An Early-Warning System to Validate the Soil Profile during TBM Tunnelling
Abstract
:1. Introduction
2. The New Railway Network
3. Geological and Geotechnical Characterization of the Investigated Segment
4. A Simple Procedure to Refine the Soil Profile
5. Validation of the Proposed Procedure of Soil Profile Advance Prediction Using Electric Tomographic Tests
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohammadi, J.; Shahriar, K.; Moarefvand, P. Tunnel Face Stability Analysis in Soft Ground by EPB Method (Case Study: 7th Tehran Metro). Aust. J. Basic Appl. Sci. 2011, 5, 589–601. [Google Scholar]
- Anagnostou, G.; Kovári, K. Face stability in slurry and EPB shield tunnelling. In Geotechnical Aspects of Underground Construction in Soft Ground; Progressive Media Markets: Rotterdam, The Netherlands, 1996; pp. 453–458. [Google Scholar]
- Anagnostou, G.; Kovari, K. The face stability of slurry-shield driven tunnels. Tunn. Undergr. Space Technol. 1994, 9, 165–174. [Google Scholar] [CrossRef]
- Carranza-Torres, C.; Reich, T.; Saftner, D. Stability of shallow circular tunnels in soils using analytical and numerical models. In Proceedings of the 61st Minnesota Annual Geotechnical Engineering Conference, Minneapolis, MN, USA, 22 February 2013. [Google Scholar]
- Broere, W. Influence of excess pore pressures on the stability of the tunnel face. In Proceedings of the Third International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Toulouse, France, 23–25 October 2002; pp. 179–184. [Google Scholar]
- Atkinson, J.H.; Potts, D.M. Subsidence above shallow tunnels in soft ground. J. Geotech. Eng. Div. 1977, 103, 307–325. [Google Scholar] [CrossRef]
- Attewell, P.B.; Taylor, R.K. Ground Movements and Their Effects on Structures; Surrey University Press: Glasgow, UK, 1984; pp. 132–212. [Google Scholar]
- Attewell, P.B. Ground movements caused by tunnelling in soil. In International Conference on Large Ground Movements and Structures; Geddes, J.D., Ed.; Pentech Press: London, UK, 1978; pp. 812–948. [Google Scholar]
- Burland, J.P. Assessment of risk of damage to buildings due to tunnelling and excavation. In Proceedings of the First International Conference on Earthquake Geotechnical Engineering of Tokyo, Tokyo, Japan, 1–12 November 1995. [Google Scholar]
- Shi, S.; Zhao, R.; Li, S.; Xie, X.; Li, L.; Zhou, Z.; Liu, H. Intelligent prediction of surrounding rock deformation of shallow buried highway tunnel and its engineering application. Tunn. Undergr. Space Technol. 2019, 90, 1–11. [Google Scholar] [CrossRef]
- Gao, X.; Shi, M.; Song, X.; Zhang, C.; Zhang, H. Recurrent neural networks for real-time prediction of TBM operating parameters. Autom. Constr. 2019, 98, 225–235. [Google Scholar] [CrossRef]
- Dickmann, T. The Role of Tunnel Seismic prediction in Tunneling projects: Best practices. In Proceedings of the Indorock-2014: Fifth Indian Rock Conference, Delhi, India, 12–14 November 2014. [Google Scholar]
- Dickmann, T.; Méndez, J.H. Look-ahead seismic investigations during tunneling with shield tunnel boring machines. In Proceedings of the 2017 Word Congress on Advances in Structural Engineering and Mechanics, Ilsan, Korea, 28 August–1 September 2017. [Google Scholar]
- Liu, M.; Liao, S.; Li, J. Evaluation of the construction effectiveness for shield tunneling in complex ground based on FCE and AHP. In Geotechnical Frontiers 2017: Transportation Facilities, Structures, and Site Investigation; Brandon, T.L., Valentine, R.J., Eds.; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2017; pp. 556–565. [Google Scholar]
