Application of the Data on δ13C and δ18O of Carbonates for the Study of Unconventional Reservoirs on the Example of the Bazhenov Source Rocks, Western Siberia, Russia
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Makhnach, A.A. Stage Analysis of Lithogenesis Study Guide; BGU: Minsk, Belarus, 2000. [Google Scholar]
- Kholodov, V.N. Geochemistry of Sedimentary Process; Writings of Geological institute: Moscow, Russia, 2006; Volume 574. [Google Scholar]
- Wilson, J.L. Carbonate Facies in Geologic History; Springer Science and Business Media LLC: Berlin, Germany, 1975; p. 484. [Google Scholar]
- Kholodov, V.N.; Kuleshov, V.N.; Nedumov, R.I. Catagenetic Transformations and Isotopic Composition of Carbonates in Tertiary Deposists: Evidence from Kuban Superdeep Boreholes (SGS-1 and SGS-2). Litol. Polezn. Iskop. 1999, 34, 37–47. [Google Scholar]
- Arvidson, R.; Morse, J. Formation and Diagenesis of Carbonate Sediments. In Treatise on Geochemistry; Elsevier BV: Amsterdam, The Netherlands, 2014; Volume 9, pp. 61–101. [Google Scholar]
- Perozio, G.N.; Predtechenskaya, E.A.; Stasova, O.F. About transformations in enclosing rocks and oils in Western Siberia. In Russian Geology and Geophysics; Nauka: Novosibirsk, Russia, 1982; Volume 6, pp. 141–145. [Google Scholar]
- Yurchenko, A.Y.; Balushkina, N.S.; Kalmykov, G.A.; Shardanova, T.A.; Bychkov, A.Y.; Prokof’ev, V.Y. Genesis of vein calcite in carbonate rocks at top of Abalak and Georgiev formations in Central West Siberia. Neftyanoe Khozyaistvo Oil Ind. 2015, 4, 22–26. [Google Scholar]
- Zubkov, M.Y.; Sonich, V.P.; Zaripov, O.G. Geological and lithological criteria for estimating petroleum resource potential of the Bazhenov Formation in West Siberia. In Problems of the Petroleum Resource Potential of the Bazhenovka Formation in West Siberia; IGiRGI: Moscow, Russia, 1986; pp. 5–14. [Google Scholar]
- Mormyshev, V.V.; Zav’yalets, A.N. Scheme of Structure and Substantiation of Development Regim of Layer J0 within Salym Oil Field Special Aspects of Reserves Determination in Bazhenov Deposits of Western Siberia; SibNIINP: Tiumen, Russia, 1985. [Google Scholar]
- Sonich, V.P. Type of Reservoir in Bazhenov Rocks and Mechanism of Its Formation Special Aspects of Reserves Determination in Bazhenov Deposits Western Siberia; SibNIINP: Tiumen, Russia, 1985. [Google Scholar]
- Balushkina, N.S.; Kalmykov, G.A.; Khamidullin, R.A.; Korost, D.V.; Shyshkov, V.; Fadeeva, N.P. Secondary reservoirs of the Bazhenov and Abalak formations and the structure of the pore space. AAPG 2014, 50935. [Google Scholar] [CrossRef]
- Isaeva, E.; Stolbova, N.; Dolgaya, T. Post-sedimentation influence on filtration capacity reservoir rock properties (Pur-Tazov oil\gas-bearing area). IOP Conf. Ser. Earth Environ. Sci. 2015, 27, 012004. [Google Scholar] [CrossRef] [Green Version]
