The Potential of Tufa as a Tool for Paleoenvironmental Research—A Study of Tufa from the Zrmanja River Canyon, Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling
2.3. Measurement Methods
3. Results
4. Discussion
4.1. Isotope Analyses of Carbonate and Tufa Ages
4.2. Possibility of Tufa Isotopic Composition of Oxygen as Paleoclimate Proxy
4.3. Tufa Age Implications from Isotope Analyses of Organic Residues and Extracted Humin
4.4. The Zrmanja River Canyon Development
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ford, T.D.; Pedley, H.M. A review of tufa and travertine deposits of the world. Earth-Science Rev. 1996, 41, 117–175. [Google Scholar] [CrossRef]
- Gandin, A.; Capezzuoli, E. Travertine versus calcareous tufa: Distinctive petrologic features and stable isotopes signatures. Quaternario 2008, 21, 125–136. [Google Scholar]
- Capezzuoli, E.; Gandin, A.; Pedley, M. Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: The state of the art. Sedimentology 2013, 61, 1–21. [Google Scholar] [CrossRef]
- Horvatinčić, N.; Krajcar Bronić, I.; Obelić, B. Differences in the 14C age, δ13C and δ18O of Holocene tufa and speleothem in the Dinaric Karst. Palaeogeogr. Palaeoclim. Palaeoecol. 2003, 193, 139–157. [Google Scholar] [CrossRef]
- Srdoč, D.; Obelić, B.; Horvatinčić, N. Radiocarbon dating of calcareous tufa: How reliable data can we expect? Radiocarbon 1980, 22, 858–862. [Google Scholar] [CrossRef] [Green Version]
- Brook, G.A.; Railsback, L.B.; Marais, E. Reassessment of carbonate ages by dating both carbonate and organic material from an Etosha Pan (Namibia) stromatolite: Evidence of humid phases during the last 20ka. Quat. Int. 2011, 229, 24–37. [Google Scholar] [CrossRef]
- Brook, G.A.; Cherkinsky, A.; Railsback, L.B.; Marais, E.; Hipondoka, M.H.T. 14C dating of organic residue and carbonate from stromatolites in Etosha Pan. Namibia: 14C reservoir effect: Correction of published ages and evidence of >8-m-deep lake during the late Pleistocene. Radiocarbon 2013, 55, 1156–1163. [Google Scholar] [CrossRef]
- Blyth, A.J.; Hua, Q.; Smith, A.; Frisia, S.; Borsato, A.; Hellstrom, J. Exploring the dating of “dirty” speleothems and cave sinters using radiocarbon dating of preserved organic matter. Quat. Geochronol. 2017, 39, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Andrews, J. Palaeoclimatic records from stable isotopes in riverine tufas: Synthesis and review. Earth-Sci. Rev. 2006, 75, 85–104. [Google Scholar] [CrossRef]
- Rainey, D.K.; Jones, B. Rapid cold water formation and recrystallization of relict bryophyte tufa at the Fall Creek cold springs, Alberta, Canada. Can. J. Earth Sci. 2007, 44, 889–909. [Google Scholar] [CrossRef]
- Horvatinčić, N.; Čalić, R.; Geyh, M.A. Interglacial Growth of Tufa in Croatia. Quat. Res. 2000, 53, 185–195. [Google Scholar] [CrossRef]
- Pentecost, A. Travertine; Springer: Berlin/Heidelberg, Germany, 2005; p. 445. [Google Scholar]
- Pazdur, A.; Goslar, T.; Pawlyta, M.; Hercman, H.; Gradziński, M. Variations of Isotopic Composition of Carbon in the Karst Environment from Southern Poland, Present and Past. Radiocarbon 1999, 41, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Andrews, J.E.; Riding, R.; Dennis, P. The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe. Palaeogeogr. Palaeoclim. Palaeoecol. 1997, 129, 171–189. [Google Scholar] [CrossRef]
- Pedley, M. Tufas and travertines of the Mediterranean region: A testing ground for freshwater carbonate concepts and de-velopments. Sedimentology 2009, 56, 221–246. [Google Scholar] [CrossRef]
- Vazquez-Urbez, M.; Pardo, G.; Arenas, C.; Sancho, C. Fluvial diffluence episodes reflected in the Pleistocene tufa deposits of the River Piedra (Iberian Range, NE Spain). Geomorphology 2011, 125, 1–10. [Google Scholar] [CrossRef]
