Elemental and K-Ar Isotopic Signatures of Glauconite/Celadonite Pellets from a Metallic Deposit of Missouri: Genetic Implications for the Local Deposits
Abstract
:1. Introduction
2. Geological and Regional Mineralization Context
3. Description of the Samples and of the Analytical Procedure
4. Results
4.1. The Major-Elemental Compositions
4.2. The Trace-Elemental Composition
4.3. The K-Ar Data
5. Discussion
5.1. Interpretation of the K-Ar Data
5.2. Comparison of the K-Ar and Rb-Sr Data
5.3. Evaluation of the Previously Published Rb-Sr Data
5.4. How Do the K-Ar and the Earlier Published Rb-Sr Data of the Glauconites Combine?
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ehlmann, A.J.; Hulings, N.C.; Glover, E.D. Stages of glauconite formation in modern forminiferal sediments. J. Sediment. Res. 1963, 33, 87–96. [Google Scholar]
- Odin, G.S.; Matter, A. De glauconarium origine. Sedimentology 1981, 28, 611–641. [Google Scholar] [CrossRef]
- Velde, B. Green clay minerals. In Treatise on Geochemistry; Sediments, Diagnosis and Sedimentary Rocks; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam The Netherlands, 2004; Volume 7, pp. 309–324. [Google Scholar]
- Cormier, R.F. Rubidium-Strontium ages of glauconite. Bull. Geol. Soc. Am. 1956, 67, 1812. [Google Scholar]
- Thompson, G.R.; Hower, J. An explanation for low radiometric ages from glauconite. Geochim. Cosmochim. Acta 1973, 37, 1473–1491. [Google Scholar] [CrossRef]
- Morton, J.P.; Long, L.E. Rb-Sr ages of glauconite recrystallization: Dating times of regional emergence above sea level. J. Sedim. Petrol. 1980, 54, 495–506. [Google Scholar]
- Keppens, E.; Pasteels, P. A comparison of rubidium-strontium and potassium-argon apparent ages on glauconies. In Numerical Dating in Stratigraphy; Odin, G.S., Ed.; Wiley: New York, NY, USA, 1982; pp. 225–239. [Google Scholar]
- Odin, G.S.; Dodson, M.H. Zero isotopic age of glauconies. In Numerical Dating in Stratigraphy; Odin, G.S., Ed.; Wiley: New York, NY, USA, 1982; pp. 277–306. [Google Scholar]
- Smith, P.E.; Evensen, N.M.; York, D. First successful 40Ar/39Ar dating of glauconites: Argon recoil in single grain cryptocrystalline material. Geology 1993, 21, 41–44. [Google Scholar] [CrossRef]
- Clauer, N.; Zwingmann, H.; Liewig, N.; Wendling, R. Comparative 40Ar/39Ar and K-Ar dating of illite-type clay minerals: A tentative explanation for the age identities and differences. Earth Sci. Rev. 2012, 115, 76–96. [Google Scholar] [CrossRef]
- Clauer, N. The K-Ar and 40Ar/39Ar methods revisited for dating fine-grained K-bearing clay minerals. Chem. Geol. 2013, 354, 163–185. [Google Scholar]
- Clauer, N.; Huggett, J.M.; Hillier, S. How reliable is the K-Ar glauconite chronometer? A case study of Eocene sediments from the Isle of Wight. Clay Miner. 2005, 40, 167–176. [Google Scholar] [CrossRef]