- Ríos, C.A.; Castellanos, O.M. Microstructural characterization of pore types in unconventional gas reservoirs utilizing FEG-SEM: An example from the Galembo Member of the Cretaceous La Luna Formation, Middle Magdalena Valley Basin (Colombia). Rev. Acad. Colomb. Cienc. Exactas Físicas Nat. 2016, 40, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Skibitskaya, N.; Bolshakov, M.; Burkhanova, I.; Kuzmin, V.; Surnachev, D. Tight Oil in Oil-And-Gas Source Carbonate Deposits’ Gas Saturation Zones of Gas-Condensate and Oil-Gas Condensate Fields. All Days 2016. [Google Scholar] [CrossRef]
- Eder, V.G.; Kostyreva, E.A.; Yurchenko, A.Y.; Balushkina, N.S.; Sotnich, I.S.; Kozlova, E.V.; Zamiraylova, A.G.; Savchenko, N.I. New data on lithology, organic geochemistry and accumulation conditions of the Bazhenov formation in Western Siberia. Georesursy 2019, 21. [Google Scholar] [CrossRef]
- McCrea, J.M. On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale. J. Chem. Phys. 1950, 18, 849–857. [Google Scholar] [CrossRef]
- Kim, S.T.; O’Neil, J.R. Equilibrium and non-equilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Acta 1997, 61, 3461–3475. [Google Scholar] [CrossRef]
- Faure, G. Principles of Isotope Geology; John Wiley & Sons: Hoboken, NJ, USA, 1989; p. 589. [Google Scholar]
- Bemis, B.E.; Spero, H.J.; Bijma, J.; Lea, D.W. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography 1998, 13, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Zeebe, R.E. An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes. Geochim. Cosmochim. Acta 1999, 63, 2001–2007. [Google Scholar] [CrossRef]
- Zakharov, V.A. Conditions of Formation of Volgian-Berriasian High-Carbon Bazhenov Formation (Western Siberia) according to Paleoecological Data Evolution of Biosphere and Biodiversity; Scientific publishers association KMK: Moscow, Russia, 2006; pp. 552–568. [Google Scholar]
- Sharp, Z. Principles of Stable Isotope Geochemistry, 2nd ed.; Pearson Prentice Hall: Hoboken, NJ, USA, 2007; p. 344. [Google Scholar] [CrossRef]
- Chacko, T.; Cole, D.R.; Horita, J. Equilibrium Oxygen, Hydrogen and Carbon Isotope Fractionation Factors Applicable to Geologic Systems. Rev. Miner. Geochem. 2001, 43, 1–81. [Google Scholar] [CrossRef]
- Galimov, E.M. Geochemistry of Carbon Stable Isotopes; Nedra: Moscow, Russia, 1968; p. 226. [Google Scholar]
- Arthur, M.A.; Anderson, T.F.; Kaplan, I.R.; Veizer, J.; Land, L.S. Stable Isotopes in Sedimentary Geology. Stable Isot. Sediment. Geol. 1983, 31, 433–439. [Google Scholar] [CrossRef]
- Zhang, J.; Quay, P.D.; Wilbur, D.O. Carbon isotope fractionation during gas–water exchange and dissolution of CO2. Geochim. Cosmochim. Acta 1995, 59, 107–114. [Google Scholar] [CrossRef]
- Schidlowski, M.; Aharon, P. Carbon Cycle and Carbon Isotope Record: Geochemical Impact of Life over 3.8 Ga of Earth History. In Early Organic Evolution; Springer Science and Business Media LLC: Berlin, Germany, 1992; pp. 147–175. [Google Scholar]
- Swart, P.K. The geochemistry of carbonate diagenesis: The past, present and future. Sedimentology 2015, 62, 1233–1304. [Google Scholar] [CrossRef]