- Domínguez-Villar, D.; Vázquez-Navarro, J.A.; Cheng, H.; Edwards, R.L. Freshwater tufa record from Spain supports evidence for the past interglacial being wetter than the Holocene in the Mediterranean region. Glob. Planet. Chang. 2011, 77, 129–141. [Google Scholar] [CrossRef]
- Valero-Garcés, B.; Morellón, M.; Moreno, A.; Corella, J.P.; Martín-Puertas, C.; Barreiro, F.; Pérez, A.; Giralt, S.; Mata-Campo, M.P. Lacustrine carbonates of Iberian Karst Lakes: Sources, processes and depositional environments. Sediment. Geol. 2014, 299, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Dabkowski, J. The late-Holocene tufa decline in Europe: Myth or reality? Quat. Sci. Rev. 2020, 230, 106141. [Google Scholar] [CrossRef]
- Suchý, V.; Zachariáš, J.; Tsai, H.-C.; Yu, T.-L.; Shen, C.-C.; Svetlik, I.; Havelcová, M.; Borecká, L.; Machovič, V. Relict Pleistocene calcareous tufa of the Chlupáčova sluj Cave, the Bohemian Karst, Czech Republic: A petrographic and geochemical record of hydrologically-driven cave evolution. Sediment. Geol. 2019, 385, 110–125. [Google Scholar] [CrossRef]
- Drysdale, R.; Head, J. Geomorphology, Stratigraphy and 14C-Chronology of Ancient Tufas at Louie Creek, Northwest Queensland, Australia. Géographie Phys. Quat. 1994, 48, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Alexandrowicz, W.P.; Szymanek, M.; Rybska, E. Changes to the environment of intramontane basins in the light of malacological research of calcareous tufa: Podhale Basin (Carpathians, Southern Poland). Quat. Int. 2014, 353, 250–265. [Google Scholar] [CrossRef]
- Sherriff, J.E.; Schreve, D.C.; Candy, I.; Palmer, A.P.; White, T.S. Environments of the climatic optimum of MIS 11 in Britain: Evidence from the tufa sequence at Hitchin, southeast England. J. Quat. Sci. 2021, 36, 508–525. [Google Scholar] [CrossRef]
- Hasan, O.; Miko, S.; Brunović, D.; Papatheodorou, G.; Christodolou, D.; Ilijanić, N.; Geraga, M. Geomorphology of Canyon Outlets in Zrmanja River Estuary and Its Effect on the Holocene Flooding of Semi-enclosed Basins (the Novigrad and Karin Seas, Eastern Adriatic). Water 2020, 12, 2807. [Google Scholar] [CrossRef]
- Marić, I.; Šiljeg, A.; Cukrov, N.; Roland, V.; Domazetović, F. How fast does tufa grow? Very high-resolution measurement of the tufa growth rate on artificial substrates by the development of a contactless image-based modelling device. Earth Surf. Process. Landf. 2020, 45, 2331–2349. [Google Scholar] [CrossRef]
- Krajcar Bronić, I.; Barešić, J.; Sironić, A. Application of 14C method to chronology of the Croatian Dinaric karst—A case of the Plitvice Lakes. Radiocarbon 2021, 1–13, (online first). [Google Scholar] [CrossRef]
- Deevey, E.S.; Gross, M.S.; Hutchinson, G.E.; Kraybill, H.L. The Natural C14 Contents of materials from hard-water lakes. Proc. Natl. Acad. Sci. USA 1954, 40, 285–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faivre, S.; Bakran-Petricioli, T.; Barešić, J.; Horvatinčić, N. New data on the marine radiocarbon reservoir effect in the Eastern Adriatic based on pre-bomb marine organisms from the intertidal zone and shallow sea. Radiocarbon 2015, 57, 527–538. [Google Scholar] [CrossRef] [Green Version]
- Faivre, S.; Bakran-Petricioli, T.; Barešić, J.; Morhange, C.; Borković, D. Marine radiocarbon reservoir age of the coralline inter-tidal alga Lithophyllum byssoides in the Mediterranean. Quat. Geochronol. 2019, 51, 15–23. [Google Scholar] [CrossRef]
- Stuiver, M.; Pearson, G.W.; Braziunas, T. Radiocarbon Age Calibration of Marine Samples Back to 9000 Cal Yr BP. Radiocarbon 1986, 28, 980–1021. [Google Scholar] [CrossRef] [Green Version]
- Genty, D.; Massault, M.; Gilmour, M.; Baker, A.; Verheyden, S.; Kepens, E. Calculation of Past Dead Carbon Proportion and Variability by the Comparison of AMS 14C and Tims U/TH Ages on Two Holocene Stalagmites. Radiocarbon 1999, 41, 251–270. [Google Scholar] [CrossRef] [Green Version]
