Storm Driven Migration of the Napatree Barrier, Rhode Island, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Storm History
2.3. Shoreline Change Data
2.4. Historical Aerial Photographs
3. Results
3.1. Shoreline Change
3.2. Barrier Width
3.3. A Review of the Aerial Photography
4. Discussion
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Stutz, M.L.; Pilkey, O.H. Open-ocean barrier islands: Global influence of climatic, oceanographic, and depositional settings. J. Coast. Res. 2011, 27, 207–222. [Google Scholar] [CrossRef]
- Fenster, M.S.; Dolan, R.; Morton, R.A. Coastal storms and shoreline change: Signal or noise? J. Coast. Res. 2001, 17, 714–720. [Google Scholar]
- Leatherman, S.; Zhang, K.; Douglas, B. Sea level rise shown to drive coastal erosion. EOS Trans. Am. Geophys. Union 2000, 81, 55–57. [Google Scholar] [CrossRef]
- Pilkey, O.H.; Young, R.S.; Bush, D.M. Comment on “Sea level rise shown to drive coastal erosion”. EOS Trans. Am. Geophys. Union 2000, 81, 436. [Google Scholar] [CrossRef] [Green Version]
- Sallenger, A.H., Jr.; Morton, R.; Fletcher, C.; Thieler, E.R.; Howd, P. Comment on “Sea level rise shown to drive coastal erosion”. EOS Trans. Am. Geophys. Union 2000, 81, 436. [Google Scholar] [CrossRef]
- Zhang, K.; Douglas, B.; Leatherman, S. Do storms cause long-term beach erosion along the U.S. east barrier coast? J. Geol. 2002, 110, 493–502. [Google Scholar] [CrossRef]
- Morton, R.A. Historical changes in the Mississippi-Alabama barrier-island chain and roles of extreme storms, sea level and human activities. J. Coast. Res. 2008, 24, 1587–1600. [Google Scholar] [CrossRef]
- Leatherman, S.P. Migration of Assateague Island, Maryland, by inlet and overwash processes. Geology 1979, 7, 104–107. [Google Scholar] [CrossRef]
- Morton, R.A. Factors controlling storm impacts on coastal barriers and beaches—A preliminary basis for near real-time forecasting. J. Coast. Res. 2002, 18, 486–501. [Google Scholar]
- Morton, R.A.; Sallenger, A.H., Jr. Morphological impacts of extreme storms on sandy beaches and barriers. J. Coast. Res. 2003, 19, 560–573. [Google Scholar]
- FitzGerald, D.M.; Hein, C.J.; Hughes, Z.; Kulp, M.; Georgiou, I.; Miner, M.D. Runaway Barrier Island Transgression Concept: Global Case Studies. In Barrier Dynamics and Response to Changing Climate; Moore, L.J., Murray, A.B., Eds.; Springer: Cham, Switzerland, 2018; pp. 3–56. [Google Scholar]
- Williams, S.J. Sea-level rise implications for coastal regions. J. Coast. Res. 2013, 63, 184–196. [Google Scholar] [CrossRef]
- Gutierrez, B.T.; Williams, S.J.; Thieler, E.R. Potential for Shoreline Changes due to Sea-Level Rise along the U.S. Mid-Atlantic Region: U.S. Geological Survey Open-File Report 2007-1278; U.S. Geological Survey: Reston, VA, USA, 2007.
