Down under and under Cover—The Tectonic and Thermal History of the Cooper and Central Eromanga Basins (Central Eastern Australia)
Abstract
:1. Introduction
2. Geological Background
2.1. Cooper Basin
- Sedimentation of the Gidgealpa Gp (304–252 Ma) started after the Alice Springs Orogeny with the deposition of the terminoglacial Merrimelia Formation during the late Pennsylvanian and continued with the proglacial outwash and fluvial successions of the Tirrawarra Sandstone in the earliest Permian. Terrestrial sedimentation prevailed until the Capitanian and is represented locally by more than 1 km thick alternating (often coal-bearing) fluvio-deltaic, fluvio-lacustrine, and floodplain deposits of the Patchawarra Formation, Murteree Shale, Epsilon Formation, Roseneath Shale, and Daralingie Formation. The Gidgealpa Gp is interrupted by the Capitanian to Wuchiapingian Daralingie Unconformity (263–258 Ma), caused by far-field basin inversion due to an early northeast-southwest directed compressional pulse of the Hunter-Bowen Orogeny and separates the Daralingie Formation from the coal-bearing meandering fluvial Toolachee Formation [2,8,66].
- The Nappamerri Gp (252–237 Ma) starts with the braided fluvial and floodplain deposits of the Arrabury Formation on the Queensland side and its South Australian equivalents Callamurra, Paning, and Wimma Sandstone members. Sandy shales of the meandering fluvial Tinchoo Formation represent the uppermost successions of the Nappamerri Gp. Throughout the remaining Triassic period, the study area was subject to folding, uplift, and erosion caused by intraplate far-field stress of the east-west directed final pulse of the Hunter-Bowen Orogeny. This renewed basin inversion period is represented by the widespread Nappamerri Unconformity (237–200 Ma; [2,8,16,66]). Volcanic material, intersected by various wells (i.e., Kappa-1, Lambda-1, Orientos-2, Warnie East-1), provides a broad range of possible ages from Triassic to Cretaceous (e.g., [29,67]; personal communication with Ian R. Duddy), but most features seem to be of effusive origin and could be often chronologically and stratigraphically correlated with the Nappamerri Unconformity.
2.2. Eromanga Basin
- The chronologically isolated Late Triassic Cuddapan Formation (210–203 Ma, Figure 2a) represents the precursor of the extensive sedimentary blanket of the Eromanga Basin and consists of fluvial deposits and erosional remnants. Basin-wide sedimentation re-established only in the Early Jurassic.
- The Lower Jurassic to Lower Cretaceous fluvio-lacustrine succession (194–130 Ma) comprises the carbonaceous sandstones of the Poolowanna Formation, the fluvial Hutton Sandstone, and the fluvio-lacustrine Birkhead Formation. After the Birkhead Unconformity (160–155 Ma, see [28]), siliciclastic sedimentation resumed with the Adori Sandstone, Westbourne Formation, Namur Sandstone, and fluvio-lacustrine Murta Formation on the Queensland side and their South Australian equivalent, the Algebuckina Sandstone.
- The shallow marine Cadna-owie Formation introduces the Lower Cretaceous marginal marine to shallow marine sub-sequence (130–101 Ma). The distinct seismic “C”-horizon marks a short-lived unconformity [68] that coincides with the Tookoonooka structure (125 Ma, [39,69]), a large meteorite impact crater located at the eastern edge of the study area (Figure 1b). Its diameter is approximately 60 km, and the impact was accompanied by a twin, the Talundilly meteorite, which hit the surface about 300 km further north just outside the study area [39]. Following the Cadna-owie Unconformity (125–120 Ma), the Wyandra Sandstone Member, the shallow marine Wallumbilla, Toolebuc, and Allaru formations in Queensland and their South Australian equivalents (Bulldog Shale, Coorikiana, and Oodnatta sandstones) formed. This Aptian–Albian transgressive sequence finishes with the basin-wide marginal marine siltstones of the Mackunda Formation.
- The fluvial Upper Cretaceous Winton Formation (101–95 Ma) represents the uppermost sub-sequence of the EB and features the highest sedimentation rate of all formations in the study area, possibly due to enhanced subsidence before Gondwana break-up started [42,43]. Expressed by the distinct Winton Unconformity (95–62 Ma), the formation was quickly buried and heated, then rapidly uplifted, extensively eroded, and deeply weathered throughout the remaining Late Cretaceous period.
2.3. Lake Eyre Basin
2.4. Petroleum Systems
3. Materials and Methods
3.1. Stratigraphic Input
3.2. Boundary Conditions
3.3. Petroleum System Settings and Source Rock Assignment
3.4. Heat Flow and Thermal Modelling
4. Results
4.1. Calibration of Bottom Hole Temperature and Thermal Maturity
4.2. Tectonic Subsidence and Sedimentation Rate
4.3. Evolution of Basal Heat Flow and Temperature
4.4. Evolution of Source Rock Thermal Maturity and Transformation Ratio
4.5. Layer Thickness and Depocentre Migration
4.6. Basal Heat Flow Maps
4.7. Thermal Maturity Maps
5. Discussion and Remaining Uncertainties
5.1. Permo-Triassic Tectonics
5.2. Neotectonics and Topography
5.3. Jurassic and Cretaceous Tectonics
5.4. Uncertainties of Thermal History
5.5. Palaeozoic Thermal Evolution
5.6. Mesozoic Thermal Evolution
- At Kappa-1, undated basalt at the top of the Nappamerri Gp was intersected, directly overlain by Hutton Sst [2].
- Lambda-1 contains a Triassic weathered basalt flow or feeder vent (227 Ma) and is overlain by thermally unaffected Birkhead Fm [67].
- Orientos-2 hosts undated basalt overlain by Adori Sst, whereas volcanic material is absent in Orientos-1 (only 1 km apart, [2]).
5.7. Cenozoic to Present-Day Thermal Evolution
5.8. Implications for Hydrocarbon Generation and Exploration Outlook
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Draper, J.J. (Ed.) Geology of the Cooper and Eromanga Basins, Queensland. In Queensland Government, Natural Resources and Mines, Queensland Mineral and Energy Review Series; Queensland Government: Brisbane, Australia, 2002. [Google Scholar]
- Gravestock, D.I.; Hibburt, J.E.; Drexel, J.F. (Eds.) Petroleum Geology of South Australia, Volume 4: Cooper Basin. South Australia Department of Industries and Resources, Report Book. September 1998. Available online: https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/image/DDD/PGSA004.pdf (accessed on 13 December 2021).
- Raymond, O.L.; Totterdell, J.M.; Woods, M.A.; Stewart, A.J. Australian Geological Provinces 2018.01 edition. Dataset. 2018. Available online: http://pid.geoscience.gov.au/dataset/ga/116823 (accessed on 13 December 2021).
