Geochemical Trends Reflecting Hydrocarbon Generation, Migration and Accumulation in Unconventional Reservoirs Based on Pyrolysis Data (on the Example of the Bazhenov Formation)
Abstract
:1. Introduction
2. Geological Setting
3. Samples
4. Methods
5. Results and Discussion
5.1. Generation Potential of the Bazhenov Formation Rocks
5.2. Kerogen Type
5.3. Relations between Thermal Maturity and Organic Matter Content in Rocks
5.4. Relations between Thermal Maturity and Oil Saturation of the Rocks
5.5. Identification of Potentially Productive Intervals According to Pyrolysis Studies
6. Conclusions
- More than 98.5% of organic matter in the deposits belongs to type II kerogen with different maturity. Up to 1.5% of organic matter belongs to type I kerogen, with a higher initial generation potential;
- More than 75% of the intervals of the Bazhenov Formation are characterized by “excellent” generation potential, 15% of the intervals have “very good” and “good”, the remaining 10% of deposits are at the end of oil generation and their generation potential is exhausted;
- About 46% of the studied samples of the Bazhenov Formation correspond to the initial stage of oil generation, 46% belong to the middle of the oil window and about 8% belong to the end of the oil window;
- We have established the quantitative relations between organic matter content and maturity. The maximum and average values of TOC at the beginning of oil generation are approximately two times higher than the ones at the end of the oil window. According to the obtained data, the ratio of generative and nongenerative kerogen for immature kerogen was estimated as 65% and 35%, respectively;
- The content of generated hydrocarbons in rocks (light oil, heavy oil fractions and hydrocarbon gas) depends on maturity. The amount of hydrocarbons in reservoir increases due to hydrocarbon generation and decreases as the result of migration from the source rocks. The beginning of the kerogen transformation to hydrocarbons is characterized by almost complete preservation of newly formed hydrocarbons in pore space of rock (more than 90%), while at the peak of generation (the middle of the oil window) the proportion of the remaining hydrocarbons in the reservoir decreases to 30%, and at the end of the oil window this proportion drops down to 10% and below;
- The maximum content of light and liquid hydrocarbons in the reservoir is observed for the rocks corresponding to the middle of the oil window (438 °C < Tmax < 448 °C), at the beginning and at the end of the oil window the content of these HC fractions is two or more times lower;
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale—Gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Hartwig, A.; di Primio, R.; Anka, Z.; Horsfield, B. Source rock characteristics and compositional kinetic models of Cretaceous organic rich black shales offshore southwestern Africa. Org. Geochem. 2012, 51, 17–34. [Google Scholar] [CrossRef]
- Jin, H.; Sonnenberg, S.A. Characterization for Source Rock Potential of the Bakken Shales in the Williston Basin, North Dakota and Montana. In Proceedings of the Unconventional Resources Technology Conference, Denver, CO, USA, 12–14 August 2013; pp. 117–126. [Google Scholar] [CrossRef]