- Williams, S.J.; Gutierrez, B.T. Sea-level rise and coastal change: Causes and implications for the future of coasts and low-lying regions. Shore Beach 2009, 77, 13–21. [Google Scholar]
- Ashton, A.D.; Lorenzo-Trueba, J. Morphodynamics of Barrier Response to Sea-Level Rise. In Barrier Dynamics and Response to Changing Climate; Moore, L.J., Murray, A.B., Eds.; Springer: Cham, Switzerland, 2018; pp. 277–304. [Google Scholar]
- Lorenzo-Trueba, J.; Ashton, A.D. Rollover, drowning, and discontinuous retreat: Distinct modes of barrier response to sea-level rise arising from a simple morphodynamic model. J. Geophys. Res. Earth Surf. 2014, 119, 779–801. [Google Scholar] [CrossRef] [Green Version]
- FitzGerald, D.M.; Fenster, M.S.; Argow, B.A.; Buynevich, I.V. Coastal Impacts Due to Sea-Level Rise. Annu. Rev. Earth Planet. Sci. 2008, 36, 601–647. [Google Scholar] [CrossRef] [Green Version]
- Bender, M.A.; Knutson, T.R.; Tuleya, R.E.; Sirutis, J.J.; Vecchi, G.A.; Garner, S.T.; Held, I.M. Modeled Impact of Anthropogenic Warming on the Frequency of Intense Atlantic Hurricanes. Science 2010, 327, 454–458. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K.A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA 2013, 110, 12219–12224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Audubon Society. National Audubon Society Important Bird Areas in the U.S.: Napatree Point/Sandy Point. Available online: https://www.audubon.org/important-bird-areas/napatree-pointsandy-point (accessed on 21 September 2020).
- Reeves, I.R.B.; Moore, L.J.; Murray, A.B.; Anarde, K.A.; Goldstein, E.B. Dune Dynamics Drive Discontinuous Barrier Retreat. Geophys. Res. Lett. 2021, 48, e2021GL092958. [Google Scholar] [CrossRef]
- RIGIS. April 2014 Rhode Island Statewide High Resolution Orthoimages. In Rhode Island Geographic Information System (RIGIS) Data Distribution System. Environmental Data Center; University of Rhode Island: Kingston, Jamaica, 2015. [Google Scholar]
- Boothroyd, J.C.; Hollis, R.J.; Oakley, B.A.; Henderson, R. Shoreline Change Maps for Washington County Rhode Island Depicting Shoreline Change from 1939–2014; Rhode Island Geological Survey: Kingston, RI, USA, 2016. [Google Scholar]
- Boothroyd., J.C.; Hehre, R.E. Shoreline Change Maps for the South Shore of Rhode Island, Map Folio 2007-2 ed.; Rhode Island Geological Survey: Kingston, RI, USA, 2007. [Google Scholar]
- Hapke, C.J.; Himmelstoss, E.A.; Kratzmann, M.G.; List, J.H.; Thieler, E.R. National Assessment of Shoreline Change: Historical Shoreline Change along the New England and Mid-Atlantic Coasts; US Geological Survey: Reston, VA, USA, 2010.
- Nichols, R.L.; Marston, A.F. Shoreline changes in Rhode Island produced by hurricane of 21 September 1938. Bull. Geol. Soc. Am. 1939, 50, 1357–1370. [Google Scholar] [CrossRef]
- USACE. 2018 USACE NCMP Topobathy Lidar: East Coast. 2020. Available online: https://www.fisheries.noaa.gov/inport/item/55881 (accessed on 3 August 2021).
- FitzGerald, D.M.; Van Heteren, S. Classification of paraglacial barrier systems: Coastal New England, USA. Sedimentology 1999, 46, 1083–1108. [Google Scholar] [CrossRef]
- Schafer, J.P. Surficial Geologic Map of the Watch Hill quadrangle, Rhode Island-Connecticut. In U.S. Geological Survey Geological Quadrangle Map GQ-410; US Geological Survey: Reston, VA, USA, 1965. [Google Scholar]
- Stone, J.R.; Shafer, J.P.; London, E.H.; DiGiacomo-Cohen, M.; Lewis, R.S.; Thompson, W.B. Quaternary Geologic Map of Connecticut and Long Island Sound Basin.: U.S. Geological Survey Geologic Investigations Series Map I-2784, Scale 1:125,000, 2 Sheets and Pamphlet; US Geological Survey: Reston, VA, USA, 2005; pp. 1–72.