- Derkowski, A.; Srodon, J.; Franus, W.; Uhlik, P.; Banas, M.; Eielinski, G.; Caplovicova, M.; Franus, M. Partial dissolution of glauconitic samples: Implications for the methodology of K-Ar and Rb-Sr dating. Clays Clay Miner. 2009, 57, 531–554. [Google Scholar] [CrossRef]
- Odin, G.S.; Hunziker, J.C. Potassium-argon dating of washed, leached, weathered and reworked glauconies. In Numerical Dating in Stratigraphy; Odin, G.S., Ed.; John Wiley & Sons: New York, NY, USA, 1982; pp. 363–385. [Google Scholar]
- Keppens, E. Onderzoek van Het Glauconiet als Geochronometer Voor de Rb-Sr Dateringsmethode. Ph.D. Thesis, Vrije Universiteit Brussel, Brussel, Belgium, 1981. [Google Scholar]
- Pasteels, P.; Laga, P.; Keppens, E. Essai d’application de la méthode radiométrique au strontium aux glauconies du Néogène: Le problème du traitement de l’échantillon avant analyse. Com. Rend. Acad. Sci. Paris 1976, 282, 2029–2032. [Google Scholar]
- Clauer, N.; Chaudhuri, S.; Kralik, M.; Bonnot-Courtois, C. Effects of experimental leaching on Rb-Sr and K-Ar isotopic systems and REE contents of diagenetic illite. Chem. Geol. 1993, 103, 1–16. [Google Scholar] [CrossRef]
- Clauer, N.; Cocker, J.D.; Chaudhuri, S. Isotopic dating of diagenetic illites in reservoir sandstones: Influence of the investigator effect. In: Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones. Soc. Econ. Pal. Miner. Spec. Pub. 1992, 47, 5–12. [Google Scholar]
- Clauer, N.; Keppens, E.; Uysal, I.T.; Aubert, A. Ultrasonic shaking of glauconite pellets with diverse reagents for a comparison of their K-Ar with already published Rb-Sr results. Geosciences 2021, 11, 439. [Google Scholar] [CrossRef]
- Posey, H.H.; Stein Hl Fullagar, P.D.; Kish, S.A. Rb-Sr isotopic analysis of Upper Cambrian glauconites, southern Missouri: Implications for movement of Mississippi Valley-type ore-fluids in the Ozark region. In International Conference on Mississippi Valley-Type Lead-Zinc Deposits; Kisvarsanyi, G., Grant, S.K., Pratt, W.P., Koenig, J.W., Eds.; Proceeding Volume; University of Missouri: Rolla, MO, USA, 1983; pp. 166–173. [Google Scholar]
- Kish, S.A.; Stein, H.J. The timing of ore mineralization, Viburnum Trend, southeast Missouri lead district; Rb-Sr glauconite dating. Abstracts with Programs. Geol. Soc. Am. 1979, 11, 458. [Google Scholar]
- York, D.; Yanase, Y.; Hanes, J.A.; Kenyon, W.J. Ar40-Ar39 dating of terrestrial minerals with a continuous laser. Geophys. Res. Lett. 1981, 8, 1136–1138. [Google Scholar] [CrossRef]
- Nakai, S.; Halliday, A.N.; Kesler, S.F.; Jones, H.D.; Kyle, J.R.; Lane, T.E. Rb-Sr dating of sphalerites from Mississippi Valley-type (MVT) ore deposits. Geochim. Cosmochim. Acta 1993, 57, 417–427. [Google Scholar] [CrossRef]
- Beales, F.W.; Carracedo, J.C.; Strangway, D.W. Paleomagnetism and the Origin of Mississippi Valley-Type Ore Deposits. Can. J. Earth Sci. 1974, 11, 211–223. [Google Scholar] [CrossRef]