- Raji, M.; Grocke, D.R.; Greenwell, C.; Cornford, C. Pyrolysis, Porosity and Productivity in Unconventional Mudstone Reservoirs: ‘Free’ and ‘Adsorbed’ Oil. In Proceedings of the Unconventional Resources Technology Conference, San Antonio, TX, USA, 20–22 July 2015; pp. 270–279. [Google Scholar] [CrossRef]
- Mani, D.; Patil, D.J.; Dayal, A.M.; Prasad, B.N. Thermal maturity, source rock potential and kinetics of hydrocarbon generation in Permian shales from the Damodar Valley basin, Eastern India. Mar. Pet. Geol. 2015, 66, 1056–1072. [Google Scholar] [CrossRef]
- Hunt, J.M. Petroleum Geochemistry and Geology; Wood Hole: San Francisco, CA, USA, 1979; ISBN 978-0716724414. [Google Scholar]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence, 2nd ed.; Springer: Berlin/Heidelber, Germany, 1984; ISBN 978-3-642-87815-2. [Google Scholar]
- Espitalie, J.; Marquis, F.; Barsony, I. Geochemical logging. In Analytical Pyrolysis—Techniques and Applications; Voorhees, K.J., Ed.; Butterworth-Heinemann: Boston, MA, USA, 1984; pp. 276–304. [Google Scholar]
- Espitalie, J.; Bordenave, M.L. Rock-Eval pyrolysis. In Applied Petroleum Geochemistry; Technip: Paris, France, 1993; pp. 237–361. [Google Scholar]
- Barbieri, M. Isotopes in Hydrology and Hydrogeology. Water 2019, 11, 291. [Google Scholar] [CrossRef] [Green Version]
- Lopatin, N.V.; Zubairaev, S.L.; Kos, I.M.; Emets, T.P.; Romanov, E.A.; Malchikhina, O.V. Unconventional oil accumulations in the Upper Jurassic Bazhenov black shale Formation, West Siberian Basin: A self-sourced reservoir system. J. Pet. Geol. 2003, 26, 225–244. [Google Scholar] [CrossRef]
- Jarvie, D.M. Shale resource systems for oil and gas: Part 1—Shale-gas resource systems. In AAPG Memoir 97, Shale Reservoirs—Giant Resources for the 21st Century; Breyer, J.A., Laubach, S.E., Eds.; AAPG: Tulsa, OK, USA, 2012; pp. 69–87. [Google Scholar] [CrossRef]
- Jarvie, D.M. Shale resource systems for oil and gas: Part 2—Shale-oil resource systems. In AAPG Memoir 97, Shale Reservoirs—Giant Resources for the 21st Century; Breyer, J.A., Laubach, S.E., Eds.; AAPG: Tulsa, OK, USA, 2012; pp. 89–119. [Google Scholar] [CrossRef]
- Maende, A.; Weldon, W.D. Pyrolysis and TOC Identification of Tight Oil Sweet Spots. In Proceedings of the Unconventional Resources Technology Conference, Denver, CO, USA, 12–14 August 2013; pp. 2573–2583. [Google Scholar] [CrossRef]
- Peters, K.E. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull. 1986, 73, 318–329. [Google Scholar]
- Nesterov, I.I.; Ushatinsky, I.N.; Malykhin, A.Y.; Stavitsky, B.P.; Pyankov, B.N. Petroleum Productivity of Shale Rocks of West Siberia; Nedra: Moscow, Russia, 1987. (In Russian) [Google Scholar]
- Peters, K.E.; Kontorovich, A.E.; Moldowan, J.M. Geochemistry of Selected Oils and Rocks from the Central Portion of the West Siberian Basin, Russia. AAPG Bull. 1993, 77, 863–887. [Google Scholar]
- Kontorovich, A.E.; Moskvin, V.I.; Bostikov, O.I.; Danilova, V.P.; Fomin, A.N.; Fomichev, A.S.; Kostyreva, E.A.; Melenevsky, V.N. Main oil source formations of the West Siberian basin. Pet. Geosci. 1997, 3, 343–358. [Google Scholar] [CrossRef]