- Bajo, P.; Borsato, A.; Drysdale, R.; Hua, Q.; Frisia, S.; Zanchetta, G.; Hellstrom, J.; Woodhead, J. Stalagmite carbon isotopes and dead carbon proportion (DCP) in a near-closed-system situation: An interplay between sulphuric and carbonic acid dissolution. Geochim. Cosmochim. Acta 2017, 210, 208–227. [Google Scholar] [CrossRef]
- Dabkowski, J. High potential of calcareous tufas for integrative multidisciplinary studies and prospects for archaeology in Europe. J. Archaeol. Sci. 2014, 52, 72–83. [Google Scholar] [CrossRef]
- Horvatinčić, N.; Barešić, J.; Babinka, S.; Obelić, B.; Krajcar Bronić, I.; Vreča, P.; Suckow, A. Towards a deeper understanding how carbonate isotopes (14C, 13C, 18O) reflect environmental changes: A study with recent 210Pb dated sediments of the Plitvice lakes, Croatia. Radiocarbon 2008, 50, 233–253. [Google Scholar] [CrossRef] [Green Version]
- Zagorevski, A.; Rogers, N.; Van Staal, C.; McNicoll, V.; Lissenberg, J.; Valverde-Vaquero, P. Lower to Middle Ordovician evolution of peri-Laurentian arc and backarc complexes in Iapetus: Constraints from the Annieopsquotch accretionary tract, central Newfoundland. GSA Bull. 2006, 118, 324–342. [Google Scholar] [CrossRef]
- Luo, S.; Ku, T.-L. U-series isochron dating: A generalized method employing total-sample dissolution. Geochim. Cosmochim. Acta 1991, 55, 555–564. [Google Scholar] [CrossRef]
- Hellstrom, J. U–Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quat. Geochronol. 2006, 1, 289–295. [Google Scholar] [CrossRef]
- Brasier, A.T.; Andrews, J.E.; Marca-Bell, A.D.; Dennis, P.F. Depositional continuity of seasonally laminated tufas: Implications for δ18O based palaeotemperatures. Glob. Planet. Chang. 2010, 71, 160–167. [Google Scholar] [CrossRef]
- Hamdan, M.A.; Brook, G.A. Timing and characteristics of Late Pleistocene and Holocene wetter periods in the Eastern Desert and Sinai of Egypt, based on 14 C dating and stable isotope analysis of spring tufa deposits. Quat. Sci. Rev. 2015, 130, 168–188. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, H.; Dong, G.; Zhou, A.; Liu, J.; Zhang, D. Reliability of radiocarbon dating on various fractions of loess-soil sequence for Dadiwan section in the western Chinese Loess Plateau. Front. Earth Sci. 2014, 8, 540–546. [Google Scholar] [CrossRef]
- Pessenda, L.C.R.; Gouveia, S.E.M.; Aravena, R. Radiocarbon Dating of Total Soil Organic Matter and Humin Fraction and Its Comparison with 14C Ages of Fossil Charcoal. Radiocarbon 2001, 43, 595–601. [Google Scholar] [CrossRef] [Green Version]
- Balesdent, J. The turnover of soil organic fractions estimated by radiocarbon dating. Sci. Total Environ. 1987, 62, 405–408. [Google Scholar] [CrossRef]
- Balesdent, J.; Guillet, B. Les datations par le 14C des matières organìques des sols. Contribution à l’étude de l’humification et du renouvellement des substances humiques. Sci. Sol. 1992, 2, 93–112. [Google Scholar]
- Becker-Heidmann, P.; Liang-Wu, L.; Scharpenseel, H.-W. Radiocarbon Dating of Organic Matter Fractions of a Chinese Mollisol. J. Plant Nutr. Soil Sci. 1988, 151, 37–39. [Google Scholar] [CrossRef]
- Veverec, I. Sedra na rijeci Zrmanji kao nedovoljno istraženi i valorizirani geomorfološki fenomen. Acta Geogr. Croat. 2019, 45–46, 69–83. [Google Scholar]
- Pavlek, K.; Faivre, S. Geomorphological changes of the Cetina River channels since the end of the nineteenth century, natural vs anthropogenic impacts (the Dinarides, Croatia). Environ. Earth Sci. 2020, 79, 1–16. [Google Scholar] [CrossRef]
- Fritz, F. Razvitak gornjeg toka rijeke Zrmanje. Carsus Iugosl. 1972, 8, 1–16. (In Croatian) [Google Scholar]
- Kapelj, J.; Fritz, F. Bojenje ponora uz Rijeku Zrmanju u Erveničkom Polju; Arhiv HGI: Zagreb, Croatia, 1986. [Google Scholar]
- Bonacci, O. Water circulation in karst and determination of catchment areas: Example of the River Zrmanja. Hydrol. Sci. J. 1999, 44, 373–386. [Google Scholar] [CrossRef]