- Beales, F.W.; Jackson, K.C.; Jowett, E.C.; Pearce, G.W.; Wu, Y. Paleomagnetism applied to the study of timing in stratigraphy with special reference to ore and petroleum problems. Geol. Assoc. Can. Spec. Publ. 1979, 20, 789–804. [Google Scholar]
- Wu, Y.; Beales, F. A reconnaissance study by paleomagnetic methods of the age of mineralization along the Viburnum Trend, Southeast Missouri. Econ. Geol. 1981, 76, 1879–1894. [Google Scholar] [CrossRef]
- McCabe, R.; Almasco, J.; Diegor, W. Geologic and paleomagnetic evidence for a possible Miocene collision in western Panay, central Philippines. Geology 1982, 10, 325–329. [Google Scholar] [CrossRef]
- Brannon, J.C.; Podosek, F.A.; McLimans, R.K. Alleghenian age of the Upper Mississippi Valley zinc-lead deposit determined by Rb-Sr dating of sphlerite. Nature 1992, 356, 509–511. [Google Scholar] [CrossRef]
- Shelton, K.L.; Burstein, I.B.; Hagni, R.D.; Vierrether, C.B.; Grant, S.K.; Hennigh, Q.T.; Bradley, M.F.; Brandom, R.T. Sulfur isotope evidence for penetration of MVT fluids into igneous basement rocks, southeast Missouri, USA. Miner. Deposita 1995, 30, 339–350. [Google Scholar] [CrossRef]
- Leach, D.L.; Bradley, D.; Lewchuk, M.T.; Symons, D.T.; de Marsily, G.; Brannon, J. Mississippi Valley-type lead–zinc deposits through geological time: Implications from recent age-dating research. Miner. Deposita 2001, 36, 711–740. [Google Scholar] [CrossRef]
- Stein, R.J.; Kish, S.A. The timing of ore formation in southeast Missouri: Rb-Sr glauconite dating at the Magmont Mine, Viburnum Trend. Econ. Geol. 1985, 80, 739–753. [Google Scholar] [CrossRef]
- Lange, S.; Chaudhuri, S.; Clauer, N. Strontium isotopic evidence for the origin of barites and sulfides from the Mississippi Valley-type ore deposits in southeast Missouri. Econ. Geol. 1983, 78, 1255–1261. [Google Scholar] [CrossRef]
- Hay, R.L.; Liu, J.; Barnstable, D.C.; Deino, A.; Kyser, T.K.; Childers, G.A.; Walker, W.T. Dates and mineralogic results from clay pods of Mine 29 and Sweetwater Mine, Viburnum Trend, Missouri. In Extended Abstracts, International Field Conference on Carbonate-Hosted Lead-Zinc Deposits; Leach, D.L., Goldhaber, M.J., Eds.; Society of Economic Geologists: St. Louis, MO, USA, 1995; pp. 124–126. [Google Scholar]
- Leach, D.L.; Rowan, E.L. Genetic link between Ouachita foldbelt tectonism and the Mississippi Valley–type lead-zinc deposits of the Ozarks. Geology 1986, 14, 931–935. [Google Scholar] [CrossRef]
- Leach, D.L. Genesis of the Ozark Mississippi Valley-type metallogenic province. In Sediment-Hosted Zn-Pb Ores; Fontbote, L., Boni, M., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1994; pp. 104–138. [Google Scholar]
- Goldhaber, M.; Church, S.E.; Doe BRAleinikiff, J.N.; Brannon, J.C.; Podosek, F.A.; Mosier, E.L.; Taylor, C.D.; Gent, C.A. Lead- and sulfur-isotope investigations of Paleozoic sedimentary rocks from the southern mid-continent of the United States: Implications for the paleohydrology and ore genesis of the southeast Missouri lead-belt. Econ. Geol. 1995, 90, 1875–1910. [Google Scholar] [CrossRef]