- Ulmishek, G.F. Petroleum geology and resources of the West Siberian Basin, Russia; U.S. Geological Survey Bulletin 2201-G; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2003. [Google Scholar]
- Klett, T.R.; Schenk, C.J.; Brownfield, M.E.; Leathers-Miller, H.M.; Mercier, T.J.; Pitman, J.K.; Tennyson, M.E. Assessment of undiscovered continuous oil and shale-gas resources in the Bazhenov Formation of the West Siberian Basin Province, Russia. U.S.G.S. Fact Sheet No. 2016-3083. US Geol. 2016, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Eder, V.G.; Zamirailova, A.G.; Yan, P.A. The regularities of the distribution of siliceous mudstones and “coccolith” member of the Bazhenov Formation. Russ. Geol. Geophys. 2017, 58, 416–424. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States; U.S. Department of Energy: Washington, WA, USA, 2013. [Google Scholar]
- Kontorovich, A.E.; Burshtein, L.M.; Kazanenkov, V.A.; Kontorovich, V.A.; Kostyreva, E.A.; Ponomareva, E.V.; Ryzhkova, S.V.; Yan, P.A. The Bazhenov suite is the main reserve of unconventional oil in Russia. Georesur. Geoenerg. Geopolit. 2014, 2, 1–8. (In Russian) [Google Scholar]
- Alexeev, A.D. The Bazhenov Formation: In Search of Big Shale Oil in Upper Salym. Part 2. ROGTEC 2014, 2, 14–27. [Google Scholar]
- Khamidullin, R.A.; Kalmykov, G.A.; Korost, D.V.; Balushkina, N.S.; Bakai, A.I. The reservoir properties of the rocks of the bazhenovskaya formation. Mosc. Univ. Geol. Bull. 2013, 68, 310–317. [Google Scholar] [CrossRef]
- Vasiliev, A.L.; Pichkur, E.B.; Mikhutkin, A.A.; Spasennikh, M.J.; Bogdanovich, N.N.; Balushkina, N.S.; Kalmikov, G.A. The study of pore space morphology in kerogen from Bazhenov formation. OIJ 2015, 10, 28–31. [Google Scholar]
- Spasennykh, M.; Voropaev, A.; Kozlova, E.; Leushina, E.; Polyakov, V.; Vasiliev, A.; Bogdanovich, N.; Popov, Y.; Maximov, A. Organic Matter of Bazhenov Formation: Chemical and Isotope Composition, Microstructure, Thermal Maturation, Generation Potential and the Effect on Rock Properties. In Proceedings of the Sixth EAGE Shale Workshop, Bordeaux, France, 28 April–1 May 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Mukhametdinova, A.; Karamov, T.; Bogdanovich, N.; Borisenko, S.; Rudakovskaya, S.; Cheremisin, A. Wettability of organic-rich source rocks: Case study on Bazhenov Formation (Abalak-Bazhenov group). Adv. Geosci. 2020, 54, 195–204. [Google Scholar] [CrossRef]
- Panchenko, I.V.; Nemova, V.D.; Smirnova, M.E.; Ilyina, M.V.; Baraboshkin, E.Y.; Ilyin, V.S. Stratification and detailed correlation of Bazhenov Horizon in the Central part of the Western Siberia according to lithological and paleontological core analysis and well logging. Oil Gas Geol. 2016, 6, 22–34. (In Russian) [Google Scholar]
- Petersen, J.A.; Clarke, J.W. Geology and hydrocarbon habitat of the West Siberian Basin. AAPG Stud. Geol. 1991, 32, 1–9. [Google Scholar] [CrossRef]
- Kontorovich, A.E.; Danilova, V.P.; Zamiraylova, A.G.; Zanin, Y.N.; Kostyreva, E.A.; Melenevskiy, V.N.; Moskvin, V.I.; Eder, V.G. Lithology, organic geochemistry, paleogeography, oil bearing capacity and petroleum-generating potential of the Bazhenovo Formation. In Proceedings of the 25th International Meeting on Organic Geochemistry, Interlaken, Switzerland, 18–23 September 2011. [Google Scholar]
