the head of a flowslide in the Kanyosha catchment | |
6 | 2018–2020: destruction of more than 35 houses by a flowslide in northern Bujumbura, no fatalities | |
Earthflows, slide—earthflows | 7 | Complete destruction of parts of the NR7 and neighboring houses (Figure 6) due to the pervasive motion of two earthflows |
8 | 2014–2016: subsidence of parts of the NR 7 at the Mile Post office 14 | |
Rock slides, rock avalanches | 9 | 2010: the road to the hydropower station of Mugere was destroyed by an avalanche after heavy rainfall [30] |
River bank collapses | 10 | Incising rivers due to quarrying lead to oversteepening and subsequent collapse of the banks. This process is pervasive and observed along all the rivers crossing the region |
Gullies with landslides processes | 11 | Pervasive damage to houses and infrastructures due to pervasive erosion processes and headcut retreat of the gullies. Most gullies being active, this processes is observed in many places |
Mountain and rock slope deformations | 12 | No impact recorded, nor observed in the field |
Controlling Factor | Landslide Types | Focused Area | Number of L | Degrees of Freedom | Chi-2 | Critical Value (p = 0.05) |
---|---|---|---|---|---|---|
RR | L | Study area | 792 | 1 | 213.2 | 3.8 |
RR | DL | Study area | 598 | 1 | 262.8 | 3.8 |
RR a | SL | Study area | 194 | 1 | 1 | 3.8 |
Lithology | DL | Study area | 598 | 5 | 119.3 | 11.1 |
Lithology | DL | Rej. landscape | 487 | 5 | 27.7 | 11.1 |
Lithology a | DL | Rel. landscape | 111 | 5 | 8.2 | 11.1 |
Lithology | AL | Study area | 409 | 5 | 164.4 | 11.1 |
Slope angle a | NL | Study area | 189 | 5 | 10.6 | 11.1 |
Slope angle | DL | Study area | 490 | 8 | 72.2 | 15.5 |
Slope angle | SL | Study area | 194 | 8 | 374.4 | 15.5 |
Slope angle | L | Rej. landscape | 588 | 8 | 146.4 | 15.5 |
Slope angle | DL | Rej. landscape | 487 | 8 | 76.6 | 15.5 |
Slope angle | SL | Rej. landscape | 111 | 8 | 83.9 | 15.5 |
Slope angle | DL | Rel. landscape | 111 | 8 | 33.7 | 15.5 |
Slope angle | L | Rel. landscape | 204 | 8 | 166.5 | 15.5 |
Slope angle | SL | Rel. landscape | 93 | 8 | 176.4 | 15.5 |
Slope angle | DL | Gneiss | 332 | 8 | 54.5 | 15.5 |
Slope angle | DL | Granite | 156 | 8 | 26.7 | 15.5 |
Slope angle | DL | Quartzite | 64 | 8 | 34.8 | 15.5 |
Slope angle | DL | Rift sediments | 32 | 7 | 58.9 | 14.1 |
Slope angle | L | Study area | 792 | 8 | 231.1 | 15.5 |
Slope angle | AL | Study area | 599 | 8 | 251 | 15.5 |
Slope angle | NL | Study area | 193 | 8 | 45.1 | 15.5 |
Slope angle | ADL | Study area | 409 | 8 | 208.9 | 15.5 |
Slope angle | ASL | Study area | 190 | 8 | 547.4 | 15.5 |
Slope aspect | AL | Study area | 599 | 7 | 16.4 | 14.1 |
Slope aspect a | NL | Study area | 193 | 7 | 3.3 | 14.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubwimana, D.; Ait Brahim, L.; Nkurunziza, P.; Dille, A.; Depicker, A.; Nahimana, L.; Abdelouafi, A.; Dewitte, O. Characteristics and Distribution of Landslides in the Populated Hillslopes of Bujumbura, Burundi. Geosciences 2021, 11, 259. https://doi.org/10.3390/geosciences11060259
Kubwimana D, Ait Brahim L, Nkurunziza P, Dille A, Depicker A, Nahimana L, Abdelouafi A, Dewitte O. Characteristics and Distribution of Landslides in the Populated Hillslopes of Bujumbura, Burundi. Geosciences. 2021; 11(6):259. https://doi.org/10.3390/geosciences11060259
Chicago/Turabian StyleKubwimana, Désiré, Lahsen Ait Brahim, Pascal Nkurunziza, Antoine Dille, Arthur Depicker, Louis Nahimana, Abdellah Abdelouafi, and Olivier Dewitte. 2021. "Characteristics and Distribution of Landslides in the Populated Hillslopes of Bujumbura, Burundi" Geosciences 11, no. 6: 259. https://doi.org/10.3390/geosciences11060259
APA StyleKubwimana, D., Ait Brahim, L., Nkurunziza, P., Dille, A., Depicker, A., Nahimana, L., Abdelouafi, A., & Dewitte, O. (2021). Characteristics and Distribution of Landslides in the Populated Hillslopes of Bujumbura, Burundi. Geosciences, 11(6), 259. https://doi.org/10.3390/geosciences11060259