- Symons, D.T.A.; Lewchuck, M.T.; Leach, D.L. Age and duration of the Mississippi Valley-type mineralizing fluid flow event in the Viburnum Trend, southeast Missouri, USA, determined from palaeomagnetism. Geol. Soc. Lond. Spec. Publ. 1998, 144, 27–39. [Google Scholar] [CrossRef]
- Ruiz, J.; Kelly, W.C.; Kaiser, C.J. Strontium isotopic evidence for the origin of barites and sulfides from the Mississippi Valley-Type ore deposits in Southeast Missouri; discussion. Econ. Geol. 1985, 80, 773–775. [Google Scholar] [CrossRef]
- Lange, S.; Chaudhuri, S.; Clauer, N. Strontium isotopic evidence for the origin of barites and sulfides from the Mississippi Va1ley-type ore deposits in southeast Missouri, a reply. Econ. Geoi. 1985, 80, 778–780. [Google Scholar]
- Grant, N.K.; Laskowski, T.A.; Foland, K.A. Rb-Sr and K-Ar ages of Paleozoic glauconites from Ohio, Indiana and Missouri, U.S.A. Chem. Geol. 1984, 46, 217–239. [Google Scholar] [CrossRef]
- Stein, R.J.; Kish, S.A. The significance of Rb-Sr glauconite ages, Bonneterre Formation Missouri: Late Devonian-Early Mississippian brine migration in the mid-continent, USA. J. Geol. 1991, 99, 1468–1481. [Google Scholar] [CrossRef]
- Samuel, J.; Rouault, R.; Besnus, Y. Analyse multi-élémentaire standardisée des matériaux géologiques en spectrométrie d’émission par plasma à couplage inductif. Analusis 1985, 13, 312–317. [Google Scholar]
- Odin, G.S. Collaborators (1982) Interlaboratory standards for dating purposes. In Numerical Dating in Stratigraphy; Odin, G.S., Ed.; John Wiley & Sons: Chichester, UK, 1982; pp. 123–148. [Google Scholar]
- Lee, J.Y.; Marti, K.; Severinghaus, J.P.; Kawamura, K.; Yoo, H.S.; Lee, J.B.; Kim, J.S. A redetermination of the isotopic abundances of Atmospheric Ar. Geochim. Cosmochim. Acta 2006, 70, 4507–4512. [Google Scholar] [CrossRef]
- Steiger, R.; Jäger, E. Subcommission on Geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Plan. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Bonhomme, M.; Thuizat, R.; Pinault, Y.; Clauer, N.; Wendling, R.; Winkler, R. Méthode de Datation Potassium-Argon: Appareillage et Technique; Rapport technique du Centre de Géochimie de la Surface; University Louis Pasteur: Strasbourg, France, 1975; 53p. [Google Scholar]
- Weaver, C.E.; Pollard, L.D. The Chemistry of Clay Minerals; Developments in Sedimentology 15; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 1973; 213p. [Google Scholar]
- Velde, B. Clay Minerals: A Physico-Chemical Explanation of their Occurrence; Developments in Sedimentology 40; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 1985; 427p. [Google Scholar]