- Liu, M.; Liao, S.; Xiao, L.; Cheng, C. Stratigraphic classification based on the evaluated difficulty of the construction by using shield tunneling machine. In Transportation Research Congress 2016: Innovations in Transportation Research Infrastructure; Wang, L., Ling, J., Liu, P., Zhu, H., Gong, H., Huang, B., Eds.; ASCE: Reston, VA, USA, 2018; pp. 577–589. [Google Scholar]
- Li, S.; Liu, B.; Xu, X.; Nie, L.; Liu, Z.; Song, J.; Sun, H.; Chen, L.; Fan, K. An overview of ahead geological prospecting in tunneling. Tunn. Undergr. Space Technol. 2017, 63, 69–94. [Google Scholar] [CrossRef]
- Bigot, A.; Farotto, G. Tunnel boring machine vibration impact prediction method based on surface vibration measurement and tunnel to surface transfer function calculation. In Proceedings of the 23rd International Congress on Sound and Vibration: From Ancient to Modern Acoustics, New York, NY, USA, 10–14 July 2016; pp. 909–916. [Google Scholar]
- Petronio, L.; Poletto, F. Seismic-while-drilling by using tunnel boring machine noise. Geophysics 2002, 67, 1798–1809. [Google Scholar] [CrossRef]
- Liu, M.; Liao, S.; Yang, Y.; Men, Y.; He, J.; Huang, Y. Tunnel boring machine vibration-based deep learning for the ground identification of working faces. J. Rock Mech. Geotech. Eng. 2021, 13, 1340–1357. [Google Scholar] [CrossRef]
- DIN 4150-3. Vibrations in Buildings—Part 3: Effects on Structures; DIN: Berlin, Germany, 2016. [Google Scholar]
- Hiller, D.M. The Prediction of Groundborne Vibration Caused by Mechanised Construction Works; University of Surrey: Guildford, UK, 1999. [Google Scholar]
- Hiller, D.M. The prediction and mitigation of vibration impacts of tunnelling. In Proceedings of the Australian Acoustical Society Conference 2011, Acoustics 2011: Breaking New Ground, Gold Coast, Australia, 2–4 November 2011; pp. 1–8. [Google Scholar]
- Hiller, D.M.; Crabb, G.I. Groundborne vibration caused by mechanised construction works. In Crowthorne, Berkshire; Transport Research Foundation Group of Companie: Berkshire, UK, 2000. [Google Scholar]
- Petronio, L.; Poletto, F.; Schleifer, A.; Morino, A. Geology prediction ahead of the excavation front by Tunnel-Seismic-While-Drilling (TSWD) method. SEG Tech. Progr. Expand. Abstr. 2003, 22, 1211–1214. [Google Scholar] [CrossRef]
- Brückl, E.; Chwatal, W.; Mertl, S.; Radinger, A. Exploration ahead of a tunnel face by TSWD—tunnel seismic while drilling. Geomech. Tunnelbau. 2008, 1, 460–465. [Google Scholar] [CrossRef]
- Mooney, M.; Walter, B.; Steele, J.; Cano, D. Influence of geological conditions on measured TBM vibration frequency. In North American Tunneling: 2014 Proceedings; Davidson, G., Howard, A., Jacobs, L., Pintabona, R., Zernich, B., Eds.; Society for Mining, Metallurgy and Exploration (SME): Englewood, CO, USA, 2014; pp. 32–41. [Google Scholar]
- Kreutzer, I. TSWD—State of the art and current developments. In Symposium on the Application of Geophysics to Engineering and Environmental Problems 2014; Environmental & Engineering Geophysical Society: Denver, CO, USA, 2014; pp. 533–536. [Google Scholar]
- Lazarová, E.; Kruľáková, M.; Labaš, M.; Ivanicova, L.; Feriančiková, K. Vibration signal for identification of concrete drilling process and drill bit wear. Eng. Fail. Anal. 2020, 108, 104302. [Google Scholar] [CrossRef]