- Pavlović, G.; Prohić, E.; Miko, S.; Tibljaš, D. Geochemical and petrographic evidence of meteoric diagenesis in tufa deposits in Northern Dalmatia (Zrmanja and Krupa Rivers, Croatia). Facies 2002, 46, 27–34. [Google Scholar] [CrossRef]
- Croatian Geological Survey. Geological Map of Republic of Croatia, M 1:300 000; Croatian Geological Survey: Zagreb, Croatia, 1999. (In Croatian) [Google Scholar]
- Horvatinčić, N.; Barešić, J.; Krajcar Bronić, I.; Obelić, B. Measurement of low 14C activities in a liquid scintillation counter in the Zagreb Radiocarbon Laboratory. Radiocarbon 2004, 46, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Krajcar Bronić, I.; Horvatinčić, N.; Barešić, J.; Obelić, B. Measurement of 14C activity by liquid scintillation counting. Appl. Radiat. Isot. 2009, 67, 800–804. [Google Scholar] [CrossRef]
- Sironić, A.; Krajcar Bronić, I.; Horvatinčić, N.; Barešić, J.; Obelić, B.; Felja, I. Status report on the Zagreb Radiocarbon Labor-atory—AMS and LSC results of VIRI intercomparison samples. Nucl. Instrum. Methods B 2013, 294, 185–188. [Google Scholar] [CrossRef]
- Brock, F.; Higham, T.; Ditchfield, P.; Ramsey, C.B. Current Pretreatment Methods for AMS Radiocarbon Dating at the Oxford Radiocarbon Accelerator Unit (Orau). Radiocarbon 2010, 52, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Dunbar, E.; Cook, G.T.; Naysmith, P.; Tripney, B.; Xu, S. AMS 14C Dating at the Scottish Universities Environmental Research Centre (SUERC) Radiocarbon Dating Laboratory. Radiocarbon 2016, 58, 9–23. [Google Scholar] [CrossRef] [Green Version]
- Cherkinsky, A.E.; Culp, R.A.; Dvoracek, D.K.; Noakes, J.E. Status of the AMS facility at the Center for Applied Isotope Studies, University of Georgia. Nucl. Instrum. Methods B 2010, 268, 867–870. [Google Scholar] [CrossRef]
- Ramsey, C.B. Bayesian Analysis of Radiocarbon Dates. Radiocarbon 2009, 51, 337–360. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, B.C. OxCal v.4.4.4. 2021. Available online: https://c14.arch.ox.ac.uk/oxcal/OxCal.html (accessed on 22 March 2021).
- Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Ramsey, C.B.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The intcal20 northern hemisphere radiocarbon age calibration curve (0–55 CAL kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Drysdale, R.N.; Hellstrom, J.C.; Zanchetta, G.; Fallick, A.E.; Goni, M.F.S.; Couchoud, I.; McDonald, J.; Maas, R.; Lohmann, G.; Isola, I. Evidence for Obliquity Forcing of Glacial Termination II. Science 2009, 325, 1527–1531. [Google Scholar] [CrossRef] [Green Version]
- Sironić, A.; Alegro, A.; Horvatinčić, N.; Barešić, J.; Brozinčević, A.; Vurnek, M.; Krajcar Bronić, I.; Borković, D.; Lovrenčić Mikelić, I. Carbon isotope fractionation in karst aquatic mosses. Isot. Environ. Health Stud. 2020, 57, 142–165. [Google Scholar] [CrossRef]
- Horvatinčić, N.; Sironić, A.; Barešić, J.; Sondi, I.; Krajcar Bronić, I.; Borković, D. Mineralogical, organic and isotopic composition as palaeoenvironmental records in the lake sediments of two lakes, the Plitvice Lakes, Croatia. Quat. Int. 2018, 494, 300–313. [Google Scholar] [CrossRef] [Green Version]
- Horvatinčić, N.; Krajcar Bronić, I.; Obelić, B.; Barešić, J. Rudjer Bošković Institute radiocarbon measurements XVII. Radiocarbon 2012, 54, 137–154. [Google Scholar] [CrossRef]
- Hays, P.D.; Grossman, E.L. Oxygen isotopes in meteoric calcite cements as indicators of continental palaeoclimate. Geology 1991, 19, 441–444. [Google Scholar] [CrossRef]
- Lojen, S.; Dolenec, T.; Vokal, B.; Cukrov, N.; Mihelčić, G.; Papesch, W. C and O stable isotope variability in recent freshwater carbonates (River Krka, Croatia). Sedimentology 2004, 51, 361–375. [Google Scholar] [CrossRef]
- Lojen, S.; Dolenec, M.; Cukrov, N. Palaeothermometry in tufa: A case study from the Krka National Park, Croatia. RMZ—Mater. Geoenviron. 2014, 61, 87–96. [Google Scholar]