- FitzGerald, D.M.; Baldwin, C.T.; Ibrahim, N.A.; Sands, D.R. Development of the northwestern Buzzards Bay Shoreline, Massachusetts. In Glaciated Coasts; FitzGerald, D.M., Rosen, P.S., Eds.; Academic Press: San Diego, CA, USA, 1987. [Google Scholar]
- Oakley, B.A.; Murphy, C.; Varney, M.; Hollis, R.J. Spatial Extent and Volume of the Shoreface Depositional Platform on the Upper Shoreface of the Glaciated Rhode Island South Shore. Estuaries Coasts 2019, 1–20. [Google Scholar] [CrossRef]
- Hayes, M.O. Barrier island morphology as a function of tidal and wave regime. In Barrier Islands from the Gulf of St. Lawrence to the Gulf of Mexico; Leatherman, S.P., Ed.; Academic Press: New York, NY, USA, 1979; pp. 1–27. [Google Scholar]
- WHG. Wave, Tide and Current Data Collection, Washington County, Rhode Island: Report to the U.S. Army Corps of Engineers by the Woods Hole Group; US Army Corps of Engineers: New England District, MA, USA, 2012. [Google Scholar]
- USACE. North Atlantic Coast Comprehensive Study: Resilient Adaptation to Increasing Risk; Main Report; US Army Corps of Engineers: New England District, MA, USA, 2015. [Google Scholar]
- NOS. Mean Sea Level Trend Station 8452660 Newport, Rhode Island. Available online: https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?stnid=8452660 (accessed on 20 May 2021).
- NOS. Mean Sea Level Trend Station 8461490 New London, CT. Available online: https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8461490 (accessed on 20 May 2021).
- NOS. Mean Sea Level Trend Station 8510560 Montauk, New York. Available online: https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8510560 (accessed on 20 May 2021).
- Carey, J.C.; Moran, S.B.; Kelly, R.P.; Kolker, A.S.; Fulweiler, R.W. The declining role of organic matter in New England salt marshes. Estuaries Coasts 2017, 40, 626–639. [Google Scholar] [CrossRef]
- Beckley, B.; Ray, R.; Zelensky, N.; Lemoine, F.; Yang, X.; Brown, S.; Desai, S.; Mitchum, G. Global Mean Sea Level Trend from Integrated Multi-Mission Ocean Altimeters TOPEX/Poseidon Jason-1 and OSTM/Jason-2 Version 5; NASA Physical Oceanography DAAC: Pasadena, CA, USA, 2020. [CrossRef]
- Karegar, M.A.; Dixon, T.H.; Engelhart, S.E. Subsidence along the Atlantic Coast of North America: Insights from GPS and late Holocene relative sea level data. Geophys. Res. Lett. 2016, 43, 3126–3133. [Google Scholar] [CrossRef] [Green Version]
- Boose, E.R.; Chamberlin, K.E.; Foster, D.R. Landscape and regional impacts of historical hurricanes in New England. Ecol. Monogr. 2001, 71, 27–48. [Google Scholar] [CrossRef]
- Donnelly, J.; Bryant, S.S.; Butler, J.; Dowling, J.; Fan, L.; Hausmann, N.; Newby, P.; Shuman, B.; Stern, J.; Westover, K.; et al. A backbarrier overwash record of intense storms from Brigantine, New Jersey. Mar. Geol. 2004, 210, 107–121. [Google Scholar] [CrossRef]
- Ludlum, D.M. Early American Hurricanes; American Meteorological Society: Boston, MA, USA, 1963; p. 198. [Google Scholar]
- Pore, N.A.; Barrientos, C.S. Storm Surge; New York SeaGrant Institute: Stony Brook, NY, USA, 1976. [Google Scholar]
- NOAA. Historical Hurricane Tracks; NOAA Office for Coastal Management: North Charleston, SC, USA, 2020; Volume 2020.