- Drits, V.A.; Dayniak, L.G.; Muller, F.; Besson, G.; Manceau, A. Isomorphous cation distribution in celadonites, glauconites and Fe-illites determined by infrared, Mössbauer and EXAFS spectroscopies. Clay Miner. 1997, 32, 153–179. [Google Scholar] [CrossRef]
- Dainyak, L.G.; Rusakov, V.S.; Sukhorukov, I.A.; Drits, V.A. Octahedral cation distribution in glauconites from Southern Urals by combination of crystal-chemical model and quasi-continuous model-independent quadrupole splitting distributions (QSD) fitted to their Mössbauer spectra. Eur. J. Miner. 2013, 25, 405–414. [Google Scholar] [CrossRef]
- Zviagina, B.B.; Drits, V.A.; Dorzhieva, O.V. Distinguishing Features and Identification Criteria for K-Dioctahedral 1M Micas (Illite-Aluminoceladonite and Illite-Glauconite-Celadonite Series) from Middle-Infrared Spectroscopy Data. Minerals 2020, 10, 153. [Google Scholar] [CrossRef] [Green Version]
- Buckley, H.A.; Bevan, J.C.; Brown, K.M.; Johnson, L.R.; Farmer, V.C. Glauconite and celadonite: Two separate mineral species. Miner. Mag. 1978, 42, 373–382. [Google Scholar] [CrossRef]
- Odin, G.S.; Desprairies, A.; Fullagar, P.D.; Bellon, H.; Decarreau, A.; Fröhlich, F.; Zelvelder, M. Nature and geological significance of celadonite. In Green Marine Clays: Oolitic Ironstone Facies, Verdine Facies, Glaucony Facies and Celadonite-Bearing Rock Facies, a Comparative Study; Developments in Sedimentology 45; Odin, G.S., Ed.; Elsevier Publishers: Amsterdam, The Netherlands, 1988; pp. 337–398. [Google Scholar]
- Nieto, F.; Abad, I.; Bauluz, B.; Reolid, M. Textural and genetic relationships between glauconite and celadonite at the nanoscale: Two different structural-compositional fields. Eur. J. Miner. 2021, 33, 503–517. [Google Scholar] [CrossRef]
- Harper, C.T. Graphic solution to the problem of 40Ar loss from metamorphic minerals. Eclogae Geol. Helv. 1970, 63, 119–140. [Google Scholar]
- Clauer, N.; Chaudhuri, S. Clays in Crustal Environments: Isotope Dating and Tracing; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1995; 359p. [Google Scholar]
- McArthur, J.M.; Howarth, R.J.; Bailey, T.R. Strontium isotope stratigraphy: LOWESS Version 3: Best fit to the marine Sr-isotope curve 0-509 Ma and accompanying look-up table for deriving numerical age. J. Geol. 2001, 109, 155–170. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot 3.00: A geochronological toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2003; 71p. [Google Scholar]
Sample IDs | Depth (Feet) | Sample Numbers | Glauconite | Celadonite | Dolomite | Calcite | Hematite | Gypsum | Pyrite | F-Apatite | Halite |
---|---|---|---|---|---|---|---|---|---|---|---|
HC 1 | 1776 | 1 | x | x | x | x | x | ||||
CO 10 | 1538 | 8 | x | x | x | x | |||||
CO 10 | 1625 | 9 | x | x | x | x | x | x | |||
GT 1 | 2095 | 10 | x | x | x | x | x | x | |||
GT 5A | 2162 | 13 | x | x | x | x | x |
Sample IDs | Depth (Feet) | Sample Numbers | SiO2 | Al2O3 | MgO | CaO | Fe2O3 | Mn3O4 | TiO2 | P2O5 | Na2O | K2O | LOI | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | |||