- Hall, L.S.; Hill, A.; Troup, A.; Korsch, R.; Radke, B.; Nicoll, R.S.; Palu, T.; Wang, L.; Stacey, A. Cooper Basin Architecture and Lithofacies: Regional Hydrocarbon Prospectivity of the Cooper Basin, Part 1; Record 2015/31; Geoscience Australia: Canberra, Australia, 2015. Available online: https://doi.org/10.11636/Record.2015.031 (accessed on 13 December 2021). [CrossRef]
- Goldstein, B.; Menpes, S.; Hill, A.; Wickham, A.; Alexander, E.; Jarosz, M.; Pepicelli, D.; Malavazos, M.; Staritski, K.; Taliangis, P.; et al. Roadmap for Unconventional Gas Projects in South Australia. South Australia Department for Manufacturing, Innovation, Trade, Resources and Energy, Energy Resources Division. 2012. Available online: https://www.energymining.sa.gov.au/__data/assets/pdf_file/0019/238033/Roadmap_Unconventional_Gas_Projects_SA_12-12-12_web.pdf (accessed on 8 November 2020).
- Hall, L.S.; Boreham, C.J.; Edwards, D.S.; Palu, T.J.; Buckler, T.; Hill, A.J.; Troup, A. Cooper Basin Source Rock Geochemistry: Regional Hydrocarbon Prospectivity of the Cooper Basin, Part 2; Record 2016/06; Geoscience: Canberra, Australia, 2016. [CrossRef]
- Hall, L.S.; Palu, T.J.; Murray, A.P.; Boreham, C.J.; Edwards, D.S.; Hill, A.J.; Troup, A. Cooper Basin Petroleum Systems Analysis: Regional Hydrocarbon Prospectivity of the Cooper Basin, Part 3; Record 2016/29; Geoscience Australia: Canberra, Australia, 2016. [CrossRef]
- Hall, L.S.; Palu, T.J.; Murray, A.P.; Boreham, C.J.; Edwards, D.S.; Hill, A.J.; Troup, A. Hydrocarbon prospectivity of the Cooper Basin, Australia. AAPG Bull. 2019, 103, 31–63. [Google Scholar] [CrossRef] [Green Version]
- Radke, B. Hydrocarbon and Geothermal Prospectivity of Sedimentary Basins in Central Australia: Warburton, Cooper, Pedirka, Galilee, Simpson and Eromanga Basins; Record 2009/25; Geoscience Australia: Canberra, Australia, 2009. Available online: http://www.ga.gov.au/corporate_data/69150/Rec2009_025.pdf (accessed on 13 December 2021).
- Siégel, C.; Bryan, S.; Purdy, D.; Allen, C.; Schrank, C.; Uysal, T.; Gust, D.; Beardsmore, G. Evaluating the role of deep granitic rocks in generating anomalous temperatures in south-west Queensland. In Geological Survey of Queensland: Digging Deeper 10 Seminar Extended Abstracts [Queensland Geological Record 2012/14]; Geological Survey of Queensland, Department of Natural Resource and Mines: Brisbane, Australia, 2012; pp. 95–102. [Google Scholar]
- Siégel, C.; Schrank, C.E.; Bryan, S.E.; Beardsmore, G.R.; Purdy, D.J. Heat-producing crust regulation of subsurface temperatures: A stochastic model re-evaluation of the geothermal potential in southwestern Queensland, Australia. Geothermics 2014, 51, 182–200. [Google Scholar] [CrossRef] [Green Version]
- Meixner, A.J.; Kirkby, A.L.; Horspool, N. Using constrained gravity inversions to identify high-heat-producing granites beneath thick sedimentary cover in the Cooper Basin region of central Australia. Geothermics 2014, 51, 483–495. [Google Scholar] [CrossRef]
- Khair, H.A.; Cooke, D.; Hand, M. Seismic mapping and geomechanical analyses of faults within deep hot granites, a workflow for enhanced geothermal system projects. Geothermics 2015, 53, 46–56. [Google Scholar] [CrossRef]
- Khair, H.A.; Cooke, D.; Hand, M. Paleo stress contribution to fault and natural fracture distribution in the Cooper Basin. J. Struct. Geol. 2015, 79, 31–41. [Google Scholar] [CrossRef]
- Smith, M.; Karim, F.; Sparrow, A.; Cassel, R.; Hall, L. Context statement for the Cooper subregion. In Product 1.1 for the Cooper subregion from the Lake Eyre Basin Bioregional Assessment; Department of the Environment, Bureau of Meteorology, CSIRO and Geoscience Australia: Canberra, Australia, 2015. Available online: https://www.bioregionalassessments.gov.au/assessments/11-context-statement-cooper-subregion (accessed on 13 December 2021).
- Carr, L.; Korsch, R.; Palu, T. Australia’s onshore basin inventory: Volume I. APPEA J. 2016, 56, 591. [Google Scholar] [CrossRef]
- Golding, S.D.; Dawson, G.K.W.; Pearce, J.K.; Farrajota, F.; Mernagh, T.; Boreham, C.; Hall, L.S.; Palu, T.J.; Sommacal, S. Great Artesian Basin Authigenic Carbonates as Natural Analogues for Mineralisation Trapping; CO2CRC Project 1.5.2 ANLEC Project 7-1011-0189; CO2CRC Report No RPT16-5497; Cooperative Research Centre for Greenhouse Gas Technologies: Melbourne, Australia, 2016. [Google Scholar]
- Gallagher, K.; Lambeck, K. Subsidence, sedimentation and sea-level changes in the Eromanga Basin, Australia. Basin Res. 1989, 2, 115–131. [Google Scholar] [CrossRef]
- Moussavi-Harami, R. Burial history. In Petroleum geology of South Australia; Alexander, E.M., Hibburt, J.E., Eds.; Eromanga Basin; South Australia Department of Mines and Energy: Adelaide, Australia, 1996; Volume 2, pp. 125–140. [Google Scholar]
- Deighton, I.; Hill, A.J. Chapter 9: Thermal and burial history. In The Petroleum Geology of South Australia, Volume 4: Cooper Basin. South Australia Department of Primary Industries and Resources, Adelaide; Gravestock, D.I., Hibburt, J.E., Drexel, J.F., Eds.; Report Book, 1998/9; South Australia Department of Primary Industries and Resources: Adelaide, Australia, 1998; pp. 143–155. Available online: https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/image/DDD/PGSA004.pdf (accessed on 13 December 2021).