- Braduchan, Y.V.; Golbert, A.V.; Gurari, F.G.; Zakharov, V.A.; Bulynnikova, S.P.; Klimova, I.G.; Mesezhnikov, M.S.; Vyachkileva, N.P.; Kozlova, G.P.; Lebedev, A.I.; et al. Bazhenov Horizon of Western Siberia (Stratigraphy. Paleogeography. Ecosystem. Oil Content); Nauka: Novosibirsk, Russia, 1986; p. 215. [Google Scholar]
- Gurari, F.G. Domanikites and Their Oil and Gas Content. Geol. Sov. Geol. 1981, 11, 2–12. [Google Scholar]
- Nesterov, I.I.; Ushatinsky, I.N.; Malykhin, A.Y.; Stavitsky, B.P.; Pyankov, B.N. Petroleum Productivity of Shale Rocks of West Siberia; Nedra: Moscow, Russia, 1987; p. 256. [Google Scholar]
- Orlov, V.P.; Gramberg, I.S.; Krasnyi, L.I.; Krivtsov, A.I.; Laverov, N.P.; Petrov, O.V.; Surkov, V.S.; Scheglov, A.D. Western Siberia Geology and Natural Resources of Russia in 6 Volumes; Kontorovich, A.E., Surkov, V.S., Eds.; VSEGEI: St. Petersburg, Russia, 2000; p. 477. [Google Scholar]
- Predtechenskaya, E.A.; Zlobina, O.N.; Burleva, O.V. Mineralogical and geochemical anomalies as indicators of fluid-dynamic processes in Jurassic oil and gas bearing rocks in the Western Siberia Geology. Geophys. Dev. Oil Gas Depos. 2015, 1, 11–24. [Google Scholar]
- Devyatov, V.P.; Nikitenko, B.L.; Shurygin, B.N. Jurassic paleogeography of Siberia during the major reorganization stages. Novosti Paleontologii I stratigrafii. News Paleontol. Stratigr. 2011, 52, 87–101. [Google Scholar]
- Zakharov, Y.D.; Smyshliaeva, O.P.; Popov, A.M.; Shigeta, Y. Isotopes Composition of Late Mesozoic Biogenic Carbonates in the Far East (Stable Isotopes of Oxygen and Carbon Major Paleoclimatic Episodes and Their Global Correlation); Dal’nauka: Vladivostok, Russia, 2006; p. 204. [Google Scholar]
- Kontorovich, A.; Kontorovich, V.; Ryzhkova, S.; Shurygin, B.; Vakulenko, L.; Gaideburova, E.; Danilova, V.; Kazanenkov, V.; Kim, N.; Kostyreva, E.; et al. Jurassic paleogeography of the West Siberian sedimentary basin. Russ. Geol. Geophys. 2013, 54, 747–779. [Google Scholar] [CrossRef]
- Klubova, T.T.; Khalimov, E.M. Oil Capacity of Bazhenov Formation within Salym Deposit (Results of Studies and Perspectives); VNIIOENG: Moscow, Russia, 1995; p. 40. [Google Scholar]
- Nemova, V.D. Conditions of reservoirs formation in Bazhenov horizon deposits in the area between Krasnoleninsky arch and Frolov megadepression. Oil Gas Geol. Theory Pract. 2012, 7, 1–14. [Google Scholar]
- Zubkov, M.Y. Mineral Composition and the δ13C Value in Fractured Carbonate Rocks of the Bazhenov-Abalakskaya Sequence of West Siberia Hard to Recover Reserves and Unconventional Hydrocarbon Sources; OOO “ZapSibGTs”: Tyumen, Russia, 2017; pp. 67–81. [Google Scholar]
- Nemova, V.D.; Panchenko, I.V. Productivity factors of the Bazhenov Horizon in the Frolov megadepression. Oil Gas Geol. Theory Pract. 2017, 12. [Google Scholar] [CrossRef]
- Korobov, A.D.; Korobova, L.A.; Kolotukhin, A.T.; Mukhin, V.M.; Gordina, R.I. About the Participation of Brains in Albitization Process During Reservoirs Formation (West Siberia); Saratov State University Bulletin Earth Sciences: Saratov, Russia, 2013; Volume 13, pp. 53–58. [Google Scholar]