- Ashton, A.D.; Donnelly, J.P.; Evans, R.L. A discussion of the potential impacts of climate change on the shorelines of the Northeastern USA. Mitig. Adapt. Strateg. Glob. Chang. 2008, 13, 719–743. [Google Scholar] [CrossRef]
- Brown, C.W. Hurricanes and shore-line changes in Rhode Island. Geogr. Rev. 1939, 29, 416–430. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Bryant, S.S.; Butler, J.; Dowling, J.; Fan, L.; Hausmann, N.; Newby, P.; Shuman, B.; Stern, J.; Westover, K. 700 yr sedimentary record of intense hurricane landfalls in southern New England. Geol. Soc. Am. Bull. 2001, 113, 714–727. [Google Scholar] [CrossRef] [Green Version]
- Shaw, A.; Hashemi, M.R.; Spaulding, M.; Oakley, B.; Baxter, C. Effect of Coastal Erosion on Storm Surge: A Case Study in the Southern Coast of Rhode Island. J. Mar. Sci. Eng. 2016, 4, 85. [Google Scholar] [CrossRef]
- Dolan, R. The Ash Wednesday Storm of 1962: 25 Years Later. J. Coast. Res. 1987, 3, 2–5. [Google Scholar]
- Leatherman, S.; Zaremba, R.E. Overwash and aeolian processes on a U.S. north.east coast barrier. Sediment. Geol. 1987, 52, 183–206. [Google Scholar] [CrossRef]
- Boothroyd, J.C.; Gibeaut, J.C.; Dacey, M.F.; Grant, J.A.; Blais, A.G.; Pickart, D.S.; Gricus, C.; Szak, C. The geological impact of Hurricane Gloria: South shore of Rhode Island. In Proceedings of the Geological Society of America; Geological Society of America: Boulder, CO, USA, 1986; p. 5. [Google Scholar]
- Cheung, K.F.; Tang, L.; Donnelly, J.P.; Scileppi, E.M.; Liu, K.B.; Mao, X.Z.; Houston, S.H.; Murnane, R.J. Numerical modeling and field evidence of coastal overwash in southern New England from Hurricane Bob and implications for paleotempestology. J. Geophys. Res. Earth Surf. 2007, 112, F3. [Google Scholar] [CrossRef] [Green Version]
- FitzGerald, D.M.; Van Heteren, S.; Montello, T.M. Shoreline Processes and Damage Resulting from the Halloween Eve Storm of 1991 along theNorth and South Shores of Massachusetts Bay, U.S.A. J. Coast. Res. 1994, 10, 113–132. [Google Scholar]
- Butman, B.; Sherwood, C.R.; Dalyander, P.S. Northeast storms ranked by wind stress and wave-generated bottom stress observed in Massachusetts Bay 1990–2006. Cont. Shelf Res. 2008, 8, 1231–1245. [Google Scholar] [CrossRef]
- Marrone, J.F. Evaluation of impacts of the Patriots’ Day storm (15–18 April 2007) on the New England coastline. In Solutions to Coastal Disasters 2008; American Society of Civil Engineers: Reston, VA, USA, 2008; pp. 507–517. [Google Scholar]
- Blake, E.S.; Kimberlain, T.B.; Berg, R.J.; Cangialosi, J.P.; Beven, J.L., II. Tropical Cyclone Report Hurricane Sandy (AL182012); 22–29 October 2012; National Hurricane Center: Miami, FL, USA, 2013.
- Zhang, K.; Douglas, B.C.; Leatherman, S.P. Twentieth-Century Storm Activity along the U.S. East Coast. J. Clim. 2000, 13, 1748–1761. [Google Scholar] [CrossRef]
- NOS. Annual Exceedance Probability Curves for Station 8452660 Newport, RI (Newport Tide Gauge); National Ocean Service: Silver Spring, MD, USA, 2021.
- NOAA. Verified Water-Level Data at the Newport, RI Tide Gauge (Station 8452660). 2020. Available online: https://tidesandcurrents.noaa.gov/stationhome.html?id=8452660 (accessed on 20 May 2021).
- Hale, S.O. Hurricane Carol Lashes Rhode Island; Providence Journal Co.: Providence, RI, USA, 1954; p. 80. [Google Scholar]
- USAAC. 1938 Hurricane Damage Photos: 23–24 September 1938, 118th Photographic Section of the U.S. Army Air Corps and the 43rd Division of the Connecticut National Guard. Connecticut State Library Aerial Photograph Collection. 1938. Available online: https://libguides.ctstatelibrary.org/hg/aerialphotos (accessed on 7 March 2020).