- Zwingmann, H.; Tingate, P.R.; Lemon, N.M.; Hamilton, P.J. K-Ar dating, petrographic and thermal modelling constraints on illite origin in the Cooper Basin, South Australia. In Eastern Australian Basins Symposium 2001; Hill, K.C., Bernecker, T., Eds.; Petroleum Exploration Society of Australia Special Publication: Melbourne, Australia, 2001; pp. 321–327. [Google Scholar]
- Deighton, I.; Draper, J.J.; Hill, A.J.; Boreham, C.J. A hydrocarbon generation model for the Cooper and Eromanga Basins. APPEA J. 2003, 43, 433–451. [Google Scholar] [CrossRef]
- Mavromatidis, A.; Hillis, R. Quantification of exhumation in the Eromanga Basin and its implications for hydrocarbon exploration. Pet. Geosci. 2005, 11, 79–92. [Google Scholar] [CrossRef]
- Mavromatidis, A. Burial/exhumation histories for the Cooper–Eromanga Basins and implications for hydrocarbon exploration, Eastern Australia. Basin Res. 2006, 18, 351–373. [Google Scholar] [CrossRef]
- Mavromatidis, A. Exhumation study in the Cooper-Eromanga Basins, Australia and the implications for hydrocarbon exploration. Energy Sources Part A Recovery Util. Environ. Eff. 2007, 29, 631–648. [Google Scholar] [CrossRef]
- McLaren, S.; Dunlap, W.J. Use of 40Ar/39Ar K-feldspar thermochronology in basin thermal history reconstruction: An example from the Big Lake Suite granites, Warburton Basin, South Australia. Basin Res. 2006, 18, 189–203. [Google Scholar] [CrossRef]
- Meixner, A.J.; Kirkby, A.L.; Lescinsky, D.T.; Horspool, N. The Cooper Basin 3D Map Version 2: Thermal Modelling and Temperature Uncertainty; Record, 60; Geoscience Australia: Canberra, Australia, 2012. Available online: https://ecat.ga.gov.au/geonetwork/srv/api/records/c2c6bbd3-fd68-194b-e044-00144fdd4fa6 (accessed on 13 December 2021).
- Wainman, C.C.; McCabe, P.J.; Crowley, J.L. Solving a tuff problem: Defining a chronostratigraphic framework for Middle to Upper Jurassic nonmarine strata in eastern Australia using uranium–lead chemical abrasion–thermal ionization mass spectrometry zircon dates. AAPG Bull. 2018, 102, 1141–1168. [Google Scholar] [CrossRef]
- Hardman, J.P.; Holford, S.P.; Schofield, N.; Bunch, M.; Gibbins, D. The Warnie volcanic province: Jurassic intraplate volcanism in Central Australia. Gondwana Res. 2019, 76, 322–347. [Google Scholar] [CrossRef]
- O’Neil, B.J. Chapter 2: History of Petroleum Exploration and Development. In The Petroleum Geology of South Australia; Gravestock, D.I., Hibburt, J.E., Drexel, J.F., Eds.; Volume 4: Cooper Basin; Report Book, 1998/9; Department of Primary Industries and Resources, Government of South: Adelaide, Australia, 1998; pp. 7–36. Available online: https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/image/DDD/PGSA004.pdf (accessed on 13 December 2021).
- O’Neil, B.J.; Alexander, E.M. History of petroleum exploration and development. In The Petroleum Geology of South Australia Series, 2nd ed.; Cotton, T.B., Boult, P.J., Hibburt, J.E., Eds.; Eromanga Basin; Department of Primary Industries and Resources. Government of South Australia: Adelaide, Australia, 2006; Volume 2. [Google Scholar]
- Menpes, S.; Hill, A.; Pepicelli, D. Characteristics of the Gidgealpa Group composite resource play in the Cooper Basin, South Australia. In Unconventional Resources Technology Conference Abstracts; URTeC Denver: Denver, CO, USA, 2013; pp. 2621–2630. [Google Scholar] [CrossRef]
- AERA: Australian Government; Geoscience Australia. Australian Energy Resources Assessment. Executive Summary. 2020. Available online: https://aera.ga.gov.au/ (accessed on 14 October 2020).
- Hall, L.S.; Palu, T.J. Cooper Basin Regional Petroleum Systems Model; Geoscience Australia: Canberra, Australia, 2016. Available online: http://pid.geoscience.gov.au/dataset/ga/100740 (accessed on 3 November 2020).
- Middleton, M.F. Correlation between well log and surface resistivity measurements? A case study in the Eromanga Basin, Queensland. Explor. Geophys. 1979, 10, 176–178. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, K.L. The subsidence history and thermal state of the Eromanga and Cooper Basins. Ph.D. Thesis, The Australian National University, Open Research Library, Canberra, Australia, 1988. [Google Scholar] [CrossRef]
- Burger, D.; Senior, B.R. A revision of the sedimentary and palynological history of the northeastern Eromanga Basin, Queensland. J. Geol. Soc. Aust. 1979, 26, 121–133. [Google Scholar] [CrossRef]
- Gostin, V.A.; Therriault, A.M. Tookoonooka, a large buried early Cretaceous impact structure in the Eromanga Basin of southwestern Queensland, Australia. Meteorit. Planet. Sci. 1997, 32, 593–599. [Google Scholar] [CrossRef] [Green Version]
- Bron, K.A.; Gostin, V. The Tookoonooka marine impact horizon, Australia: Sedimentary and petrologic evidence. Meteorit. Planet. Sci. 2012, 47, 296–318. [Google Scholar] [CrossRef]
- Alley, N.F.; Hore, S.B.; Frakes, L.A. Glaciations at high-latitude Southern Australia during the Early Cretaceous. Aust. J. Earth Sci. 2020, 67, 1045–1095. [Google Scholar] [CrossRef]
- Kantsler, A.J.; Prudence, T.J.; Cook, A.C.; Zwigulis, M. Hydrocarbon habitat of the Cooper/Eromanga Basin, Australia. Aust. Pet. Explor. Assoc. J. 1983, 23, 75–92. [Google Scholar] [CrossRef]
- Kuang, K.S. History and style of Cooper? Eromanga Basin structures. Explor. Geophys. 1985, 16, 245–248. [Google Scholar] [CrossRef]
- Finlayson, D.M.; Leven, J.H.; Etheridge, M.A. Structural styles and basin evolution in Eromanga region, Eastern Australia. AAPG Bull. 1988, 72, 33–48. [Google Scholar]
- Apak, S.N.; Stuart, W.J.; Lemon, N.M. Compressional control on sediment and facies distribution SW Nappamerri Syncline and adjacent Murteree High, Cooper Basin. APPEA J. 1995, 35, 190–202. [Google Scholar] [CrossRef]
- Apak, S.N.; Stuart, W.J.; Lemon, N.M.; Wood, G. Structural evolution of the Permian–Triassic Cooper Basin, Australia: Relation to hydrocarbon trap styles. AAPG Bull. 1997, 81, 533–555. [Google Scholar]
- Mavromatidis, A. Combined analysis of different logs in quantification of exhumation and its implications for hydrocarbon exploration, a case study from Australia. Geol. Acta: Int. Earth Sci. J. 2006, 4, 355–370. [Google Scholar]
- Grant-Woolley, L.; Kong, A.; Schoemaker, B.; Nasreddin, H.; Montague, E.T. Identification of strike-slip faults provides insights into the further development of mature Cooper Basin fields. In SPE Asia Pacific Oil & Gas Conference and Exhibition; Society of Petroleum Engineers: Adelaide, Australia, 2014. [Google Scholar] [CrossRef]
- Kulikowski, D.; Amrouch, K. Combining geophysical data and calcite twin stress inversion to refine the tectonic history of subsurface and offshore provinces: A case study on the Cooper-Eromanga Basin, Australia. Tectonics 2017, 36, 515–541. [Google Scholar] [CrossRef]
- Kulikowski, D.; Amrouch, K.; Cooke, D.; Gray, M.E. Basement structural architecture and hydrocarbon conduit potential of polygonal faults in the Cooper-Eromanga Basin, Australia. Geophys. Prospect. 2018, 66, 366–396. [Google Scholar] [CrossRef]
- Holgate, F.L. Exploration and Evaluation of the Australian Geothermal Resource. Ph.D. Thesis, The Australian National University, Open Research Library, Canberra, Australia, 2005. [Google Scholar] [CrossRef]
- Purdy, D.J.; Hegarty, R.; Doublier, M.P. Basement geology of the southern Thomson Orogen. Aust. J. Earth Sci. 2018, 65, 893–916. [Google Scholar] [CrossRef]
- Scheibner, E. Fossil fracture zones (transform faults), segmentation and correlation problems in the Tasman Fold Belt System. In The Tasman Geosyncline–A Symposium in Honour of Professor Dorothy Hill; Denmead, A.K., Tweedale, G.W., Wilson, A.F., Eds.; Queensland Division Geological Society of Australia: Brisbane, Australia, 1974; pp. 65–96. [Google Scholar]
- Veevers, J.J.; Powell, C.M. Epi-Adelaidean: Regional shear. In Phanerozoic Earth History of Australia; Veevers, J.J., Ed.; Clarendon Press: Oxford, UK, 1984; pp. 278–284. [Google Scholar]
- GA, Australian Government; Geoscience Australia. National Petroleum Wells Database. 2017. Available online: http://dbforms.ga.gov.au/www/npm.well.search (accessed on 17 August 2020).