- Eder, V.G.; Zamiraylova, A.G.; Zanin, Y.N.; Zhigul’skiy, I.A. Features of the lithological composition of the main types of sections of the Bazhenov formation. Geol. Nefti Gaza (Geol. Oil Gas) 2015, 6, 96–106. [Google Scholar]
- Zhukovskaya, E.A.; Vakulenko, L.G.; Yan, P.A. Septarian Concretions in Oxfordian Deposits in the Central and Southern Areas of Western Siberia; Scientific Reports of Kazan’ University; Kazan’ University Publisher: Kazan, Russia, 2011; Volume 153, pp. 211–217. [Google Scholar]
- Espitalie, J.; Bordenave, M.L. Rock-Eval pyrolysis. In Applied Petroleum Geochemistry; Technip: Paris, France, 1993; pp. 237–361. [Google Scholar]
- Kozlova, E.V.; Fadeeva, N.P.; Kalmykov, G.A.; Balushkina, N.S.; Pronina, N.V.; Poludetkina, E.N.; Kostenko, O.V.; Yurchenko, A.Y.; Borisov, R.S.; Bychkov, A.Y.; et al. Geochemical technique of organic matter research in deposits enrich in kerogene (the Bazhenov Formation, West Siberia). Mosc. Univ. Geol. Bull. 2015, 70, 409–418. [Google Scholar] [CrossRef]
- Maglevannaia, P.; Kozlova, E.; Spasennykh, M. Analysis of Geochemical Trends for the Bazhenov Oil Shale Formation Based on Pyrolysis Data. In Proceedings of the 29th International Meeting on Organic Geochemistry; European Association of Geoscientists & Engineers, Gothenburg, Sweden, 1–6 September 2019. [Google Scholar]
- Yurchenko, A.Y. Genesis of Calcite in Carbonates within Sedimentary Basins according to Carbon and Oxygen Stable Isotopes Distribution; Moscow University Geology Bulletin: Moscow, Russia, 2014; pp. 107–110. [Google Scholar]
- Boetius, A.; Suess, E. Hydrate Ridge: A natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chem. Geol. 2004, 205, 291–310. [Google Scholar] [CrossRef]
- Hinrichs, K.-U.; Boetius, A. The Anaerobic Oxidation of Methane: New Insights in Microbial Ecology and Biogeochemistry. In Ocean Margin Systems; Springer Science and Business Media LLC: Berlin, Germany, 2002; pp. 457–477. [Google Scholar]
- Campbell, K.A.; Farmer, J.D.; Marais, D.D. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: Carbonate geochemistry, fluids and palaeoenvironments. Geofluids 2002, 2, 63–94. [Google Scholar] [CrossRef] [Green Version]
- Peckmann, J.; Thiel, V. Carbon cycling at ancient methane–seeps. Chem. Geol. 2004, 205, 443–467. [Google Scholar] [CrossRef]
- Lein, A.Y.; Moskalev, L.I.; Bogdanov, Y.A.; Sagalevich, A.M. Hydrothermal systems of Ocean and Life. Priroda 2000, 5, 47–55. [Google Scholar]
- Canfield, D. Sulfate reduction and oxic respiration in marine sediments: Implications for organic carbon preservation in euxinic environments. Deep. Sea Res. Part A Oceanogr. Res. Pap. 1989, 36, 121–138. [Google Scholar] [CrossRef] [Green Version]
- Walter, L.M.; Ku, T.C.; Muehlenbachs, K.; Patterson, W.P.; Bonnell, L. Controls on the δ13C of dissolved inorganic carbon in marine pore waters: An integrated case study of isotope exchange during syndepositional recrystallization of biogenic carbonate sediments (South Florida Platform, USA). Deep. Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 1163–1200. [Google Scholar] [CrossRef]