- Zhang, K.; Yu, H.; Liu, Z.; Lai, X. Dynamic characteristic analysis of TBM tunnelling in mixed-face conditions. Simul. Model Pract. Theory 2010, 18, 1019–1031. [Google Scholar] [CrossRef]
- Sun, W.; Ling, J.; Huo, J.; Guo, L.; Zhang, X.; Deng, L. Dynamic characteristics study with multidegree-of-freedom coupling in TBM cutterhead system based on complex factors. Math. Probl. Eng. 2013. [Google Scholar] [CrossRef]
- Huo, J.; Sun, X.; Li, T.; Sun, W. Multi-degree-of-freedom coupling dynamic characteristic of TBM disc cutter under shock excitation. J. Cent. South Univ. 2015, 22, 3326–3337. [Google Scholar] [CrossRef]
- Huo, J.; Wu, H.; Yang, J.; Sun, W.; Li, G.; Sun, X. Multi-directional coupling dynamic characteristics analysis of TBM cutterhead system based on tunnelling field test. J. Mech. Sci. Technol. 2015, 29, 3043–3058. [Google Scholar] [CrossRef]
- Liu, Q.S.; Wu, J.; Zhang, X.P.; Tang, L.X.; Bi, C.; Li, W.W.; Xu, J.L. Microseismic monitoring to characterize structure-type rockbursts: A case study of a TBM-excavated tunnel. Rock Mech. Rock Eng. 2020, 53, 2995–3013. [Google Scholar] [CrossRef]
- Bilgin, N.; Acun, S. The effect of rock weathering and transition zones on the performance of an EPB-TBM in complex geology near Istanbul. Turkey Bull. Eng. Geol. Environ. 2021, 80, 3041–3052. [Google Scholar] [CrossRef]
- Huanga, X.; Liu, Q.; Liu, H.; Zhan, P.; Pan, S.; Zhang, X.; Fang, J. Development and in-situ application of a real-time monitoring system for the interaction between TBM and surrounding rock. Tunn. Undergr. Space Technol. 2018, 81, 187–208. [Google Scholar] [CrossRef]
- Liu, M.B.; Liao, S.M.; Men, Y.Q.; Xing, H.T.; Liu, H.; Sun, L.Y. Field Monitoring of TBM Vibration During Excavating Changing Stratum: Patterns and Ground Identification. Rock Mech. Rock Eng. 2021, 1–8. [Google Scholar] [CrossRef]
- Nakamura, Y. A Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface. Q. Rep. Railw. Tech. Res. 1989, 30, 25–33. [Google Scholar]
- Nakamura, Y. What is the Nakamura method? Seismol. Res. Lett. 2019, 90, 1437–1443. [Google Scholar] [CrossRef]
- Grippa, A.; Bianca, M.; Tropeano, M.; Cilumbriello, A.; Gallipoli, M.R.; Mucciarelli, M.; Sabato, L. Use of the HVSR method to detect buried paleomorphologies (filled incised valleys) below a coastal plain: The case of the Metaponto plain (Basilicata, southern Italy). Boll. Geofis. Teor. Appl. 2011, 52, 225–240. [Google Scholar]
- Mokhberi, M.; Davoodi, M.; Haghshenas, E.; Jafari, M.K. Experimental evaluation of the H/V spectral ratio capabilities in estimating the subsurface layer characteristics. IJST Trans. Civ. Eng. 2013, 37, 457–468. [Google Scholar]
- Pinzón, L.A.; Pujades, L.G.; Macau, A.; Carreño, E.; Alcalde, J.M. Seismic Site Classification from the Horizontal-to-Vertical Response Spectral Ratios: Use of the Spanish Strong-Motion Database. Geosciences 2019, 9, 294. [Google Scholar] [CrossRef] [Green Version]
- Rong, M.; Li, H.; Yu, Y. The difference between horizontal-to-vertical spectra ratio and empirical transfer function as revealed by vertical arrays. PLoS ONE 2019, 14, e0210852. [Google Scholar] [CrossRef] [PubMed]
- Stanko, D.; Markušic, S.; Gazdek, M.; Sankovic, V.; Slukan, I.; Ivančic, I. Assessment of the Seismic Site Amplification in the City of Ivanec (NW Part of Croatia) Using the Microtremor HVSR Method and Equivalent-Linear Site Response Analysis. Geosciences 2019, 9, 312. [Google Scholar] [CrossRef] [Green Version]