- Korobova, N.I.; Makarova, O.M.; Kalmykov, G.A.; Petrakova, N.N.; Yurchenko, A.Y.; Sharafutdinov, V.F.; Korost, S.R.; Kalabin, V.V. The main types of sections of the oil-bearing Bazhenov Formation on the Northeastern Surgut Arch. Mosc. Univ. Geol. Bull. 2015, 70, 419–427. [Google Scholar] [CrossRef]
- Kontorovich, A.E.; Yan, P.A.; Zamirailova, A.G.; Kostyreva, E.A.; Eder, V.G. Classification of rocks of the Bazhenov Formation. Russ. Geol. Geophys. 2016, 57, 1606–1612. [Google Scholar] [CrossRef]
- Panchenko, I.V.; Sobolev, I.D.; Rogov, M.A.; Latyshev, A.V. Volcanic Tuffs and Tuffites in Jurassic–Cretaceous (Volgian–Ryazanian) Boundary Rocks of Western Siberia. Lithol. Miner. Resour. 2021, 56, 152–188. [Google Scholar] [CrossRef]
- Kozlova, E.V.; Fadeeva, N.P.; Kalmykov, G.A.; Balushkina, N.S.; Pronina, N.V.; Poludetkina, E.N.; Kostenko, O.V.; Yurchenko, A.Y.; Borisov, R.S.; Bychkov, A.Y.; et al. Geochemical technique of organic matter research in deposits enrich in kerogen (the Bazhenov Formation, West Siberia). Mosc. Univ. Geol. Bull. 2015, 70, 409–418. [Google Scholar] [CrossRef]
- Goncharov, I.V.; Samoilenko, V.V.; Oblasov, N.V. Prospects of Shale Oil Bazhenov Formation in the South-East of Western Siberia. In Proceedings of the SPE Russian Oil and Gas Exploration & Production Technical Conference and Exhibition, Moscow, Russia, 14–16 October 2014; pp. 1–11. [Google Scholar] [CrossRef]
- Kozlova, E.V.; Kalmykov, G.A.; Ganichev, D.I.; Balushkina, N.S. Forms of hydrocarbons in rocks of the Bazhen formation. Russ. Geophys. J. 2015, 3, 15–22. (In Russian) [Google Scholar]
- Volkov, V.A.; Oleynik, E.V.; Oksenoyd, E.E.; Sidorov, A.A. Structure and source potential of the Bazhenov formation in the central part of West Siberia. Geol. Miner. Resour. Sib. 2016, 3, 79–98. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Kontorovich, A.E.; Ponomareva, E.V.; Burshtein, L.M.; Glinskikh, V.N.; Kim, N.S.; Kostyreva, E.A.; Pavlova, M.A.; Rodchenko, A.P.; Yan, P.A. Distribution of organic matter in rocks of the Bazhenov Horizon (West Siberia). Russ. Geol. Geophys. 2018, 59, 357–371. [Google Scholar] [CrossRef]
- Kontorovich, A.E.; Bogorodskaya, L.I.; Borisova, L.S.; Burshtein, L.M.; Ismagilov, Z.P.; Efimova, O.S.; Kostyreva, E.A.; Lemina, N.M.; Ryzhkova, S.V.; Sozinov, S.A.; et al. Geochemistry and Catagenetic Transformations of Kerogen from the Bazhenov Horizon. Geochem. Int. 2019, 57, 621–634. [Google Scholar] [CrossRef]
- Goncharov, I.V.; Samoilenko, V.V.; Oblasov, N.V.; Fadeeva, S.V.; Veklich, M.A.; Kashapov, R.S.; Trushkov, P.V.; Bahtina, E.S. Types of organic matter and catagenesis of the Bazhenov formation and its same-aged analogues. OIJ 2016, 10, 20–25. (In Russian) [Google Scholar]
- Lopatin, N.P.; Emets, T.P. Pyrolysis in Oil and Gas Geology; Galimov, E.M., Ed.; Nauka: Moscow, Russia, 1987. (In Russian) [Google Scholar]
- Bulatov, T.; Kozlova, E.; Leushina, E.; Panchenko, I.; Pronina, N.; Voropaev, A.; Morozov, N.; Spasennykh, M. Alginite-Rich Layers in the Bazhenov Deposits of Western Siberia. Geosciences 2021, 11, 252. [Google Scholar] [CrossRef]