- Jørgensen, B.B.; Kasten, S. Sulfur Cycling and Methane Oxidation. In Marine Geochemistry; Springer Science and Business Media LLC: Berlin, Germany, 2006; pp. 271–309. [Google Scholar]
- Lein, A.; Ivanov, M. Winogradsky Institute of Microbiology of Federal Research Centre Fundamentals of Biotechnology of RAS The isotopic composition of sulfur and carbon as a result of biogeochemical processes in the Black Sea. In The Black Sea System; P.P. Shirshov Institute of Oceanology, RAS: Moscow, Russia, 2018; pp. 560–605. [Google Scholar]
- Lein, A.Y.; Lisitsyn, A.P. Processes of Early Diagenesis in the Arctic Seas (on the Example of the White Sea). In The Handbook of Environmental Chemistry; Springer Science and Business Media LLC: Berlin, Germany, 2018; pp. 165–206. [Google Scholar]
- Morse, J. Formation and Diagenesis of Carbonate Sediments. Treatise Geochem. 2003, 7, 67–85. [Google Scholar]
- Bogorodskaya, L.I.; Kontorovich, A.E.; Larichev, A.I. Kerogen. Methods for Study and Geochemical Interpretation; SB RAS “Geo” Branch: Novosibirsk, Russia, 2005; p. 255. [Google Scholar]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence, 2nd ed.; Springer Science and Business Media LLC: Berlin, Germany, 1984; p. 699. [Google Scholar]
- Friedman, I.; O’Neil, J. Compilation of stable isotope fractionation factors of geochemical interest. In Professional Paper; USGS: Reston, VA, USA, 1977; p. 440. [Google Scholar]
- Zheng, Y.-F. Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem. J. 1999, 33, 109–126. [Google Scholar] [CrossRef] [Green Version]
- Ohmoto, H.; Rye, R.O. Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; John Whiley & Sons: Hoboken, NJ, USA, 1979; pp. 509–561. [Google Scholar]
- DeNiro, M.J.; Epstein, S. Isotopic composition of cellulose from aquatic organisms. Geochim. Cosmochim. Acta 1981, 45, 1885–1894. [Google Scholar] [CrossRef]
- Lillis, P.G. The Chuar Petroleum System, Arizona and Utah. In Hydrocarbon Source Rocks in Unconventional Plays, Rocky Mountain Region; USGS: Reston, VA, USA, 2016; pp. 79–136. [Google Scholar]
- Vetshtein, V.E. Oxygen and Hydrogen Isotopes in Natural Waters of USSR; Nedra: Lenindrad, Russia, 1982; p. 216. [Google Scholar]
- Nikanorov, A.M.; Tarasov, M.G.; Fedorov, Y.A. Hydrochemistry and Ground Water Formation; Hydrometpubl: Leningrad, Russia, 1983; p. 243. [Google Scholar]
- Nikanorov, A.M.; Fedorov, Y.A. Stable Isotopes in Hydrochemistry; Hydrometeoedit: Leningrad, Russia, 1988; p. 248. [Google Scholar]
- Dietrich, P.G.; Jordan, H. D and 18O content of pore waters (Gdansk Bay. Baltic Sea). Acta Hydrophys. 1982, 27, 83–88. [Google Scholar]
- Dubinin, A.V.; Dubinina, E.O. Isotope composition of oxygen and hydrogen in the black sea waters as a result of the dynamics of water masses. Oceanology 2014, 54, 713–729. [Google Scholar] [CrossRef]