- Röth, J.; Baniasad, A.; Froidl, F.; Ostlender, J.; Boreham, C.; Hall, L.S.; Littke, R. The Birkhead and Murta formations-organic geochemistry and organic petrography of Mesozoic fluvio-lacustrine source rocks in the Eromanga Basin, central Australia. Submitted to and under review. Int. J. Earth Sci. 2021; under review. [Google Scholar]
- GA, Australian Government, Geoscience Australia. Great Artesian Basin. 2020. Available online: http://www.ga.gov.au/scientific-topics/water/groundwater/gab (accessed on 22 April 2020).
- Smerdon, B.D.; Ransley, T.R.; Radke, B.M.; Kellett, J.R. Water Resource Assessment for the Great Artesian Basin: A Report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment; CSIRO Water for a Healthy Country Flagship; Australian Government: Canberra, Australia, 2012.
- Cook, A.G.; Bryan, S.E.; Draper, J. Post-Orogenic Mesozoic Basins and Magmatism. In Geology of Queensland (515-575); Jell, P., Ed.; Geological Survey of Queensland: Brisbane, Australia, 2013. [Google Scholar]
- Roberts, D.C.; Carroll, P.G.; Sayers, J. The Kalladeina Formation—A Warburton Basin Cambrian carbonate play. APPEA J. 1990, 30, 166–183. [Google Scholar] [CrossRef]
- Siégel, C.; Bryan, S.E.; Allen, C.M.; Purdy, D.J.; Cross, A.J.; Uysal, I.T.; Gust, D.A. Crustal and thermal structure of the Thomson Orogen: Constraints from the geochemistry, zircon U–Pb age, and Hf and O isotopes of subsurface granitic rocks. Aust. J. Earth Sci. 2018, 65, 967–986. [Google Scholar] [CrossRef] [Green Version]
- McKellar, J.L. The Cooper Basin. Geology of Queensland; Geological Survey of Queensland: Brisbane, Australia, 2013; pp. 204–212.
- Gravestock, D.I.; Jensen-Schmidt, B. Structural Setting. In Petroleum Geology of South Australia; Gravestock, D.I., Hibburt, J.E., Drexel, J.F., Eds.; Petroleum Group, Primary Industries and Resources South Australia: Adelaide, Australia, 1998; Volume 4, pp. 47–67. [Google Scholar]
- Teasdale, J.; Pryer, L.; Etheridge, M.; Romine, K.; Stuart-Smith, P.; Cowan, P.; Loutit, T.; Vizy, J.; Henley, P. Officer Basin SEEBASE Project; Report for Primary Industries and Resources South Australia: Adelaide, Australia, 2001. [Google Scholar]
- Middleton, A.W.; Uysal, I.T.; Bryan, S.E.; Hall, C.M.; Golding, S.D. Integrating 40Ar–39Ar, 87Rb–87Sr and 147Sm–143Nd geochronology of authigenic illite to evaluate tectonic reactivation in an intraplate setting, central Australia. Geochim. Et Cosmochim. Acta 2014, 134, 155–174. [Google Scholar] [CrossRef] [Green Version]
- Beardsmore, G. The influence of basement on surface heat flow in the Cooper Basin. Explor. Geophys. 2004, 35, 223–235. [Google Scholar] [CrossRef]
- GA, Australian Government, Geoscience Australia. Australian Stratigraphic Units Database. 2020. Available online: http://www.ga.gov.au/data-pubs/data-standards/reference-databases/stratigraphic-units (accessed on 22 April 2020).
- Murray, C.G. Basement Cores from the Tasman Fold Belt System Beneath the Great Artesian Basin in Queensland; Department of Minerals and Energy, Government of Queensland: Brisbane, Australia, 1994.
- Lavering, I.H. Observations on the geological origin of the ‘C’-horizon seismic reflection, Eromanga Basin. BMR J. Aust. Geol. Geophys. 1991, 12, 5–12. [Google Scholar]
- Bron, K.A. Accretionary and melt impactoclasts from the Tookoonooka impact event, Australia. Geol. Soc. America. Spec. Pap. 2010, 465, 219–244. [Google Scholar]
- Alley, N.F. Cainozoic stratigraphy, palaeoenvironments and geological evolution of the Lake Eyre Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1998, 144, 239–263. [Google Scholar] [CrossRef]
- Bowering OJ, W.; Harrison, D.M. The Merrimelia oil and gas field–A case history. In Contributions to the Geology and Hydrocarbon Potential of the Eromanga Basins; Gravestock, D.I., Moore, P.S., Pitt, G.M., Eds.; Geological Society of Australia Special Publication: Hornsby, NSW, Australia, 1986; Volume 12, pp. 183–194. [Google Scholar]
- Gray, A.R.G.; Draper, J.J. Petroleum geology. In Geology of the Cooper and Eromanga Basins (63–74); Queensland Department of Natural Resources and Mines: Brisbane, Australia, 2010. [Google Scholar]
- Boreham, C.J.; Hill, A.J. Source rock distribution and hydrocarbon geochemistry. Pet. Geol. S. Aust. 1998, 4, 129–142. [Google Scholar]
- Boreham, C.J.; Summons, R.E. New insights into the active petroleum systems in the Cooper and Eromanga Basins, Australia. APPEA J. 1999, 39, 263–296. [Google Scholar] [CrossRef]
- Holgate, F.; Gerner, E. Oz Temp Well Temperature Data; Geoscience Australia: Canberra, Australia, 2010. Available online: http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_70604 (accessed on 26 February 2019).