- Terzić, J.; Marković, T.; Reberski, J.L. Hydrogeological properties of a complex Dinaric karst catchment: Miljacka Spring case study. Environ. Earth Sci. 2014, 72, 1129–1142. [Google Scholar] [CrossRef]
- Cukrov, N.; Tepić, N.; Omanović, D.; Lojen, S.; Bura Nakić, E.; Vojvodić, V.; Pižeta, I. Qualitative interpretation of physi-co-chemical and isotopic parameters in the Krka River (Croatia) assessed by multivariate statistical analysis. Int. J. Env. Anal. Chem. 2012, 92, 1187–1199. [Google Scholar] [CrossRef]
- Pavlova, E.Y.; Pitulko, V.V. Late Pleistocene and Early Holocene climate changes and human habitation in the arctic Western Beringia based on revision of palaeobotanical data. Quat. Int. 2020, 549, 5–25. [Google Scholar] [CrossRef]
- Loftus, E.; Stewart, B.; Dewar, G.; Leethorp, J. Stable isotope evidence of late MIS 3 to middle Holocene palaeoenvironments from Sehonghong Rockshelter, eastern Lesotho. J. Quat. Sci. 2015, 30, 805–816. [Google Scholar] [CrossRef]
- Petit, J.R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.-M.; Basile-Doelsch, I.; Bender, M.L.; Chappellaz, J.; Davis, M.L.; Delaygue, G.; et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 1999, 399, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Srdoč, D.; Obelić, B.; Horvatinčić, N.; Krajcar Bronić, I.; Marčenko, E.; Merkt, S.; Wong, H.; Sliepčević, A. Radiocarbon dating of lake sediments from two Karstic lakes in Yugoslavia. Radiocarbon 1986, 28, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Krajcar Bronić, I.; Barešić, J.; Sironić, A.; Lovrenčić Mikelić, I.; Borković, D.; Horvatinčić, N.; Kovač, Z. Isotope Composition of Precipitation, Groundwater, and Surface and Lake Waters from the Plitvice Lakes, Croatia. Water 2020, 12, 2414. [Google Scholar] [CrossRef]
- Tanner, L.H. Chapter 4 Continental Carbonates as Indicators of Paleoclimate. In Developments in Sedimentology; Alonso-Zarza, A.M., Tanner, L.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; Volume 62, pp. 179–214. [Google Scholar] [CrossRef]
- Vreča, P.; Krajcar Bronić, I.; Horvatinčić, N.; Barešić, J. Isotopic characteristics of precipitation in Slovenia and Croatia: Comparison of continental and maritime stations. J. Hydrol. 2006, 330, 457–469. [Google Scholar] [CrossRef]
- Gonfiantini, R.; Roche, M.-A.; Olivry, J.-C.; Fontes, J.-C.; Zuppi, G.M. The altitude effect on the isotopic composition of tropical rains. Chem. Geol. 2001, 181, 147–167. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic Patterns in Modern Global Precipitation. Geophys. Monogr. 1993, 78, 1–36. [Google Scholar]
- Peel, M.C.; Finlyanson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Filipčić, A. Climatic Regionalization of Croatia According to W. Koeppen for the Standard Period 1961–1990 in Relation to the Period 1931–1960. Acta Geogr. Croat. 1998, 33, 7–15. [Google Scholar]
- Köppen, W. Das geographische System der Klimate. In Handbuch der Klimatologie; Köppen, W., Geiger, G., Eds.; Gebrüder Borntraeger: Berlin, Germany, 1936; pp. 1–44. [Google Scholar]
- Vogel, J.S.; Southon, J.R.; Nelson, D.E.; Brown, T.A. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. B 1984, 5, 289–293. [Google Scholar] [CrossRef]
- Horvatinčić, N.; Sironić, A.; Barešić, J.; Krajcar Bronić, I.; Todorović, N.; Nikolov, J.; Hansman, J.; Krmar, M. Isotope analyses of the lake sediments in the Plitvice Lakes, Croatia. Cent. Eur. J. Phys. 2014, 12, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Marčenko, E.; Srdoč, D.; Golubić, S.; Pezdič, J.; Head, M.J. Carbon Uptake in Aquatic Plants Deduced From Their Natural 13C and 14C Content. Radiocarbon 1989, 31, 785–794. [Google Scholar] [CrossRef] [Green Version]
- Hodell, D.; Schelske, C.L. Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol. Oceanogr. 1998, 43, 200–214. [Google Scholar] [CrossRef]
- Meyers, P.A. Applications of organic geochemistry to paleolimological reconstructions: A summary of examples from the Laureatian Grate Lakes. Org. Geochem. 2003, 34, 261–289. [Google Scholar] [CrossRef]