- Fomin, A.N. Catagenesis of Organic Matter and Petroleum Potential of the Mesozoic (Jurassic, Triassic) and Paleozoic Sediments of the West Siberian Megabasin; IPGG SB RAS: Novosibirsk, Russia, 2011. (In Russian) [Google Scholar]
- Vassoevich, N.B. Origin of petroleum. Mosc. Univ. Geol. Bull. 1975, 5, 3–23. [Google Scholar]
- Langford, F.F.; Blanc-Valleron, M.M. Interpreting Rock-Eval pyrolysis data using graphs of pyrolyzable hydrocarbons vs total organic carbon. AAPG Bull. 1990, 74, 799–804. [Google Scholar]
- Espitalie, J. Use of Tmax as a maturation index for different types of organic matter: Comparison with vitrinite reflectance. In Thermal Modeling in Sedimentary Basins, Proceedings of Meeting: 1st IFP Exploration Research Conference, Carcans, France, 3–7 June 1985; Burrus, J., Ed.; Technip: Paris, France, 1986; Volume 44, pp. 475–496. [Google Scholar]
- Wüst, R.A.; Cook, J. Vitrinite Reflectance Versus Pyrolysis Tmax Data: Assessing Thermal Maturity in Shale Plays with Special Reference to the Duvernay Shale Play of the Western Canadian Sedimentary Basin. In Proceedings of the SPE Unconventional Resources Conference and Exhibition-Asia Pacific, Brisbane, Australia, 11–13 November 2013. [Google Scholar] [CrossRef] [Green Version]
- Behar, F.; Beaumont, V.; Penteado, H.D.B. Rock-Eval 6 Technology: Performances and Developments. Oil Gas Sci. Technol. Rev. IFP 2001, 56, 111–134. [Google Scholar] [CrossRef]
- Pronina, N.V.; Vaitekhovich, A.P. Direct signs of oil-generation in the rocks of Bazhenov Suite. Georesources 2021, 23, 152–157. [Google Scholar] [CrossRef]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide, 1st ed.; Cambridge University Press: Cambridge, UK, 1993; p. 1155. [Google Scholar]
- Bulatov, T.; Kozlova, E.; Spasennykh, M.; Leushina, E. Specific Layers Containing Highly Oil-Prone Organic Matter in the Bazhenov Formation. In Proceedings of the 29th International Meeting on Organic Geochemistry, Gothenburg, Sweden, 1–6 September 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Skvortsov, M.B.; Dakhnova, M.V.; Mozhegova, S.V.; Kirsanov, A.M.; Komkov, I.K.; Paizanskaya, I.L. Geochemical methods for prediction and assessment of shale oil resources (case study of Bazhenov Formation). Russ. Geol. Geophys. 2017, 58, 495–503. [Google Scholar] [CrossRef]
- Karpov, Y.A.; Balushkina, N.S.; Stupakova, A.V.; Fomina, M.M.; Topchii, M.S.; Miftakhova, A.A.; Kalmykov, A.G.; Kalmykov, G.A. The Criteria for the Occurrence of Oil-Producing Rocks of the Bazhenovskaya Highly Carbonaceous Formation with an Evolved System of Kerogen Pore Capacity. Mosc. Univ. Geol. Bull. 2019, 74, 285–296. [Google Scholar] [CrossRef]
- Kalmykov, A.G.; Karpov, Y.A.; Topchiy, M.S.; Fomina, M.M.; Manuilova, E.A.; Sheremeteva, E.V.; Tretyakova, I.O.; Pronina, N.V.; Shishkov, V.A.; Balushkina, N.S.; et al. The effect of catagenetic maturity on the formation of reservoirs with organic porosity in the Bazhenov formation and peculiarities of their extension. Georesources 2019, 21, 159–171. [Google Scholar] [CrossRef]
- Postnikova, O.V.; Postnikov, A.V.; Zueva, O.A.; Kozionov, A.E.; Milovanova, E.V.; Savinova, L.A. Types of Void Space in the Bazhenov Reservoir Rocks. Geosciences 2021, 11, 269. [Google Scholar] [CrossRef]