- PEPS-SA, Department of State Development South Australia. Legacy Petroleum and Geothermal Attribute Database (Legacy PEPS-SA)2020. 2018. Available online: https://energymining.sa.gov.au/petroleum/data_and_publications/peps-sa (accessed on 17 August 2020).
- QPED, Department of Natural Resources and Mines Queensland Government. Queensland Petroleum Exploration Data (QPED). 2020. Available online: https://www.data.qld.gov.au/dataset/queensland-borehole-series (accessed on 17 August 2020).
- Whiteway, T. Australian Bathymetry and Topography Grid, June 2009; Scale 1:5000000; Geoscience Australia: Canberra, Australia, 2009. Available online: http://www.ga.gov.au/corporate_data/67703/Rec2009_021.pdf (accessed on 26 February 2019).
- Alexander, E.M.; Gravestock, D.I.; Cubitt, C.; Chaney, A. Chapter 6: Lithostratigraphy and environments of deposition. In The Petroleum Geology of South Australia: Cooper Basin; Gravestock, D.I., Hibburt, J.E., Drexel, J.F., Eds.; Department of Primary Industries and Resources South Australia: Adelaide, Australia, 1998; Volume 4, pp. 69–115. [Google Scholar]
- Alexander, E.M.; Sansome, A.; Cotton, T.B. Chapter 5: Lithostratigraphy and environments of deposition. In The Petroleum Geology of South Australia, 2nd ed.; Cotton, T.B., Scardigno, M.F., Hibburt, J.E., Eds.; Eromanga Basin; South Australia Department of Primary Industries and Resources: Adelaide, Australia, 2006; Volume 2, 129p. [Google Scholar]
- NGMA, National Geoscience Mapping Accord. Cooper and Eromanga Basins, Australia, Seismic Mapping Data Sets: Custodian—Department for Manufacturing, Innovation, Trade, Resources and Energy on behalf of the National Geoscience Mapping Accord; Government of South Australia: Adelaide, Australia, 2001. Available online: https://sarig.pir.sa.gov.au/Map (accessed on 3 November 2020).
- DMITRE, Department for Manufacturing, Innovation, Trade, Resources and Energy. Seismic Mapping Data Sets over the Cooper Basin Sector, South Australia 2001. GBA Data Repository GUID: 624DC5D1-5418-44A1-A9E8-6B7DCEC0F26E. 2001. Available online: https://sarig.pir.sa.gov.au/Map (accessed on 3 November 2017).
- DMITRE, Department for Manufacturing, Innovation, Trade, Resources and Energy. Seismic Mapping Data Sets over the Cooper Basin Sector, South Australia 2009. GBA Data Repository GUID: 624DC5D1-5418-44A1-A9E8-6B7DCEC0F26E. 2009. Available online: http://www.energymining.sa.gov.au/petroleum/data_and_publications/seismic/cooper_and_eromanga_basin_mapping_products#horizonmaps (accessed on 3 November 2017).
- Gray, G.A.R.; McKillop, M.; McKellar, J.L. Eromanga Basin stratigraphy. In Geology of the Cooper and Eromanga Basins; Draper, J.J., Ed.; Queensland Department of Natural Resources and Mines: Brisbane, Australia, 2002; pp. 30–56. [Google Scholar]
- Turner, S.; Bean, L.B.; Dettmann, M.; McKellar, J.L.; McLoughlin, S.; Thulborn, T. Australian Jurassic sedimentary and fossil successions: Current work and future prospects for marine and non-marine correlation. Geol. Föreningen I Stockh. Förhandlingar GFF 2009, 131, 49–70. [Google Scholar] [CrossRef]
- Radke, M.B.; Kellett, J.R.; Ransley, T.R.; Bell, J.G. Lexicon of the Lithostratigraphic and Hydrogeological Units of the Great Artesian Basin and Its Cenozoic Cover: A Technical Report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment; Commonwealth Scientific and Industrial Research Organisation Water for a Healthy Country Flagshi: Canberra, Australia, 2012; 175p. [Google Scholar]
- Sun, X.; Camac, B. Cooper Basin Electrofacies Mapping, Adelaide, Australia, South Australia Department of State Development, Resources and Energy. 2004. Available online: https://sarig.pir.sa.gov.au/Map (accessed on 25 April 2017).
- Wygrala, B.P. Integrated Study of an Oil Field in the Southern Po Basin, Northern Italy. Ph.D. Dissertation, University of Cologne, Cologne, Germany, 1989; 217p. [Google Scholar]
- BOM, Australian Government, Bureau of Meteorology. Mean Monthly and Mean Annual Temperature Data. 2015. Available online: http://www.bom.gov.au/jsp/ncc/climate_averages/temperature/index.jsp (accessed on 3 November 2020).
- Ladant, J.B.; Donnadieu, Y. Palaeogeographic regulation of glacial events during the Cretaceous supergreenhouse. Nat. Commun. 2016, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pepper, A.S.; Dodd, P.J. Simple kinetic models of petroleum formation. Part II: Oil-gas cracking. Mar. Pet. Geol. 1995, 12, 321–340. [Google Scholar] [CrossRef]
- Pepper, A.S.; Corvi, P.J. Simple kinetic models of petroleum formation. Part I: Oil and gas generation from kerogen. Mar. Pet. Geol. 1995, 12, 291–319. [Google Scholar] [CrossRef]
- Pepper, A.S.; Corvi, P.J. Simple kinetic models of petroleum formation. Part III: Modelling an open system. Mar. Pet. Geol. 1995, 12, 417–452. [Google Scholar] [CrossRef]
- Michaelsen, B.H.; McKirdy, D.M. Migration and mixing of oils in the Cooper and Eromanga Basins, Central Australia. In Eastern Australian Basins Symposium 2001; Hill, K.C., Bernecker, T., Eds.; Petroleum Exploration Society of Australia Special Publication: Melbourne, Australia, 2001; pp. 289–300. [Google Scholar]
- Michaelsen, B.H.; McKirdy, D.M. Source rock distribution and hydrocarbon geochemistry. In Petroleum Geology of South Australia Series, 2nd ed.; Cotton, T.B., Scardigno, M.F., Hibburt, J.E., Eds.; Department of Primary Industries and Resources. Government of South Australia: Adelaide, Australia, 2006; Volume 2. [Google Scholar]
- Burnham, A.K. Kinetic models of vitrinite, kerogen, and bitumen reflectance. Org. Geochem. 2019, 131, 50–59. [Google Scholar] [CrossRef]
- Aitken, A.R.A.; Salmon, M.L.; Kennett, B.L.N. Australia’s Moho: A test of the usefulness of gravity modelling for the determination of Moho depth. Tectonophysics 2013, 609, 468–479. [Google Scholar] [CrossRef]
- Bacchin, M.; Milligan, P.R.; Wynne, P.; Tracey, R. Gravity Anomaly Map of the Australian Region, Scale 1:5000000; Geoscience Australia: Canberra, Australia, 2008.