- Atakan, K.; Duval, A.-M.N.; Theodulidis, P.-Y.B.; the SESAME-Team 2004. On the Reliability of the H/V Spectral Ratio Technique; ICSDEE & ICEGE: Berkeley, CA, USA, 2004. [Google Scholar]
- Duval, A.-M.; Chatelain, J.-L.; Guillier, B.; the SESAME WP02 Team 2004. Influence of Experimental Conditions on H/V Determination Using Ambient Vibrations (Noise); ICSDEE & ICEGE: Berkeley, CA, USA, 2004. [Google Scholar]
- Bard, P.-Y. The SESAME project: An overview and main results. In Proceedings of the 13th world conference in Earthquake Engineering, Vancouver, BC, USA, 1–6 August 2004. [Google Scholar]
- Khan, A.B.A.; Yokoi, T. Validation of SPAC and HVSR methods, an experimental study. Bull. Int. Inst. Seismol. Earthq. Eng. 2011, 45, 37–42. [Google Scholar]
- Kamarudin, A.F.; Daud, M.E.; Ibrahim, Z. Part 1: Verification of HVSR Method at Minyak Beku Outcrop Bedrock in Johor, Peninsular Malaysia. Int. J. Appl. Eng. Res. 2015, 10, 1–5. [Google Scholar]
- Gosar, A. Study on the applicability of the microtremor HVSR method to support seismic microzonation in the town of Idrija (W Slovenia). Nat. Hazards Earth Syst. Sci. 2017, 17, 925–937. [Google Scholar] [CrossRef] [Green Version]
- Chahyani, R.; Manan, A.; Puspitafury, C.; Kasmawati, K. Identification of surface-basement layer distribution of Wangi-Wangi Island based on HVSR method of microtremor data. J. Phys. Theor. Appl. 2020, 4, 94. [Google Scholar] [CrossRef]
- Ryanto, T.A.; Iswanto, E.R.; Indrawati, Y.; Setiaji, A.B.W.; Suntoko, H. Sediment Thickness Estimation in Serpong Experimental Power Reactor Site Using HVSR Method. J. Pengemb. Energi Nukl. 2020, 22, 29–37. [Google Scholar] [CrossRef]
- Tanjung, N.A.F.; Permatasari, I.; Yuniarto, A.H.P. Mapping of weathered layer thickness and Seismic Vulnerability in Tegal using HVSR method. In Proceedings of the International Symposium on Physics and Applications (ISPA 2020), Surabaya, Indonesia, 17–18 December 2020; IOP Publishings: Bristol, UK, 2021. [Google Scholar] [CrossRef]
- Kramer, S.T. Geotechnical Earthquake Engineering; Prentice-Hall Inc.: Hoboken, NJ, USA, 1996; ISBN 0-13-374943-6. [Google Scholar]
- Lanzo, G.; Silvestri, F. Risposta Sismica Locale: Teorie Ed Esperienze; Helvius Edizioni: Napoli, Italy, 1999. [Google Scholar]
- Caruso, S.; Ferraro, A.; Grasso, S.; Massimino, M.R. Site Response Analysis in eastern Sicily based on direct and indirect Vs measurements. In Proceedings of the 1st IMEKO TC4 International Workshop on Metrology for Geotechnics, MetroGeotechnics, Benevento, Italy, 17–18 March 2016; pp. 115–120. [Google Scholar]
- Ferraro, A.; Grasso, S.; Massimino, M.R.; Maugeri, M. Influence of geotechnical parameters and numerical modelling on local seismic response analysis. In Geotechnical Engineering for Infrastructure and Development—Proceedings of the XVI European Conference on Soil Mechanics and Geotechnical Engineering, ECSMGE 2015; ICE Publishing: London, UK, 2015; pp. 2183–2188. [Google Scholar]
- Abate, G.; Massimino, M.R.; Romano, S. Finite Element Analysis of DSSI Effects for a Building of Strategic Importance in Catania (Italy). Procedia Eng. 2016, 158, 374–379. [Google Scholar] [CrossRef] [Green Version]
- Castelli, F.; Cavallaro, A.; Ferraro, A.; Lentini, V.; Massimino, M.R. Static and dynamic properties of soils in Catania (Italy). Ann. Geophys. 2018, 61, SE221. [Google Scholar] [CrossRef]
