The geoPebble System: Design and Implementation of a Wireless Sensor Network of GPS-Enabled Seismic Sensors for the Study of Glaciers and Ice Sheets
Abstract
:1. Introduction
2. geoPebble Concept of Operations
3. Science Enabled
3.1. 3D Geophysical Imaging of Ice Sheets and the Subsurface
3.2. 4D Imaging of the Ice Flow Field
3.3. Monitoring the Natural Seismicity of Ice Sheets
4. geoPebble Sensor Network
4.1. Seismic Source
4.2. Base Station and Access Points
4.3. GPS Signals
4.4. geoPebble Nodes
4.4.1. Antennas
4.4.2. Control
4.4.3. Operational Modes
4.4.4. Power Module
4.4.5. Housing
- Light weight as nodes need to be transported to the field (typically by aircraft);
- Smooth outer surface with no crevasses to trap snow and/or ice;
- Mass-producible due to quantity needed (10 s to 100 s);
- Display located inside the housing must be visible to the operator;
- Accommodate a hermetic seal of the lid and the housing but also easily removable in the field with common tools;
- Support wireless charging (at least some part of the case needs to allow magnetic fields to penetrate for charging, which also defines a maximum wall thickness);
- Accommodate electronics mounting including power board, seismic sensors, and radio communication. Use custom features to mount electronics inside the box using standoffs produced with injection molding;
- Provide a backup electrical connector for wired electrical needs and expansion; and
- Anchor the housing to the ice or snowpack with metal spikes.
5. geoPebble Field Validation
6. Discussion
geoPebble Deployment in Greenland
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
3D | Three-dimensional |
4D | Four-dimensional |
ADC | Analog-to-digital converter |
AP | Access point |
GPS | Global Positioning System |
GPSDO | GPS-disciplined oscillator |
SQC | Supervisory and Quality Control |
References
- Rignot, E.; Thomas, R.H. Mass balance of polar ice sheets. Science 2002, 297, 1502–1506. [Google Scholar] [CrossRef] [Green Version]
- Bindschadler, R.A. Future of the West Antarctic ice sheet. Science 1998, 282, 428–429. [Google Scholar] [CrossRef]
- Conway, H.; Hall, B.L.; Denton, G.H. Past and future grounding-line retreat of the West Antarctic Ice Sheet. Science 1999, 286, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Velicogna, I.; Wahr, J. Acceleration of Greenland ice mass loss in spring 2004. Nature 2006, 443, 329–331. [Google Scholar] [CrossRef] [Green Version]
- Hanna, E.; Huybrechts, P.; Steffen, K.; Cappelen, J.; Huff, R.; Shuman, C.; Irvine-Fynn, T.; Wise, S.; Griffiths, M. Increased runoff from melt from the Greenland Ice Sheet: A response to global warming. J. Clim. 2008, 21, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Box, J.E.; Burgess, E.; Hanna, E. Mass balance of the Greenland Ice Sheet from 1958 to 2007. Geophys. Res. Lett. 2008, 35, L20502. [Google Scholar] [CrossRef] [Green Version]
- Alley, R.B.; Anandakrishnan, S.; Dupont, T.K.; Parizek, B.R. Ice streams: Fast and faster. C. R. Phys. 2004, 5, 723–734. [Google Scholar] [CrossRef]
- Alley, R.B.; Bindschadler, R.A. The West Antarctic Ice Sheet: Behavior and Environment; Antarctic Research Series; AGU: Washington, DC, USA, 2001; Volume 77. [Google Scholar]
- Harrison, W.D.; Echelmeyer, K.A.; Larsen, C.F. Measurements of temperatures within a margin of ice stream B, Antarctica: Implications for margin migration and lateral drag. J. Glaciol. 1998, 44, 615–625. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.J.; Abdalati, W.; Herring, T.; Larson, K.; Saba, J.; Steffen, K. Surface melt induced acceleration of Greenland ice-sheet flow. Science 2002, 297, 218–222. [Google Scholar] [CrossRef]
- Wingham, D.J.; Ridout, A.J.; Scharroo, R.; Arthern, R.J.; Schum, C.K. Antarctic elevation change from 1992 to 1996. Science 1998, 282, 456–458. [Google Scholar] [CrossRef]
- British Antarctic Survey. Instrument: Phase-Sensitive Radar (ApRES). Available online: https://www.bas.ac.uk/polar-operations/sites-and-facilities/facility/phase-sensitive-radar-apres/ (accessed on 20 December 2021).