- Dubinina, E.O.; Kossova, S.A.; Miroshnikov, A.Y.; Fyaizullina, R.V. Isotope parameters (δD, δ18O) and sources of freshwater input to Kara Sea. Oceanology 2017, 57, 31–40. [Google Scholar] [CrossRef]
Central Section | |||||||||||
Formation | Depth from the Bottom of the Bazhenov Formation | Lithological Type of Rocks | Corg, % | Ccarb, % | δ13Corg, ‰ | δ13Ccarb, ‰ | δ18O Carb, ‰ | Tmax, °C | HI, mg HC/g Corg | OI, mg CO2/g Corg | PI |
Bazhenov | 39.38 | Kerogen-clay-siliceous- carbonate | 6.7 | 8.4 | −30.3 | −13.9 | −2.6 | 445 | 325 | 8 | 0.14 |
38.62 | Kerogen-clay-siliceous-carbonate | 5.8 | 8.0 | −30.5 | −15.8 | 0.8 | 447 | 335 | 10 | 0.15 | |
38.52 | Kerogen-clay-siliceous-carbonate | 5.4 | 8.6 | −30.5 | −13.8 | −4.5 | 444 | 306 | 3 | 0.13 | |
36.44 | Kerogen-clay-siliceous | 17.2 | 1.5 | −30.8 | −6.3 | −7.2 | 446 | 331 | 2 | 0.1 | |
29.53 | Kerogen-clay-siliceous-carbonate | 4.3 | 9.2 | −31.1 | 2.0 | −7.3 | 439 | 304 | 25 | 0.19 | |
29.49 | Kerogen-clay-siliceous-carbonate | 4.4 | 8.6 | −31.0 | 2.3 | −8.4 | 442 | 300 | 9 | 0.23 | |
22.45 | Kerogen-clay-siliceous | 9.1 | 0.1 | −31.2 | −4.2 | −10.3 | 439 | 256 | 3 | 0.27 | |
18.66 | Kerogen-clay-siliceous | 7.9 | 2.4 | −31.2 | −8.1 | −12.0 | 443 | 296 | 9 | 0.17 | |
18.15 | Kerogen-clay-siliceous | 4.9 | 0.2 | −31.2 | −10.9 | −16.2 | 443 | 281 | 6 | 0.3 | |
11.03 | Clay-kerogen-siliceous-carbonate | 3.8 | 8.3 | −29.8 | −2.4 | −9.8 | 440 | 283 | 15 | 0.28 | |
8.39 | Clay-kerogen-siliceous | 9.5 | 0.4 | −30.7 | −0.5 | −15.9 | 448 | 287 | 2 | 0.23 | |
8.18 | Kerogen-clay-siliceous | 8.7 | 0.4 | −30.8 | −6.9 | −12.4 | 447 | 302 | 2 | 0.24 | |
5.94 | Kerogen-clay-siliceous | 9.3 | 0.6 | −31.0 | −9.8 | −15.1 | 449 | 314 | 5 | 0.22 | |
5.27 | Kerogen-clay-carbonate-siliceous | 4.6 | 4.7 | −30.6 | 0.9 | −9.3 | 446 | 362 | 3 | 0.29 | |
Northern Section | |||||||||||
Formation | Depth from the Bottom of Bazhenov Formation | Lithological Type of Rocks | Corg% | Ccarb. % | δ13Corg ‰ | δ13Ccarb ‰ | δ18Ocarb ‰ | Tmax, °C | HI, mg HC/g Corg | OI, mg CO2/g Corg | PI |
Bazhenov | 18.7 | Siliceous-carbonate | 1.9 | 9.9 | −30.7 | −26 | −0.3 | 438 | 205 | 37 | 0.13 |
18.24 | Siliceous-clay | 4.6 | 0.1 | −31.1 | −12.9 | −9.6 | 439 | 247 | 7 | 0.20 | |
17.31 | Siliceous-clay | 3.4 | 0.2 | −30.4 | −1.5 | −5.4 | 433 | 100 | 18 | 0.35 | |
17.03 | Siliceous-clay | 2.4 | 0.1 | −30.7 | −11.2 | −11.4 | 442 | 279 | 12 | 0.13 | |
15.79 | Siliceous-clay | 2.8 | 0.1 | −30.0 | −12.0 | −11.3 | 434 | 114 | 13 | 0.39 | |
15.32 | Siliceous-clay | 4.3 | 5.1 | −32.4 | −5.5 | −7.5 | 439 | 479 | 3 | 0.07 | |
15.07 | Kerogen-siliceous-clay | 8.8 | 0.4 | −32.2 | −11.8 | −10.1 | 440 | 358 | 5 | 0.11 | |
14.76 | Kerogen-siliceous-clay | 8.1 | 0.2 | −32.4 | −14 | −13.3 | 442 | 511 | 2 | 0.09 | |
14.47 | Kerogen-siliceous-clay | 7.6 | 0.0 | −31.4 | −13.9 | −13.8 | 437 | 409 | 3 | 0.09 | |
13.9 | Siliceous-clay | 1.0 | 0.2 | −29.5 | −14.1 | −12.1 | 435 | 75 | 28 | 0.48 | |
12.72 | Kerogen-siliceous-clay | 9.5 | 0.3 | −31.6 | −10.5 | −8.4 | 437 | 406 | 3 | 0.10 | |