- Houser, C.; Barrineau, P.; Hammond, B.; Saari, B.; Rentschler, E.; Trimble, S.; Wernette, P.; Weymer, B.; Young, S. Role of the Foredune in Controlling Barrier Island Response to Sea Level Rise. Barrier Dynamics and Response to Changing Climate. In Barrier; Moore, L.J., Murray, A.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 175–207. [Google Scholar]
- Oakley, B.A. Response and recovery of welded barrier: Napatree Point Conservation Area following ’Superstorm’ Sandy measured using LiDAR and field surveys. In Proceedings of the American Shore and Beach Preservation Association, Long Beach, CA, USA, 13–16 October 2020. [Google Scholar]
- Houser, C.; Hamilton, S. Sensitivity of post-hurricane beach and dune recovery to event frequency. Earth Surf. Process. Landf. 2009, 34, 613–628. [Google Scholar] [CrossRef]
- Morton, R.A. Texas Barriers. In Geology of Holocene Barrier Island Systems; Davis, R.A., Jr., Ed.; Springer: New York, NY, USA, 1994; pp. 74–114. [Google Scholar]
- Sallenger, A.H., Jr. Storm Impact Scale for Barrier Islands. J. Coast. Res. 2000, 16, 890–895. [Google Scholar]
- Fenster, M.S.; Dolan, R. Large-scale reversals in shoreline trends along the U.S. mid-Atlantic coast. Geology 1994, 22, 543–546. [Google Scholar] [CrossRef]
- Dolan, R.; Fenster, M.S.; Holme, S.J. Temporal Analysis of Shoreline Recession and Accretion. J. Coast. Res. 1991, 7, 723–744. [Google Scholar]
- RICRMC. Rhode Island Coastal Resources Management Program: Rhode Island Coastal Resources Management Council; Rhode Island Coastal Resources Managament Council: Wakefield, RI, USA, 1995.
- Boothroyd, J.C.; Friedrich, N.E.; McGinn, S.R. Geology of microtidal coastal lagoons: Rhode Island. Mar. Geol. 1985, 63, 35–76. [Google Scholar] [CrossRef]
- Orford, J.D.; Carter, R.W.G.; Jennings, S.C. Coarse clastic barrier environments: Evolution and implications for quaternary sea level interpretation. Quat. Int. 1991, 9, 87–104. [Google Scholar] [CrossRef]
Years | Method | Average Shoreline Change Rate (m yr−1) | Source |
---|---|---|---|
1939−1985 | End Point Rate | −1.4 | Boothroyd and Hehre, [24] |
1985−2004 | End Point Rate | 0.0 | Boothroyd and Hehre, [24] |
1939−2004 | End Point Rate | −1.0 | Boothroyd and Hehre, [24] |
1883−2004 | Linear Regression | −0.8 | Hapke et al. [25] |
1975−2000 | End Point Rate | 0.4 | Hapke et al. [25] |
1939−2014 | End Point Rate | −0.9 | Boothroyd et al. [23] |
1939−2014 | Shoreline Change Envelope | −1.4 | Boothroyd et al. [23] |
1883−1939 | End Point Rate | −0.2 | This study |
1939−1975 | Linear Regression | −1.9 | This study |
1939−1975 | End Point Rate | −1.9 | This study |
1975−2014 | Linear Regression | 0.2 | This study |