- Francey, R.J.; Allison, C.E.; Etheridge, D.M.; Trudinger, C.; Enting, I.; Leuenberger, M.C.; Langenfelds, R.L.; Michel, E.; Steele, L.P. A 1000-year high precision record of delta13C in atmospheric CO2. Tellus B Chem. Phys. Meteorol. 1999, 51, 170–193. [Google Scholar] [CrossRef] [Green Version]
- Hammer, S.; Levin, I. Monthly mean atmospheric Δ14CO2 at Jungfraujoch and Schauinsland from 1986 to 2016; Heidelberg University—Institute of Environmental Physics: Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Borković, D.; Krajcar Bronić, I.; Sironić, A.; Barešić, J. Comparison of sampling and measurement methods for atmospheric 14C activityIn: Book of Abstracts. In Proceedings of the 9th International Conference on Radiation in Various fields of Research—RAD2021, Herceg Novi, Montenegro, 14–18 June 2021; p. 266. [Google Scholar]
- Hua, Q.; Barbetti, M.; Rakowski, A. Atmospheric Radiocarbon for the Period 1950–2010. Radiocarbon 2013, 55, 2059–2072. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Edwards, R.L.; Southon, J.; Matsumoto, K.; Feinberg, J.M.; Sinha, A.; Zhou, W.; Li, H.; Li, X.; Xu, Y.; et al. Atmospheric 14C/12C changes during the last glacial period from Hulu Cave. Science 2018, 362, 1293–1297. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Zhang, H.; Spötl, C.; Baker, J.; Sinha, A.; Li, H.; Bartolomé, M.; Moreno, A.; Kathayat, G.; Zhao, J.; et al. Timing and structure of the Younger Dryas event and its underlying climate dynamics. Proc. Natl. Acad. Sci. USA 2020, 117, 23408–23417. [Google Scholar] [CrossRef] [PubMed]
- Hemming, S. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 2004, 42, RG1005. [Google Scholar] [CrossRef] [Green Version]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 2005, 20. [Google Scholar] [CrossRef] [Green Version]
- Srdoč, D.; Horvatinčić, N.; Obelić, B.; Krajcar Bronić, I.; Sliepčević, A. Procesi taloženja kalcita u krškim vodama s posebnim osvrtom na Plitvička jezera (Calcite deposition processes in karstwaters with special emphasis on the Plitvice Lakes, Yugosla-via). Carsus Iugosl. 1985, 11, 101–204. [Google Scholar]
- Belij, S. Komparativnost krškog, glacialnog i periglacialnog procesa u reliefu Južnog Velebita [Comparison of karst, glacial and periglacial process in the relief of southern Velebit—In Croatian]. Acta Carsologica 1986, 14–15, 183–196. [Google Scholar]
- Bognar, A.; Faivre, S.; Pavelić, J. Tragovi oledbe na Sjevernom Velebitu [Glaciation traces on the Northern Velebit]. Geogr. Glas. 1991, 53, 27–39. [Google Scholar]
- Bognar, A.; Faivre, S. Geomorphological traces of the younger Pleistocene glaciation in the central part of the Velebit Mt. Hrvat. Geogr. Glas. 2006, 68, 19–30. [Google Scholar] [CrossRef]
- Bočić, N.; Faivre, S.; Kovačić, M.; Horvatinčić, N. Cave development under the influence of Pleistocene glaciation in the Dinarides—An example from Štirovača ice cave (Velebit Mt., Croatia). Z. Geomorph. NF 2012, 56, 409–433. [Google Scholar] [CrossRef]
- Surić, M.; Juračić, M. Late Pleistocene-Holocene environmental changes—Records from submerged speleothems along the Eastern Adriatic coast (Croatia). Geol. Croat. 2010, 63, 155–169. [Google Scholar] [CrossRef]
- Lončar, N. Isotopic Composition of the Speleothems from the Eastern Adriatic Islands Caves as an Indicator of Palaeoenvi-Ronmental Changes. Ph.D. Thesis, Faculty of Science, University of Zagreb, Zagreb, Croatia, 2012. [Google Scholar]
- Surić, M.; Lončarić, R.; Columbu, A.; Bajo, P.; Lončar, N.; Drysdale, R.; Hellstrom, J. Environmental change in the Adriatic region over the last 365 kyr from episodic deposition of Modrič Cave (Croatia) speleothems. In Proceedings of the 20th INQUA Congress, Dublin, Ireland, 25–31 July 2019. [Google Scholar]
- Fairbanks, R.G. A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 1989, 342, 637–642. [Google Scholar] [CrossRef]