- Makama, A.; Kuladinithi, K.; Timm-Giel, A. Wireless geophone networks for land seismic data acquisition: A survey, tutorial and performance evaluation. Sensors 2021, 21, 5171. [Google Scholar] [CrossRef]
- Oppenheimer, M.; Glavovic, B.C.; Hinkel, J.; Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; DeConto, R.M.; Ghosh, T.; et al. Sea level rise and implications for low-lying islands, coasts and communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; The Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Siegert, M.; Alley, R.B.; Rignot, E.; Englander, J.; Corell, R. Twenty-first century sea-level rise could exceed IPCC projections for strong-warming futures. One Earth 2020, 3, 691–703. [Google Scholar] [CrossRef]
- Khan, S.A.; Bjørk, A.A.; Bamber, J.L.; Morlighem, M.; Bevis, M.; Kjær, K.H.; Mouginot, J.; Løkkegaard, A.; Holland, D.M.; Aschwanden, A.; et al. Centennial response of Greenland’s three largest outlet glaciers. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Doake, C.S.M. Ice-shelf stability. Encycl. Ocean. Sci. 2001, 1282–1290. [Google Scholar] [CrossRef]
- Wang, S.; Alexander, P.; Wu, Q.; Tedesco, M.; Shu, S. Characterization of ice shelf fracture features using ICESat-2—A case study over the Amery Ice Shelf. Remote Sens. Environ. 2021, 255, 112266. [Google Scholar] [CrossRef]
- Murray, T.; Selmes, N.; James, T.D.; Edwards, S.; Martin, I.; O’Farrell, T.; Aspey, R.; Rutt, I.; Nettles, M.; Baugé, T. Dynamics of glacier calving at the ungrounded margin of Helheim Glacier, southeast Greenland. J. Geophys. Res. Earth Surf. 2015, 120, 964–982. [Google Scholar] [CrossRef] [PubMed]
- Robel, A.A.; Seroussi, H.; Roe, G.H. Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise. Proc. Natl. Acad. Sci. USA 2019, 116, 14887–14892. [Google Scholar] [CrossRef] [Green Version]
- Bassis, J.N.; Ma, Y. Evolution of basal crevasses links ice shelf stability to ocean forcing. Earth Planet. Sci. Lett. 2015, 409, 203–211. [Google Scholar] [CrossRef]
- Sheriff, R.E.; Geldart, L.P. Exploraion Seismology, 2nd ed.; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Mailloux, R.J. Phased Array Antenna Handbook; Artech House: Boston, MA, USA, 1994. [Google Scholar]
- Winberry, J.P.; Anandakrishnan, S.; Alley, R.B. Seismic observations of transient subglacial water-flow beneath MacAyeal Ice Stream, West Antarctica. Geophys. Res. Lett. 2009, 36, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wiens, D.A.; Anandakrishnan, S.; Winberry, J.P.; King, M.A. Simultaneous teleseismic and geodetic observations of the stick-slip motion of an Antarctic ice stream. Nature 2008, 453, 770–774. [Google Scholar] [CrossRef]
- Anandakrishnan, S.; Alley, R.B. Tidal forcing of basal seismicity of ice stream C, West Antarctica, observed far inland. J. Geophys. Res. 1997, 102, 15183–15196. [Google Scholar] [CrossRef]
- Das, S.; Joughin, I.; Behn, M.; Howat, I.; King, M.; Lizarralde, D.; Bhatia, M. Fracture propagation to the base of the Greenland ice sheet during supraglacial lake drainage. Science 2008, 320, 778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekström, G.; Nettles, M.; Tsai, V.C. Seasonality and increasing frequency of Greenland glacial earthquakes. Science 2006, 311, 1756–1758. [Google Scholar] [CrossRef]
- u-blox. LEA-6T Module with Precision Timing. Available online: https://www.u-blox.com/en/product/neolea-6t (accessed on 17 March 2021).
- Boehmer, T.J.; Bilén, S.G. Low-power GPS-disciplined oscillator module for distributed wireless sensor nodes. Electronics 2021, 10, 716. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anandakrishnan, S.; Bilén, S.G.; Urbina, J.V.; Bock, R.G.; Burkett, P.G.; Portelli, J.P. The geoPebble System: Design and Implementation of a Wireless Sensor Network of GPS-Enabled Seismic Sensors for the Study of Glaciers and Ice Sheets. Geosciences 2022, 12, 17. https://doi.org/10.3390/geosciences12010017
Anandakrishnan S, Bilén SG, Urbina JV, Bock RG, Burkett PG, Portelli JP. The geoPebble System: Design and Implementation of a Wireless Sensor Network of GPS-Enabled Seismic Sensors for the Study of Glaciers and Ice Sheets. Geosciences. 2022; 12(1):17. https://doi.org/10.3390/geosciences12010017
Chicago/Turabian StyleAnandakrishnan, Sridhar, Sven G. Bilén, Julio V. Urbina, Randall G. Bock, Peter G. Burkett, and Joseph P. Portelli. 2022. "The geoPebble System: Design and Implementation of a Wireless Sensor Network of GPS-Enabled Seismic Sensors for the Study of Glaciers and Ice Sheets" Geosciences 12, no. 1: 17. https://doi.org/10.3390/geosciences12010017
APA StyleAnandakrishnan, S., Bilén, S. G., Urbina, J. V., Bock, R. G., Burkett, P. G., & Portelli, J. P. (2022). The geoPebble System: Design and Implementation of a Wireless Sensor Network of GPS-Enabled Seismic Sensors for the Study of Glaciers and Ice Sheets. Geosciences, 12(1), 17. https://doi.org/10.3390/geosciences12010017