- Mann, P.; Hempton, M.R.; Bradley, D.C.; Burke, K. Development of pull-apart basins. J. Geol. 1983, 91, 529–554. [Google Scholar] [CrossRef]
- Noda, A. Strike-Slip Basin–its Configuration and Sedimentary Facies. Mechanism of Sedimentary Basin Formation–Multidisciplinary Approach on Active Plate Margins; IntechOpen: London, UK, 2013; pp. 27–57. [Google Scholar]
- Aydin, A.; Nur, A. Evolution of pull-apart basins and their scale independence. Tectonics 1982, 1, 91–105. [Google Scholar] [CrossRef]
- Green, P.M.; Hoffmann, K.L.; Brain, T.J.; Gray, A.R.G. The Surat and Bowen Basins, South-East Queensland; Queensland Department of Mines and Energy: Brisbane, Australia, 1997. [Google Scholar]
- Raza, A.; Hill, K.; Korsch, R.J. Mid Cretaceous uplift and denudation of the Bowen and Surat basins, eastern Australia: Relationship to Tasman Sea rifting from apatite fission track and vitrinite reflectance data. Aust. J. Earth Sci. 2009, 56, 501–531. [Google Scholar] [CrossRef]
- Li, P.F.; Rosenbaum, G.; Rubatto, D. Triassic asymmetric subduction rollback in the southern New England Orogen (eastern Australia): The end of the Hunter-Bowen Orogeny. Aust. J. Earth Sci. 2012, 59, 965–981. [Google Scholar] [CrossRef]
- Wakelin-King, G.A.; White, S.Q. Potential Geoheritage Values of landscapes in the Australian Drylands. In A Report to the Commonwealth Department of Sustainability, Environment, Water, Population and Communities (Dept. SEWPaC, Canberra), 2nd ed.; Wakelin Associates Pty. Ltd.: Canberra, Australia, 2016. Available online: https://www.environment.gov.au/system/files/resources/806716b9-dff5-48cb-b7d9-fae6ef053ad4/files/desert-geoheritage-v2.pdf (accessed on 13 December 2021).
- Hillis, R.R.; Reynolds, S.D. The Australian stress map. J. Geol. Soc. 2000, 157, 915–921. [Google Scholar] [CrossRef]
- Reynolds, S.D.; Mildren, S.D.; Hillis, R.R.; Meyer, J.J.; Flottmann, T. Maximum horizontal stress orientations in the Cooper Basin, Australia: Implications for plate-scale tectonics and local stress sources. Geophys. J. Int. 2005, 160, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Hillis, R.R.; Sandiford, M.; Reynolds, S.D.; Quigley, M.C. Present-day stresses, seismicity and Neogene-to-Recent tectonics of Australia’s ‘passive’ margins: Intraplate deformation controlled by plate boundary forces. Geol. Soc. Lond. Spec. Publ. 2008, 306, 71–90. [Google Scholar] [CrossRef] [Green Version]
- Sandiford, M.; Lawrie, K.; Brodie, R.S. Hydrogeological implications of active tectonics in the Great Artesian Basin, Australia. Hydrogeol. J. 2020, 28, 57–73. [Google Scholar] [CrossRef]
- Bryan, S.E.; Cook, A.; Allen, C.M.; Siegel, C.; Purdy, D.; Greentree, J.; Uysal, T. Early-mid Cretaceous tectonic evolution of eastern Gondwana: From silicic LIP magmatism to continental rupture. Episodes 2012, 35, 142–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, R.D.; Dyksterhuis, S.; Rey, P. Australian paleo-stress fields and tectonic reactivation over the past 100 Ma. Aust. J. Earth Sci. 2012, 59, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Röth, J.; Parent, A.; Warren, C.; Hall, L.S.; Palmowski, D.; Koronful, N.; Husein, S.S.; Sachse, V.; Littke, R. Lithospheric evolution, thermo-tectonic history and source-rock maturation in the Gippsland Basin, Victoria. southeastern Australia. Aust. J. Earth Sci. 2022, 69, 83–112. [Google Scholar] [CrossRef]
- Turtle, E.P.; Pierazzo, E.; O’Brien, D.P. Numerical modeling of impact heating and cooling of the Vredefort impact structure. Meteorit. Planet. Sci. 2003, 38, 293–303. [Google Scholar] [CrossRef]
- Pitt, G.M. Geothermal gradients, geothermal histories and the timing of thermal maturation in the Eromanga-Cooper Basins. In Contributions to the Geology and Hydrocarbon Potential of the Eromanga Basin; Gravestock, D.I., Moore, P.S., Pitt, G.M., Eds.; Geological Society of Australia Special Publications: Hornsby, Australia, 1986; Volume 12, pp. 323–351. [Google Scholar]
- Rawlinson, N.; Davies, D.R.; & Pilia, S. The mechanisms underpinning Cenozoic intraplate volcanism in eastern Australia: Insights from seismic tomography and geodynamic modeling. Geophys. Res. Lett. 2017, 44, 9681–9690. [Google Scholar] [CrossRef]
- Leythaeuser, D.; Littke, R.; Radke, M.; & Schaefer, R.G. Geochemical effects of petroleum migration and expulsion from Toarcian source rocks in the Hils syncline area, NW-Germany. In Organic Geochemistry in Petroleum Exploration; Pergamon Press: Oxford, UK, 1988; pp. 489–502. [Google Scholar]
- Littke, R.; Baker, D.R.; Leythaeuser, D. Microscopic and sedimentologic evidence for the generation and migration of hydrocarbons in Toarcian source rocks of different maturities. In Organic Geochemistry in Petroleum Exploration; Pergamon Press: Oxford, UK, 1988; pp. 549–559. [Google Scholar]
- Kutovaya, A.; Kroeger, K.F.; Seebeck, H.; Back, S.; Littke, R. Thermal Effects of Magmatism on Surrounding Sediments and Petroleum Systems in the Northern Offshore Taranaki Basin, New Zealand. Geosciences 2019, 9, 288. [Google Scholar] [CrossRef] [Green Version]
- Santos. Santos Welcomes 1.9 Billion Dollars Technology-Neutral Investment to Reduce Carbon Emissions. Media Release. 17 September 2020. Available online: https://www.santos.com/wp-content/uploads/2020/09/200917-Release-Santos-welcomes-1.9-billion-technology-neutral-investment-to-reduce-carbon-emissions.pdf (accessed on 14 October 2020).