11 | Siliceous-clay | 2.1 | 0.2 | −29.8 | −16.6 | −13.6 | 436 | 140 | 3 | 0.10 | |
9.28 | Kerogen-siliceous-clay | 7.8 | 0.1 | −31.5 | −15.5 | −12.1 | 439 | 369 | 3 | 0.13 | |
8.4 | Siliceous-clay | 6 | 0.5 | −32.1 | −15.6 | −13.1 | 441 | 406 | 5 | 0.09 | |
6.73 | Kerogen-siliceous-clay | 11.1 | 0.3 | −31.5 | −15.1 | −12.6 | 437 | 394 | 18 | 0.34 | |
Abalak | 5.14 | Carbonated-clay | 1.5 | 0.4 | −28.5 | −15.9 | −10.7 | 436 | 68 | 12 | 0.17 |
3.46 | Siliceous-clay | 2.6 | 0.3 | −29.8 | −15.3 | −12.2 | 439 | 204 | 108 | 0.28 | |
0.05 | Clay-siliceous-siderite | 0.6 | 8.1 | −28.5 | −10.8 | −1.2 | 433 | 51 | 9 | 0.32 | |
Southern section | |||||||||||
Formation | Depth from the bottom of Bazhenov Formation | Lithological Type of Rocks | Corg% | Ccarb. % | δ13Corg ‰ | δ13Ccarb ‰ | δ18Ocarb ‰ | Tmax, °C | HI, mg HC/g Corg | OI, mg CO2/g Corg | PI |
Bazhenov | 29.44 | Siliceous-clay | 6.4 | 0.9 | −30.9 | −17.1 | −17.4 | 428 | 564 | 6 | 0.03 |
21.44 | Siliceous-clay | 9.0 | 0.2 | −31.6 | −8.3 | −17.5 | 426 | 703 | 3 | 0.03 | |
21.24 | Siliceous-clay | 7.0 | 0.4 | −31.9 | −8.5 | −17.5 | 427 | 693 | 2 | 0.03 | |
17.54 | Clay-siliceous | 10.4 | 1.0 | −31.5 | −16.1 | −18.5 | 423 | 742 | 2 | 0.03 | |
16.44 | Clay-siliceous | 7.9 | 0.1 | −31.5 | −10.5 | −18.9 | 430 | 698 | 3 | 0.03 | |
14.44 | Clay-siliceous | 11.9 | 0.4 | −31.6 | −6.9 | −19.2 | 423 | 707 | – | – | |
14.04 | Clay-siliceous | 10.6 | 0.4 | −31.7 | −6.9 | −16.7 | 431 | 760 | 2 | 0.03 | |
13.34 | Clay-siliceous | 10.6 | 0.3 | −31.8 | −5.4 | −15.9 | 429 | 738 | 2 | 0.02 | |
9.44 | Clay-siliceous | 11.1 | 0.4 | −31 | −5.1 | −15.3 | 427 | 732 | 3 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurchenko, A.; Voropaev, A.; Kozlova, E.; Morozov, N.; Spasennykh, M. Application of the Data on δ13C and δ18O of Carbonates for the Study of Unconventional Reservoirs on the Example of the Bazhenov Source Rocks, Western Siberia, Russia. Geosciences 2021, 11, 264. https://doi.org/10.3390/geosciences11070264
Yurchenko A, Voropaev A, Kozlova E, Morozov N, Spasennykh M. Application of the Data on δ13C and δ18O of Carbonates for the Study of Unconventional Reservoirs on the Example of the Bazhenov Source Rocks, Western Siberia, Russia. Geosciences. 2021; 11(7):264. https://doi.org/10.3390/geosciences11070264
Chicago/Turabian StyleYurchenko, Anna, Andrey Voropaev, Elena Kozlova, Nikita Morozov, and Mikhail Spasennykh. 2021. "Application of the Data on δ13C and δ18O of Carbonates for the Study of Unconventional Reservoirs on the Example of the Bazhenov Source Rocks, Western Siberia, Russia" Geosciences 11, no. 7: 264. https://doi.org/10.3390/geosciences11070264
APA StyleYurchenko, A., Voropaev, A., Kozlova, E., Morozov, N., & Spasennykh, M. (2021). Application of the Data on δ13C and δ18O of Carbonates for the Study of Unconventional Reservoirs on the Example of the Bazhenov Source Rocks, Western Siberia, Russia. Geosciences, 11(7), 264. https://doi.org/10.3390/geosciences11070264