1975−2014 | End Point Rate | 0.1 | This study |
1883−2014 | Linear Regression | −0.6 | This study |
1883−2014 | End Point Rate | −0.6 | This study |
Type | Date | Time Since Storm (days) |
---|---|---|
NOS-T | 1883 * | N/A |
AP | 4/15/1934 | N/A |
AP | 5/15/1939 * | 236 |
AP | 10/15/1945 | 395 |
NOS-T | 1948 * | >365 |
AP | 11/15/1951 * | 1718 |
AP | 4/15/1962 | 39 |
AP | 9/7/1963 * | 549 |
AP | 4/15/1972 | 56 |
AP | 4/14/1975 * | 133 |
AP | 4/15/1981 | 1164 |
AP | 3/22/1985 * | 2601 |
AP | 4/15/1988 | 448 |
AP | 3/15/1992 * | 136 |
AP | 4/15/1997 | 95 |
AP | 4/15/2004 * | 526 |
AP | 4/15/2008 | 365 |
AP | 6/15/2012 * | 292 |
AP | 4/14/2014 * | 473 |
AP | 4/15/2018 | 796 |
Measurement Uncertainties | Meters | ||||||
---|---|---|---|---|---|---|---|
Year | Type | Georeferencing (Ug) | Digitizing (Ud) | T-Sheet Survey (Ut) | Air Photo (Ua) | HWL (Upd) | Total Shoreline Position Uncertainty |
1883 1 | NOS T-Sheet | 4 | 1 | 10 | 4.5 | 11.7 | |
1939 2 | VAP | 3.6 | 1 | - | 3 | 4.5 | 6.6 |
1948 1 | NOS T-Sheet | 4 | 1 | 10 | 4.5 | 11.7 | |
1951 2 | VAP | 3.7 | 1 | - | 3 | 4.5 | 6.6 |
1963 2 | VAP | 3.7 | 1 | - | 3 | 4.5 | 6.6 |
1975 2 | VAP | 2 | 1 | - | 3 | 4.5 | 5.9 |
1985 2 | VAP | 3.3 | 1 | - | 3 | 4.5 | 6.4 |
1992 2 | VAP | 3.1 | 1 | - | 3 | 4.5 | 6.3 |
2004 2 | DO | - | 1 | - | 3 | 4.5 | 5.5 |
2012 3 | DO | - | 1 | - | 3 | 4.5 | 5.5 |
2014 3 | DO | - | 1 | - | 1 | 4.5 | 4.7 |
Shoreline Pair | Average Change (m) | Max (m) | Min (m) | Annualized Rate (m yr−1) | Upair (m) | Ur (m) |
---|---|---|---|---|---|---|
1883–1939 | −9.4 | −19.0 | −1.0 | −0.2 | 13.4 | 0.3 |
1939–1948 | −24.1 | −30.7 | −13.3 | −2.7 | 13.4 | 1.5 |
1948–1951 | −13.4 | −22.8 | −1.5 | −4.5 | 13.4 | 4.5 |
1951–1963 | −21.9 | −38.9 | −13.2 | −1.8 | 9.4 | 0.8 |
1963–1975 | −10.1 | −15.7 | −0.7 | −0.8 | 8.9 | 0.7 |
1975–1985 | 2.8 | 10.2 | −1.7 | 0.3 | 8.7 | 0.9 |
1985–1992 | 7.6 | 12.7 | 3.7 | 1.1 | 9 | 1.3 |
1992–2004 | −4.9 | −11.7 | −1 | −0.4 | 8.4 | 0.7 |
2004–2014 | 3.1 | 7.8 | −5.5 | 0.3 | 7.2 | 2.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oakley, B.A. Storm Driven Migration of the Napatree Barrier, Rhode Island, USA. Geosciences 2021, 11, 330. https://doi.org/10.3390/geosciences11080330
Oakley BA. Storm Driven Migration of the Napatree Barrier, Rhode Island, USA. Geosciences. 2021; 11(8):330. https://doi.org/10.3390/geosciences11080330
Chicago/Turabian StyleOakley, Bryan A. 2021. "Storm Driven Migration of the Napatree Barrier, Rhode Island, USA" Geosciences 11, no. 8: 330. https://doi.org/10.3390/geosciences11080330
APA StyleOakley, B. A. (2021). Storm Driven Migration of the Napatree Barrier, Rhode Island, USA. Geosciences, 11(8), 330. https://doi.org/10.3390/geosciences11080330