Province | Short Name | Seismic Horizon | Top Age [Ma] | Horizon/Top Name | Average Preserved Thickness/Amount of Erosion [m] | Event Type | Key References |
---|---|---|---|---|---|---|---|
Lake Eyre Basin | (36) | DEM | 0 | Surface/Quaternary | ca. 35 | Deposition | Whiteway (2009) |
(35) | 2 | Namba Unconformity | <50 | Erosion | Moussavi-Harami (unpublished results); Radke et al. (2012) | ||
(34) | 12 | Namba Formation | ca. 90 | Deposition | Alley (1998), Moussavi-Harami (unpublished results); Radke et al. (2012) | ||
(33) | 24 | Eyre Unconformity | <50 | Erosion | Moussavi-Harami (unpublished results); Radke et al. (2012) | ||
(32) | 42 | Eyre Formation | ca. 60 | Deposition | Alley (1998), Moussavi-Harami (unpublished results); Radke et al. (2012) | ||
Eromanga Basin | (31) | 62 | Winton Unconformity | 100–1200 | Erosion | Moussavi-Harami (unpublished results); Mavromatidis and Hillis (2005) | |
(30) | A | 95 | Winton Formation | ca. 530 | Deposition | DMITRE (2001) | |
(29) | 101 | Mackunda Formation | ca. 135 | Deposition | Gray et al. (2002); Radke et al. (2012) | ||
(28) | 102 | Allaru Mudstone | ca. 240 | Deposition | Gray et al. (2002); Alexander et al. (2006); Radke et al. (2012) | ||
(27) | 104 | Toolebuc Formation or Oodnadatta Format | ca. 80 | Deposition | Gray et al. (2002); Radke et al. (2012) | ||
(26) | 108 | Wallumbilla Formation/Bulldog Shale | ca. 235 | Deposition | Hall et al. (2019) | ||
(25) | 120 | Cadna-owie Unconformity | n.d. | Hiatus | Burger & Senior (2007); Bron et al. (2012); Gostin & Therriault (1997); Turtle et al. (2003) | ||
(24) | C | 125 | Cadna-owie Formation, including Wyandra Sst | ca. 70 | Deposition | NGMA (2001); Gray et al. (2002); DMITRE (2009); Radke et al. (2012); Lavering (1991) | |
(23) | 134 | Murta Formation, Hooray Sst, or Algebuckina Sst | ca. 20 | Deposition | Gray et al. (2002); Radke et al. (2012) | ||
(22) | 136 | Namur Sst, incl. McKinlay mbr | ca. 75 | Deposition | Hall et al. (2019) | ||
(21) | 144 | Westbourne Formation | ca. 85 | Deposition | Gray et al. (2002); Radke et al. (2012) | ||
(20) | 152 | Adori Sandstone | ca. 75 | Deposition | Gray et al. (2002); Alexander et al. (2006) | ||
(19) | 155 | Birkhead Unconformity | n.d. | Hiatus | Wainman et al. (2018), Turner et al. (2009), Radke et al. (2012) | ||
(18) | 160 | Birkhead Formation | ca. 80 | Deposition | Gray et al. (2002); Radke et al. (2012) | ||
(17) | H | 164 | Hutton Sst | ca. 375 | Deposition | DMITRE (2001); Gray et al. (2002); Radke et al. (2012) | |
(16) | 185 | Poolowanna Fm | n.d. | Deposition | Hall et al. (2019) | ||
(15) | 194 | Cuddapan Unconformity | n.d. | Hiatus | Moussavi-Harami (unpublished results) | ||
(14) | 203 | Cuddapan Formation | n.d. | Deposition | Hall et al. (2015, 2019) | ||
Cooper Basin | (13) | 210 | Nappamerri Unconformity | <180 | Erosion | Moussavi-Harami (unpublished results); McKellar (2013); Hall et al. (2015) | |
(12) | N | 237 | Tinchoo Fm | ca. 125 | Deposition | DMITRE (2001); Hall et al. (2015) | |
(11) | 247 | Arrabury Fm | ca. 190 | Deposition | DMITRE (2001); Hall et al. (2015) | ||
(10) | P | 252 | Toolachee Formation/Top Permian | ca. 190 | Deposition | NGMA (2001); DMITRE (2009); Hall et al. (2015,2016b) | |
(9) | 258 | Daralingie Unconformity | 75–350 | Erosion | Moussavi-Harami (unpublished results); Hall et al. (2015) | ||
(8) | 263 | Daralingie Formation | ca. 80 | Deposition | DMITRE (2001); Hall et al. (2015, 2016b) | ||
(7) | 267 | Roseneath Shale | ca. 120 | Deposition | Hall et al. (2015, 2016b) | ||
(6) | 269 | Epsilon Formation | ca. 130 | Deposition | Hall et al. (2015, 2016b) | ||
(5) | 274 | Murteree Shale | ca. 80 | Deposition | Hall et al. (2015, 2016b) | ||
(4) | 277 | Patchawarra Formation | ca. 420 | Deposition | DMITRE (2001); Hall et al. (2015, 2016b) | ||
(3) | 296 | Tirrawarra Sst | ca. 75 | Deposition | DMITRE (2001); Hall et al. (2015, 2016b) | ||
(2) | 300 | Merrimelia Formation | ca. 300 | Deposition | DMITRE (2001); Hall et al. (2015, 2016b) | ||
Warburton/Adavale basins | (1) | 304 | Warburton Unconformity | n.d. | Hiatus | ||
(0) | Z | 320 | Top pre-Permian “basement”, equivalent in age to the Devonian Adavale Basin and the Big Lake Suite granodiorites | n.d. | NGMA (2001); DMITRE (2009); Hall et al. (2015, 2016b) |
Province | Short Name | Top Age [Ma] | Bottom Age [Ma] | Layer Name (Queensland Equivalents when Different to South Australia) | Dominant Rock Type | Thermal Conductivity at 20 °C [WmK] | Assigned PSE |
---|---|---|---|---|---|---|---|
Lake Eyre Basin | (35) | 0 | 2 | Quaternary | Sandstone | 3.95 (standard sandstone) | Overburden |
(33) | 12 | 24 | Namba Fm | Sandstone | 2.64 ± 0.63 | Overburden | |
(32) | 42 | 62 | Eyre Fm | Sandstone | 2.19 ± 0.65 | Overburden | |
Eromanga Basin | (30) | 95 | 101 | Winton Fm | Sandstone | 2.01 ± 0.53 | Overburden |
(29) | 101 | 102 | Mackunda Fm | Siltstone | 2.93 ± 0.56 | Seal rock | |
(28) | 102 | 104 | Oodnadatta Fm (Allaru Mdst) | Shale | 1.95 ± 0.13 | Seal rock | |
(27) | 104 | 108 | Coorikiana Sst (Toolebuc Fm) | Shale | 2.54 ± 0.52 (2.65 ± 0.66) | Seal rock | |