HC 1 | 1756 | 1 | 51.7 | 12.2 | 6.99 | 1.0 | 9.6 | 0.026 | 0.06 | 0.18 | 0.07 | 7.95 | 8.32 | 98.10 |
64W 133 | 1480 | 2 | 49.4 | 7.8 | 3.69 | 0.8 | 21.3 | 0.039 | 0.04 | 0.19 | 0.06 | 7.80 | 7.40 | 98.50 |
1536 | 3 | 47.3 | 8.1 | 3.96 | 3.6 | 20.1 | 0.022 | 0.03 | 0.15 | 0.05 | 7.57 | 8.95 | 99.83 | |
(us) | 1698 | 4 | 32.0 | 6.1 | 9.10 | 12.0 | 13.1 | 0.144 | 0.02 | 0.23 | 0.10 | 4.78 | 23.33 | 100.90 |
65W 32 | 1840 | 5 | 21.1 | 3.6 | 12.1 | 17.2 | 11.3 | 0.211 | bdl | 0.20 | 0.09 | 3.47 | 30.02 | 99.29 |
62W 141 | 1069 | 6 | 49.6 | 7.7 | 4.77 | 3.0 | 18.2 | 0.014 | bdl | 0.62 | 0.05 | 7.17 | 8.49 | 99.61 |
CO 10 | 1538 | 7 | 45.4 | 6.5 | 3.16 | 2.2 | 25.6 | 0.060 | bdl | 0.14 | 0.19 | 7.53 | 7.47 | 98.25 |
1625 | 8 | 45.6 | 8.6 | 4.08 | 2.5 | 20.2 | 0.036 | 0.03 | 0.25 | 0.13 | 7.85 | 10.02 | 99.30 | |
GT 1 | 2095 | 9 | 43.8 | 7.3 | 4.34 | 2.9 | 23.4 | 0.071 | bdl | 0.51 | 0.17 | 7.20 | 9.10 | 98.79 |
(us) | 9a | 47.7 | 7.6 | 4.22 | 2.6 | 20.9 | 0.028 | bdl | 0.44 | 0.18 | 7.30 | 10.03 | 101.00 | |
CO 7 | 1766 | 10 | 46.0 | 7.6 | 3.33 | 3.4 | 22.3 | 0.021 | bdl | bdl | 0.14 | 7.79 | 9.08 | 99.66 |
GT 5A | 2162 | 11 | 49.0 | 9.2 | 4.62 | 0.3 | 19.6 | bdl | bdl | 0.12 | 0.47 | 7.96 | 9.34 | 100.61 |
62W 126 | 1285 | 12 | 46.4 | 5.8 | 4.74 | 3.9 | 19.8 | 0.035 | bdl | 1.15 | 0.05 | 7.49 | 8.98 | 98.35 |
1400 | 13 | 43.5 | 8.1 | 4.40 | 5.2 | 16.9 | 0.019 | 0.03 | 0.10 | 0.06 | 7.00 | 13.13 | 98.44 | |
63W 89 | 1295 | 14 | 48.5 | 8.0 | 3.32 | 1.0 | 21.1 | 0.044 | 0.06 | 0.13 | 0.05 | 7.71 | 8.79 | 98.70 |
Sample IDs | Sample Numbers | Rb | Sr | Ba | V | Ni | Co | Cr | Zn | Cu | Sc | Y | Zr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(μg/g) | (μg/g) | (μg/g) | (μg/g) | (μg/g) | (μg/g) | (μg/g) | (μg/g) | (μg/g) | (μg/g) | (μg/g) | (μg/g) | ||
64CW 133 | 2 | 258 | 25.2 | 22.0 | 76.7 | 1806 | 26.6 | 53.9 | 25.9 | 22.1 | 3.9 | 7.3 | 65.3 |
3 | 254 | 31.9 | 36.1 | 51.6 | 60.2 | 39.6 | 56.6 | 36.8 | 12.9 | 7.0 | 9.9 | 57.8 | |
4 | 271 | 23.7 | 13.8 | 71.4 | 203 | 20.8 | 104 | 19.5 | 13.1 | 2.0 | 7.6 | 97.4 | |
65W 32 | 5 | 253 | 32.1 | 32.7 | 108 | 31.9 | 20.6 | 76.3 | 26.8 | 27.1 | 4.6 | 19.4 | 82.2 |
62W 141 | 6 | 246 | 34.6 | 32.2 | 61.0 | 638 | 21.3 | 51.6 | 23.2 | 11.3 | 2.2 | 49.0 | 38.2 |
CO 10 | 7 | 269 | 31.2 | 716 | 125 | 3164 | 91.2 | 6239 | 37.9 | 43.2 | 4.2 | 3.4 | 44.2 |
8 | 281 | 32.5 | 62.0 | 53.3 | 54.8 | 55.0 | 58.5 | 32.8 | 37.0 | 6.2 | 4.8 | 77.0 | |
GT 1 | 9 | 243 | 38.2 | 64.2 | 104 | 30.9 | 14.5 | 60.9 | 31.1 | 19.4 | 7.3 | 24.1 | 132 |
(us) | 9a | 281 | 38.3 | 77.7 | 107 | 2976 | 28.8 | 6506 | 51.4 | 106 | 7.2 | 23.9 | 135 |
CO 7 | 10 | 251 | 38.0 | 47.7 | 58.1 | 24.5 | 22.4 | 41.8 | 32.4 | 12.6 | 3.9 | 4.4 | 88.0 |
13 | 243 | 11.5 | 76.3 | 66.2 | 39.4 | 15.2 | 50.6 | 30.4 | 21.5 | 5.2 | 3.0 | 111 | |
62W 126 | 12 | 262 | 64.5 | 18.3 | 28.3 | 75.1 | 35.9 | 50.3 | 41.2 | 18.3 | 1.7 | 78.7 | 44.2 |