- Correggiari, A.; Roveri, M.; Trincardi, F. Late Pleistocene and Holocene evolution of the North Adriatic Sea. Quaternario 1996, 9, 697–704. [Google Scholar]
- Lambeck, K.; Esat, T.; Potter, E.-K. Links between climate and sea levels for the past three million years. Nature 2002, 419, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Lambeck, K.; Yokoyama, Y.; Purcell, A. Into and out of the Last Glacial Maximum: Sea-level change during Oxygen Isotope Stages 3 and 2. Quat. Sci. Rev. 2002, 21, 343–360. [Google Scholar] [CrossRef]
- Waelbroeck, C.; Labeyrie, L.; Michel, E.; Duplessy, J.; McManus, J.; Lambeck, K.; Balbon, E.; Labracherie, M. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 2002, 21, 295–305. [Google Scholar] [CrossRef]
- Antonioli, F.; Furlani, S.; Montagna, P.; Stocchi, P. The Use of Submerged Speleothems for Sea Level Studies in the Mediterranean Sea: A New Perspective Using Glacial Isostatic Adjustment (GIA). Geosciences 2021, 11, 77. [Google Scholar] [CrossRef]
- Ortiz, J.; Torres, T.; Delgado, A.; Reyes, E.; Díaz-Bautista, A. A review of the Tagus river tufa deposits (central Spain): Age and palaeoenvironmental record. Quat. Sci. Rev. 2009, 28, 947–963. [Google Scholar] [CrossRef]
- Ollivier, V.; Guendon, J.-L.; Ali, A.; Roiron, P.; Ambert, P. Évolution postglaciaire des environnements travertineux provençaux et alpins: Nouveau cadre chronologique, faciès et dynamiques morphosédimentaires. Quaternaire 2006, 17, 51–67. [Google Scholar] [CrossRef] [Green Version]
Sample No. | Geographical Coordinates | Elevation (m asl) | Height above Water Level (m) | Comment | Description |
---|---|---|---|---|---|
1 | N 44°08′57″ E 15°53′13″ | 52 | 0 | Approximately at 1 m horizontal distance from river bed | Porous, moss ramains and soil incorporated, very hard, white—light yellow, not laminated, not clear if autochthonous or not |
2 | 54 | 2 | 4 m horizontal distance from river bed | Porous, soil incorporated with lots of moss, very soft, reddish, not laminated | |
3 | 52 | 0 | 1 m horizontal distance from river bed | Porous, soil incorporated with moss, very soft, reddish, not laminated | |
4 | 53 | 1 | Exactly below sample 2 | Porous, hard, slightly laminated with moss overgrowth, grey—yellowish | |
5 | N 44°09′02″ E 15°53′12″ | 72 | 20 | Approximately 50 m horizontal distance from Zrmanja R. | Nicely laminated, non-porous, brown and yellow laminae, moderately hard, compact |
6 | N 44°09′06″ E 15°53′08″ | 73 | 21 | Outcrop along the road, approximately 50 m horizontal distance from Zrmanja R. | Laminated, medium porosity, white and yellowish laminae, soft |
7 | 72 | 20 | 1 m below sample #6, The same outcrop as #6 | ||
8 | 73 | 21 | 1 m horizontal distance from sample #6, from the same outcrop | Nicely laminated, non-porous, brown and yellow laminae, moderately hard, compact | |
9 | 72 | 20 | 1 m horizontal distance from sample #7 at the same height (approx. 20 m above water level) and 1 m below the sample #8 of the same outcrop along the road as #6 | Laminated, medium porosity, white and yellowish laminae, soft | |
10 | N 44°09′06″ E 15°53′10″ | 69 | 17 | Approximately 25 m horizontal distance from Zrmanja R. lBelow outcrop with samples #6–9 | Non-porous, no visible remains of plants and soil, white-yellowish, laminated |
11 | N 44°09′06″ E 15°53′07″ | 77 | 25 | Outcrop approximately 100 m horizontal distance from Zrmanja R., bottom of outcrop | Porous, no visible remains of plants and soil, white-yellowish, soft |
12 | 78 | 26 | Top of the same outcrop as #11 | Non-porous, no visible remains of plants and soil, white-yellowish, laminated, soft |
Sample No. | Height above Water Level (m) | Lab. No. Z-xxxx | a14C (pMC) | Conventional Age (BP) | δ13C (‰) | δ18O (‰) |
---|---|---|---|---|---|---|
1 | 0 | 5951 | 40.35 ± 0.23 | 7290 ± 45 | −8.96 | −7.40 |