- Nemova, V.D.; Pogodaeva, A.M.; Kim, O.O.; Matyukhina, T.A. Petrophysica characteristics of the Late Jurassic—Early Cretaceous productive levels of the Sredne-Nazym field. Pet. Geol. Theor. Appl. Stud. 2020, 15, 1–16. [Google Scholar] [CrossRef]
Maturity Stage | Catagenesis Stage 1 | Number of Samples | Share in the BF Section, % | Tmax | HI | Tmaxex | HIex | Kgoc |
---|---|---|---|---|---|---|---|---|
Immature | PC3-MC1 | 422 | 22 | 425 ÷ 438 | 500 ÷ 700 | 430 ÷ 440 | 400 ÷ 750 | 45 ÷ 62 |
Early oil window | MC1–2 | 464 | 24 | 436 ÷ 441 | 425 ÷ 550 | 434 ÷ 444 | 350 ÷ 550 | 35 ÷ 45 |
Middle oil window | MC2 | 874 | 46 | 439 ÷ 445 | 200 ÷ 450 | 436 ÷ 450 | 100 ÷ 450 | 15 ÷ 35 |
Late oil window | MC3 | 149 | 8 | 440 ÷ 455 | <200 | 444 ÷ 466 | 50 ÷ 150 | 3 ÷ 15 |
Productive Intervals Features | Possible Method of Development | TOC | S1 | S2 | ΔS2 | Kgoc |
---|---|---|---|---|---|---|
wt.% | mg HC/g Rock | % | ||||
Increased oil saturation, Increased reservoir properties | Hydraulic fracturing | Low <5% | High >7 | Low <35 | Low <20 | Low <35 |
High generation potential of kerogen, Increased heavy oil fractions content | Thermal EOR | High >5% | High >7 | High >35 | High >20 | High >35 |
Oil Generation Stage | Kgoc, % | Number of Samples | Interval Occurrence Estimated from Number of Samples | |||
---|---|---|---|---|---|---|
Zone I | Zone II | Zone III | Zone IV | |||
Beginning of generation | 45 ÷ 62 | 422 | 2.5% | 18% | 70.5% | 9% |
Early oil window | 35 ÷ 45 | 464 | 5% | 19.5% | 61.5% | 14% |
Middle oil window | 15 ÷ 35 | 874 | 14.5% | 52% | 12.5% | 21% |
Late oil window | 0 ÷ 15 | 149 | 36% | 64% | 0% | 0% |
Total for BF | 1909 | 11% | 38% | 36% | 15% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spasennykh, M.; Maglevannaia, P.; Kozlova, E.; Bulatov, T.; Leushina, E.; Morozov, N. Geochemical Trends Reflecting Hydrocarbon Generation, Migration and Accumulation in Unconventional Reservoirs Based on Pyrolysis Data (on the Example of the Bazhenov Formation). Geosciences 2021, 11, 307. https://doi.org/10.3390/geosciences11080307
Spasennykh M, Maglevannaia P, Kozlova E, Bulatov T, Leushina E, Morozov N. Geochemical Trends Reflecting Hydrocarbon Generation, Migration and Accumulation in Unconventional Reservoirs Based on Pyrolysis Data (on the Example of the Bazhenov Formation). Geosciences. 2021; 11(8):307. https://doi.org/10.3390/geosciences11080307
Chicago/Turabian StyleSpasennykh, Mikhail, Polina Maglevannaia, Elena Kozlova, Timur Bulatov, Evgeniya Leushina, and Nikita Morozov. 2021. "Geochemical Trends Reflecting Hydrocarbon Generation, Migration and Accumulation in Unconventional Reservoirs Based on Pyrolysis Data (on the Example of the Bazhenov Formation)" Geosciences 11, no. 8: 307. https://doi.org/10.3390/geosciences11080307
APA StyleSpasennykh, M., Maglevannaia, P., Kozlova, E., Bulatov, T., Leushina, E., & Morozov, N. (2021). Geochemical Trends Reflecting Hydrocarbon Generation, Migration and Accumulation in Unconventional Reservoirs Based on Pyrolysis Data (on the Example of the Bazhenov Formation). Geosciences, 11(8), 307. https://doi.org/10.3390/geosciences11080307