- Ferraro, A.; Grasso, S.; Massimino, M.R. Site effects evaluation in Catania (Italy) by means of 1-D numerical analysis. Ann. Geophys. 2018, 61, SE224. [Google Scholar] [CrossRef]
- Massimino, M.R.; Abate, G.; Corsico, S.; Louarn, R. Comparison Between Two Approaches for Non-linear FEM Modelling of the Seismic Behavior of a Coupled Soil–Structure System. Geotech. Geol. Eng. 2019, 37, 1957–1975. [Google Scholar] [CrossRef]
- Capilleri, P.P.; Massimino, M.R. Geotechnical characterization of ash collected during recent eruptions of Mount Etna: From dangerous waste material to environmental friendly resource. Geomech. Geophys. Geo-Energy Geo-Resour. 2019, 5, 383–403. [Google Scholar] [CrossRef]
- Abate, G.; Massimino, M.R. Numerical modelling of the seismic response of a tunnel–soil–aboveground building system in Catania (Italy). Bull. Earthq. Eng. 2017, 15, 469–491. [Google Scholar] [CrossRef]
- Abate, G.; Corsico, S.; Massimino, M.R. Behavior of coupled tunnel-soil-aboveground building systems in seismic conditions evaluated by means of parametric analyses. In Proceedings of the Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions—7th International Conference on Earthquake Geotechnical Engineering, Roma, Italy, 17–20 June 2019; pp. 985–992. [Google Scholar]
- Abate, G.; Grasso, S.; Massimino, M.R. The role of shear wave velocity and non-linearity of soil in the seismic response of a coupled tunnel-soil-above ground building system. Geosciences 2019, 9, 473. [Google Scholar] [CrossRef] [Green Version]
- Abate, G.; Corsico, S.; Grasso, S.; Massimino, M.R.; Pulejo, A. Analysis of the vibrations induced by a TBM to refine soil profile during tunneling: The Catania case history. In Proceedings of the Tunnels and Underground Cities: Engineering and Innovation meet Archaeology, Architecture and Art. WTC 2019 ITA-AITES World Tunnel Congress 2019, Naples, Italy, 3–9 May 2019; pp. 567–576, ISBN 978-1-138-38865-9. [Google Scholar]
- Faccioli, E.; Pessina, V. The Catania Project: Earthquake damage scenarios for a risk area in the Mediterranean. In CNR-Gruppo Nazionale per la Difesa dei Terremoti; Faccioli, E., Pessina, V., Eds.; 2000; ISBN 88-900449-0-X. Available online: http://hdl.handle.net/2122/12181 (accessed on 14 October 2021).
- Cavallaro, A.; Maugeri, M.; Lo Presti, D.C.F.; Pallara, O. Characterising shear modulus and damping from in situ and laboratory tests for the seismic area of Catania. In Proceedings of the 2nd International Symposium on Pre-failure Deformation Characteristics of Geomaterials, Torino, Italy, 28–30 September 1999; pp. 51–58. [Google Scholar]
- Cavallaro, A.; Grasso, S.; Maugeri, M. Volcanic soil characterisation and site response analysis in the city of Catania. In Proceedings of the 8th US National Conference on Earthquake Engineering 2006, San Francisco, CA, USA, 18–22 April 2006; pp. 835–844. [Google Scholar]
- Cavallaro, A.; Grasso, S.; Ferraro, A. Study on seismic response analysis in “Vincenzo Bellini” garden area by seismic dilatometer Marchetti tests. In Proceedings of the 5th International Conference on Geotechnical and Geophysical Site Characterisation, Gold Coast, Australia, 5–9 September 2016; pp. 1309–1314. [Google Scholar]
- Grasso, S.; Maugeri, M.R. The seismic microzonation of the city of Catania (Italy) for the maximum expected scenario earthquake of January 11, 1693. Soil Dyn. Earthq. Eng. 2009, 29, 953–962. [Google Scholar] [CrossRef]
- Omori, F. On microtremors. Res. Imp. Earthq. Inv. Comm. 1908, 6, 1–6. [Google Scholar]