2 | 2 | 5952 | 89.5 ± 1.0 | 890 ± 95 | - | - |
3 | 0 | 5953 | 83.11 ± 0.55 | 1485 ± 55 | −9.13 | −7.42 |
4 | 1 | 5954 | 77.61 ± 0.60 | 2035 ± 60 | - | - |
5 | 20 | 5955 | 2.69 ± 0.12 | 29,040 ± 360 | −9.85 | −7.01 |
6 | 21 | 5956 | 0.78 ± 0.12 | 39,000 ± 1250 | −10.33 | −7.19 |
7 | 20 | 5957 | 5.29 ± 0.15 | 23,600 ± 230 | −9.94 | −7.25 |
8 | 21 | 5958 | 1.05 ± 0.13 | 36,600 ± 1000 | −10.5 | - |
9 | 20 | 5959 | 2.03 ± 0.12 | 31,300 ± 480 | - | - |
10 | 17 | 5960 | 4.06 ± 0.14 | 25,740 ± 280 | −8.47 | −7.04 |
11 | 25 | 6295 | 0.81 ± 0.13 | 38,700 ± 1300 | −10.39 | −6.35 |
12 | 26 | 6296 | 6.46 ± 0.16 | 22,000 ± 200 | −8.64 | −6.49 |
Sample No. | Lab. No. Z-xxxx | a14C (pMC) | Conventional Age (BP) | δ13C (‰) |
---|---|---|---|---|
1 | 6458 | 51.8 ± 0.2 | 5285 ± 25 | −29.96 |
2 | 6630 | 99.7 ± 0.3 | 25 ± 20 | −30.85 |
3 | 6454 | 95.5 ± 0.3 | 370 ± 20 | −30.27 |
3 | 7608, humin | 94.3 ± 0.3 | 470 ± 20 | −30.26 |
4 | 6631 | 95.7 ± 0.3 | 355 ± 20 | −30.39 |
5 | 6455 | 26.7 ± 0.1 | 10,600 ± 30 | −28.92 |
6 | 6459 | 22.3 ± 0.1 | 12,060 ± 30 | −29.52 |
6 | 7610, humin | 41.9 ± 0.2 | 6995 ± 45 | −28.60 |
7 | 6460 | 29.3 ± 0.1 | 9870 ± 25 | −28.80 |
7 | 7611, humin | 27.1 ± 0.1 | 10,500 ± 30 | −28.80 |
8 | 6461 | 40.0 ± 0.1 | 7365 ± 30 | −29.38 |
10 | 6462 | 34.2 ± 0.1 | 8630 ± 30 | −29.59 |
11 | 6456 | 12.1 ± 0.1 | 17,000 ± 40 | −29.84 |
11 | 7609, humin | 23.3 ± 0.1 | 11,700 ± 35 | −29.93 |
12 | 6457 | 13.7 ± 0.1 | 15,980 ± 35 | −30.70 |
Sample No. | a14C Difference (pMC) | Carbonate Fraction | Organic Residue and Humin | ||
---|---|---|---|---|---|
Calibrated Age Span (cal BP) (68.3%) | Calibrated Age Median (cal BP) | Calibrated Age Span (cal BP) (68.3%) | Calibrated Age Median (cal BP) | ||
1 | 11.45 | 6988–6874 | 6931 | 5869–5765 | 5811 |
2 | 10.2 | 1956–1957 cal AD (14.6%) 2006–now cal AD (53.6%) | 2007 cal AD | 1956–1956 cal AD | 1956 cal AD |
3 | 12.39 | 275–160 | 218 | 196–104 | 148 |
3 humin | 11.2 | 283–209 | 245 | ||
4 | 18.09 | 842–696 | 770 | 180–84 | 131 |
5 | 25.01 | 32,534–31,579 | 32,060 | 12,411–12,291 | 12,344 |
6 | 21.52 | 42,417–40,780 | 41,684 | 13,770–13,656 | 13,714 |
6 humin | 41.1 | 7631–7526 | 7578 | ||
7 | 24.01 | 26,821–26,349 | 26,582 | 11,131–11,052 | 11,089 |
7 humin | 22.3 | 12,277–12,102 | 12,188 | ||
8 | 38.95 | 40,791–39,291 | 40,042 | 7972–7884 | 7928 |
9 | - | 34,958–33,994 | 34,491 | - | - |
10 | 30.14 | 28,976–28,400 | 28,689 | 9449–9358 | 9397 |
11 | 11.3 | 42,277–40,558 | 41,501 | 20,366–20,225 | 20,294 |
11 humin | 22.5 | 13,373–13,270 | 13,320 | ||
12 | 7.24 | 25,220–24,786 | 25,003 | 19,100–18,958 | 19,031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barešić, J.; Faivre, S.; Sironić, A.; Borković, D.; Lovrenčić Mikelić, I.; Drysdale, R.N.; Krajcar Bronić, I. The Potential of Tufa as a Tool for Paleoenvironmental Research—A Study of Tufa from the Zrmanja River Canyon, Croatia. Geosciences 2021, 11, 376. https://doi.org/10.3390/geosciences11090376
Barešić J, Faivre S, Sironić A, Borković D, Lovrenčić Mikelić I, Drysdale RN, Krajcar Bronić I. The Potential of Tufa as a Tool for Paleoenvironmental Research—A Study of Tufa from the Zrmanja River Canyon, Croatia. Geosciences. 2021; 11(9):376. https://doi.org/10.3390/geosciences11090376
Chicago/Turabian StyleBarešić, Jadranka, Sanja Faivre, Andreja Sironić, Damir Borković, Ivanka Lovrenčić Mikelić, Russel N. Drysdale, and Ines Krajcar Bronić. 2021. "The Potential of Tufa as a Tool for Paleoenvironmental Research—A Study of Tufa from the Zrmanja River Canyon, Croatia" Geosciences 11, no. 9: 376. https://doi.org/10.3390/geosciences11090376
APA StyleBarešić, J., Faivre, S., Sironić, A., Borković, D., Lovrenčić Mikelić, I., Drysdale, R. N., & Krajcar Bronić, I. (2021). The Potential of Tufa as a Tool for Paleoenvironmental Research—A Study of Tufa from the Zrmanja River Canyon, Croatia. Geosciences, 11(9), 376. https://doi.org/10.3390/geosciences11090376