Sample | Sample | K2O | 40Ar * | 40Ar * | Age (Ma) |
---|---|---|---|---|---|
IDs | Numbers | (%) | (10−4 cc/g) | (%) | (+/−2σ) |
HC-1 | 1 | 7.95 | 1.11 | 97.09 | 389.9 (8.3) |
64W-133 | 2 | 7.80 | 1.31 | 95.72 | 458.2 (9.9) |
3 | 7.57 | 1.16 | 97.81 | 423.5 (9.0) | |
(us) | 3a | 4.77 | 0.77 | 76.55 | 439.7 (14.6) |
62W-141 | 7 | 7.22 | 1.08 | 98.02 | 412.9 (8.8) |
(us) | 7a | 7.17 | 1.15 | 97.80 | 438.5 (9.3) |
CO-10 | 8 | 7.54 | 1.27 | 97.25 | 460.0 (9.9) |
9 | 7.85 | 1.19 | 95.44 | 416.9 (9.1) | |
GT-1 | 10 | 7.19 | 1.18 | 97.53 | 448.8 (9.6) |
(us) | 11 | 7.30 | 1.17 | 96.52 | 437.8 (9.4) |
CO-7 | 12 | 7.79 | 1.24 | 97.44 | 435.2 (9.3) |
GT-5A | 13 | 7.96 | 1.12 | 97.09 | 389.9 (8.3) |
15 | 7.00 | 1.04 | 96.29 | 412.2 (8.9) | |
63W-89 | 14 | 7.71 | 1.24 | 92.03 | 442.1 (9.9) |
64W-32 | 5 | 3.47 | 0.60 | 60.04 | 468.3 (16.4) |
Sample | Sample | Rb | Sr | 87Rbr/86Sr | 87Sr/86Sr | Age (Ma) |
---|---|---|---|---|---|---|
IDs | Numbers | (μg/g) | (μg/g) | (*) | ||
HC-1 | 1 | 258 | 3.75 | 222.6 | 1.9327 | 386 |
64W-133 | 2 | 254 | 3.08 | 273.4 | 2.1967 | 382 |
3 | 271 | 2.58 | 361.4 | 2.6489 | 377 | |
4 | 251 | 5.44 | 143.4 | 1.4666 | 371 | |
5 | 253 | 3.77 | 216.4 | 1.8429 | 368 | |
65W-32 | 6 | 253 | 3.75 | 218.3 | 1.8980 | 382 |
62W-141 | 7 | 246 | 3.32 | 242.1 | 2.0263 | 382 |
CO-10 | 8 | 269 | 3.90 | 224.1 | 1.9601 | 392 |
9 | 287 | 5.51 | 162.9 | 1.5307 | 354 | |
GT-1 | 10 | 243 | 3.99 | 195.0 | 1.8007 | 393 |
CO-7 | 11 | 251 | 4.21 | 190.6 | 1.7584 | 387 |
GT-5A | 12 | 242 | 4.50 | 170.0 | 1.6354 | 383 |
13 | 243 | 5.53 | 136.7 | 1.4610 | 386 | |
62W-126 | 14 | 262 | 2.29 | 407.2 | 3.0481 | 403 |
15 | 252 | 3.99 | 202.8 | 1.8065 | 380 | |
63W-89 | 16 | 254 | 3.72 | 221.8 | 1.9653 | 398 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clauer, N.; Uysal, I.T.; Aubert, A. Elemental and K-Ar Isotopic Signatures of Glauconite/Celadonite Pellets from a Metallic Deposit of Missouri: Genetic Implications for the Local Deposits. Geosciences 2022, 12, 387. https://doi.org/10.3390/geosciences12100387
Clauer N, Uysal IT, Aubert A. Elemental and K-Ar Isotopic Signatures of Glauconite/Celadonite Pellets from a Metallic Deposit of Missouri: Genetic Implications for the Local Deposits. Geosciences. 2022; 12(10):387. https://doi.org/10.3390/geosciences12100387
Chicago/Turabian StyleClauer, Norbert, I. Tonguç Uysal, and Amélie Aubert. 2022. "Elemental and K-Ar Isotopic Signatures of Glauconite/Celadonite Pellets from a Metallic Deposit of Missouri: Genetic Implications for the Local Deposits" Geosciences 12, no. 10: 387. https://doi.org/10.3390/geosciences12100387
APA StyleClauer, N., Uysal, I. T., & Aubert, A. (2022). Elemental and K-Ar Isotopic Signatures of Glauconite/Celadonite Pellets from a Metallic Deposit of Missouri: Genetic Implications for the Local Deposits. Geosciences, 12(10), 387. https://doi.org/10.3390/geosciences12100387