(26) | 108 | 120 | Bulldog Shale (Wallumbilla Fm) | Shale | 2.10 ± 0.13 (2.72 ± 0.64) | Seal rock | |
(24) | 125 | 134 | Cadna-owie Fm, incl. Wyandra Sst | Siltstone | 2.08 ± 0.18 | Reservoir rock | |
(23) | 134 | 136 | Algebuckina Sst (Murta Fm, Hooray Sst) | Siltstone | 4.24 ± 0.02 | Source rock | |
(22) | 136 | 144 | Namur Sst, incl. McKinlay Mbr | Sandstone | 3.94 ± 0.57 | Reservoir rock | |
(21) | 144 | 152 | Westbourne Fm | Shale | 4.00 ± 0.60 | Seal rock | |
(20) | 152 | 155 | Adori Sst | Sandstone | 4.12 ± 0.56 | Reservoir rock | |
(18) | 160 | 164 | Birkhead Fm | Siltstone | 4.85 ± 1.06 | Source rock | |
(17) | 164 | 185 | Hutton Sst | Sandstone | 5.00 ± 0.84 | Reservoir rock | |
(16) | 185 | 194 | Poolowanna Fm (modelled only in 1D) | Sandstone | 2.99 ± 0.69 | Source rock | |
(14) | 203 | 210 | Cuddapan Fm (modelled only in 1D) | Sandy shale | taken from Poolowanna Fm | Reservoir rock | |
Cooper Basin | (12) | 237 | 247 | Tinchoo Fm | Sandy shale | 2.30 ± 0.24 | Reservoir rock |
(11) | 247 | 252 | Arrabury Fm | Siltstone/fine sand | 2.30 ± 0.24 | Reservoir rock | |
(10) | 252 | 258 | Toolachee Fm | Siltstone/shale | 1.29 ± 0.36 | Source rock | |
(8) | 263 | 267 | Daralingie Fm | Fine sandstone | 1.64 ± 0.31 | Source rock | |
(7) | 267 | 269 | Roseneath Shale | Siltstone/shale | 2.45 ± 0.15 | Source rock | |
(6) | 269 | 274 | Epsilon Fm | Fine sandstone | 1.55 ± 0.29 | Source rock | |
(5) | 274 | 277 | Murteree Shale | Siltstone/shale | 2.60 ± 0.13 | Source rock | |
(4) | 277 | 296 | Patchawarra Fm | Sand & coal | 1.61 ± 0.31 | Source rock | |
(3) | 296 | 300 | Tirrawarra Sst | Fine sandstone | 4.35 ± 0.59 | Reservoir rock | |
(2) | 300 | 304 | Merrimelia Fm | Conglomerate | 4.01 ± 1.47 | Reservoir rock | |
WB | (0) | 320 | n.d. | Paleozoic Basement | Gneiss | 2.70 (standard gneiss) | Underburden |
Province | Source Rock Formation | Kerogen Type | Assigned Kinetic Model | Reported Avg. TOC [%] | Assigned TOC [%] | Reported Avg. HI [mg HC/g Rock] | Assigned HI [mg HC/g Rock] |
---|---|---|---|---|---|---|---|
Eromanga Basin | Toolebuc Fm | - | not assigned in this study | - | - | - | - |
Murta Fm | III | Pepper & Corvi (1995), TII(B) | 0.6–2.2 | 1.7 | 125–200 | 150 | |
Westbourne Fm | - | not assigned in this study | - | - | - | - | |
Birkhead Fm | II, II/III, III | Pepper & Corvi (1995), TII(B) | 2.5–3.7 | 3 | >300 | 300 | |
Poolowanna Fm | II, II/III | Pepper & Corvi (1995), TII(B) | 0.6–17.9 | 15 | >250 | 250 | |
Cooper Basin | Toolachee Fm | II/III, III | Pepper & Corvi (1995), TIIIH(DE) | 21 | 21 | 190 | 190 |
Daralingie Fm | II/III, III | Pepper & Corvi (1995), TIIIH(DE) | 18.9 | 18.9 | 200 | 200 | |
Roseneath Shale | III | Pepper & Corvi (1995), TIII-IV(F) | 6.4 | 6.4 | 130 | 130 | |
Epsilon Fm | II/III, III | Pepper & Corvi (1995), TIIIH(DE) | 26 | 26 | 210 | 210 | |
Murteree Shale | III | Pepper & Corvi (1995), TIII-IV(F) | 5.6 | 5.6 | 140 | 140 | |
Patchawarra Fm | II/III, III | Pepper & Corvi (1995), TIIIH(DE) | 24.7 | 24.7 | 216 | 216 |
Age [Ma] | Alkina-1 | Beanbush-1 | Burley-2 | Dullingari-1 | Marengo-1 | Paning-1 | Springfield-1 | Warnie East-1 |
---|---|---|---|---|---|---|---|---|
0.0 | 82 | 62 | 110 | 75 | 87 | 66 | 78 | 85 |
2.0 | 60 | 60 | 60 | 75 | 65 | 60 | 70 | 60 |
80.0 | 60 | 60 | 60 | 75 | 65 | 60 | 70 | 60 |
85.0 | 62 | 61 | 61 | 78 | 68 | 62 | 72 | 62 |
90.0 | 64 | 63 | 62 | 81 | 72 | 65 | 76 | 64 |
91.0 | 67 | 64 | 63 | 82 | 74 | 68 | 78 | 66 |
93.0 | 71 | 66 | 70 | 83 | 79 | 71 | 79 | 68 |
97.0 | 80 | 70 | 78 | 85 | 90 | 78 | 81 | 72 |
98.0 | 85 | 75 | 95 | 86 | 98 | 80 | 82 | 75 |
98.5 | 90 | 80 | 120 | 87 | 105 | 82 | 83 | 80 |
99.0 | 95 | 85 | 145 | 88 | 115 | 85 | 84 | 85 |
99.5 | 105 | 90 | 150 | 90 | 120 | 90 | 85 | 90 |
100.5 | 95 | 85 | 95 | 85 | 85 | 80 | 80 | 85 |
125.0 | 65 | 65 | 65 | 77 | 70 | 60 | 72 | 65 |
135.0 | 60 | 60 | 60 | 75 | 65 | 60 | 70 | 60 |
200.0 | 60 | 60 | 60 | 75 | 65 | 60 | 70 | 60 |
237.0 | 60 | 60 | 60 | 75 | 65 | 60 | 70 | 60 |
240.0 | 60 | 60 | 60 | 75 | 65 | 60 | 70 | 60 |
290.0 | 60 | 60 | 60 | 75 | 65 | 60 | 70 | 60 |
310.0 | 60 | 60 | 60 | 75 | 65 | 60 | 70 | 60 |
330.0 | 60 | 60 | 60 | 75 | 65 | 60 | 70 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Röth, J.; Littke, R. Down under and under Cover—The Tectonic and Thermal History of the Cooper and Central Eromanga Basins (Central Eastern Australia). Geosciences 2022, 12, 117. https://doi.org/10.3390/geosciences12030117
Röth J, Littke R. Down under and under Cover—The Tectonic and Thermal History of the Cooper and Central Eromanga Basins (Central Eastern Australia). Geosciences. 2022; 12(3):117. https://doi.org/10.3390/geosciences12030117
Chicago/Turabian StyleRöth, Joschka, and Ralf Littke. 2022. "Down under and under Cover—The Tectonic and Thermal History of the Cooper and Central Eromanga Basins (Central Eastern Australia)" Geosciences 12, no. 3: 117. https://doi.org/10.3390/geosciences12030117
APA StyleRöth, J., & Littke, R. (2022). Down under and under Cover—The Tectonic and Thermal History of the Cooper and Central Eromanga Basins (Central Eastern Australia). Geosciences, 12(3), 117. https://doi.org/10.3390/geosciences12030117