- Kanai, K.; Tanaka, T. On microtremors I. Bull. Earthq. Res. Inst. 1954, 32, 199–209. [Google Scholar]
- Kanai, K.; Tanaka, T. On microtremors VIII. Bull. Earthq. Res. Inst. 1961, 39, 97–114. [Google Scholar]
- Lermo, J.; Chavez-Garcia, F.J. Site effect evaluation using spectral ratios with only one station. Bull. Seismol. Soc. Am. 1993, 83, 1574–1594. [Google Scholar] [CrossRef]
- Konno, K.; Ohmachi, T. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 1998, 88, 228–241. [Google Scholar] [CrossRef]
- Nakamura, Y. Clear identification of fundamental idea of Nakamura’s technique and its applications. In Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 30 January–4 February 2000. [Google Scholar]
- Castellaro, S.; Mulargia, F. VS30 Estimates Using Constrained H/V Measurements. Bull. Seismol. Soc. Am. 2009, 99, 761–773. [Google Scholar] [CrossRef]
- Foti, S.; Parolai, S.; Albarello, D.; Picozzi, M. Application of Surface-Wave Methods for Seismic Site Characterization. Surv. Geophys. 2011, 32, 777–825. [Google Scholar] [CrossRef] [Green Version]
- Luzi, L.; Puglia, R.; Pacor, F.; Gallipoli, M.R.; Bindi, D.; Mucciarelli, M. Proposal for a soil classification based on parameters alternative or complementary to Vs,30. Bull. Earthq. Eng. 2011, 9, 1877–1898. [Google Scholar] [CrossRef]
- Kawase, H.; Matsushima, S.; Satoh, T.; Sa‘nchez-Sesma, F.J. Applicability of theoretical horizontal-to-vertical ratio of microtremors based on the diffuse field concept to previously observed data. Bull. Seismol. Soc. Am. 2015, 105, 3092–3103. [Google Scholar] [CrossRef]
- Molnar, S.; Cassidy, J.F.; Castellaro, S.; Cornou, C.; Crow, H.; Hunter, J.A.; Matsushima, S.; Sánchez-Sesma, F.J.; Yong, A. Application of Microtremor Horizontal-toVertical Spectral Ratio (MHVSR) Analysis for Site Characterization: State of the Art. Surv. Geophys. 2018, 39, 613–631. [Google Scholar] [CrossRef]
- Nelson, S.; McBride, J. Application of HVSR to estimating thickness of laterite weathering profiles in basalt. Earth Surf. Process Landf. 2019, 44, 1365–1376. [Google Scholar] [CrossRef]
- Loke, M.H. Tutorial: 2-D and 3-D Electrical Imaging Surveys; Geotomo Software: Gelugor, Malaysia, 2011. [Google Scholar]
Geological Formation | γ [kN/m3] | φ′ [°] | C′ [kPa] | cu [kPa] | VS [m/s] | E0 [MPa] | Eu [MPa] | k [m/s] |
---|---|---|---|---|---|---|---|---|
Rp | ||||||||
All | ||||||||
Sbv-L1669 | ||||||||
Agm | ||||||||
Agml | ||||||||
Ls | ||||||||
Bvlc-Bvlc(F)-L1669 | ||||||||
Lqua-L1669 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abate, G.; Corsico, S.; Grasso, S.; Massimino, M.R. An Early-Warning System to Validate the Soil Profile during TBM Tunnelling. Geosciences 2022, 12, 113. https://doi.org/10.3390/geosciences12030113
Abate G, Corsico S, Grasso S, Massimino MR. An Early-Warning System to Validate the Soil Profile during TBM Tunnelling. Geosciences. 2022; 12(3):113. https://doi.org/10.3390/geosciences12030113
Chicago/Turabian StyleAbate, Glenda, Sebastiano Corsico, Salvatore Grasso, and Maria Rossella Massimino. 2022. "An Early-Warning System to Validate the Soil Profile during TBM Tunnelling" Geosciences 12, no. 3: 113. https://doi.org/10.3390/geosciences12030113
APA StyleAbate, G., Corsico, S., Grasso, S., & Massimino, M. R. (2022). An Early-Warning System to Validate the Soil Profile during TBM Tunnelling. Geosciences, 12(3), 113. https://doi.org/10.3390/geosciences12030113