87Sr/86Sr Ratios and Atmospheric Noble Gases in Theistareykir Geothermal Fluids: A Record of Glacial Water
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
4. Results
5. Discussion
5.1. Strontium Origin in the Theistareykir Fluids
5.2. Correlations between ANGs and Sr in Theistareykir Geothermal Fluids
5.3. ANGs and Sr: A Tracer of Glacial Meltwater Recharge
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elderfield, H.; Greaves, M.J. Strontium isotope geochemistry of Icelandic geothermal systems and implications for sea water chemistry. Geochim. Cosmochim. Acta 1981, 45, 2201–2212. [Google Scholar] [CrossRef]
- Notsu, K.; Wakita, H.; Nakamura, Y. Strontium isotopic composition of hot spring and mineral spring waters, Japan. Appl. Geochem. 1991, 6, 543–551. [Google Scholar] [CrossRef]
- Graham, I.J. Strontium isotope composition of Rotorua geothermal waters. Geothermics 1992, 21, 165–180. [Google Scholar] [CrossRef]
- Négrel, P.; Fouillac, C.; Brach, M. A strontium isotopic study of mineral and surface waters from the Cezallier (Massif Central, France): Implications for mixing processes in areas of disseminated emergences of mineral waters. Chem. Geol. 1997, 135, 89–101. [Google Scholar] [CrossRef]
- Négrel, P.; Fouillac, C.; Brach, M. Occurrence of mineral water springs in the stream channel of the Allier River (Massif Central, France): Chemical and Sr isotope constraints. J. Hydrol. 1997, 203, 143–153. [Google Scholar] [CrossRef]
- Négrel, P.; Guerrot, C.; Millot, R. Chemical and strontium isotope characterization of rainwater in France: Influence of sources and hydrogeochemical implications. Isot. Environ. Health Stud. 2007, 43, 179–196. [Google Scholar] [CrossRef]
- Millot, R.; Hegan, A.; Négrel, P. Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li, B and Sr isotopes characterization. Appl. Geochem. 2012, 27, 677–688. [Google Scholar] [CrossRef] [Green Version]
- Mazor, E.; Truesdell, A.H. Dynamics of a geothermal field traced by noble gases: Cerro Prieto, Mexico. Geothermics 1984, 13, 91–102. [Google Scholar] [CrossRef]
- Kennedy, B.M.; Truesdell, A.H. The Northwest Geysers high-temperature reservoir: Evidence for active magmatic degassing and implications for the origin of the Geysers geothermal field. Geothermics 1996, 25, 365–387. [Google Scholar] [CrossRef]
- Ballentine, C.J.; Burgess, R.; Marty, B. Tracing Fluid Origin, Transport and Interaction in the Crust. Rev. Mineral. Geochem. 2002, 47, 539–614. [Google Scholar] [CrossRef]
- Magro, G.; Ruggieri, G.; Gianelli, G.; Bellani, S.; Scandiffio, G. Helium isotopes in paleofluids and present-day fluids of the Larderello geothermal field: Constraints on the heat source. J. Geophys. Res. Solid Earth 2003, 108, ECV-3. [Google Scholar] [CrossRef]
- Pinti, D.L.; Castro, M.C.; Shouakar-Stash, O.; Tremblay, A.; Garduño, V.H.; Hall, C.M.; Hélie, J.F.; Ghaleb, B. Evolution of the geothermal fluids at Los Azufres, Mexico, as traced by noble gas isotopes, 18O, D, 13C and 87Sr/86Sr. J. Volcanol. Geotherm. Res. 2013, 249, 1–11. [Google Scholar] [CrossRef]
- Roulleau, E.; Tardani, D.; Sano, Y.; Takahata, N.; Vinet, N.; Bravo, F.; Muñoz, C.; Sanchez, J. New insight from noble gas and stable isotopes of geothermal/hydrothermal fluids at Caviahue-Copahue volcanic complex: Boiling steam separation and water-rock interaction at shallow depth. J. Volcanol. Geotherm. Res. 2016, 328, 70–83. [Google Scholar] [CrossRef]
- Norton, D.L. Theory of hydrothermal systems. Annu. Rev. Earth Planet. Sci. 1984, 12, 155–177. [Google Scholar] [CrossRef]
- Kipfer, R.; Aeschbach-Hertig, W.; Peeters, F.; Stute, M. Noble gases in lakes and ground waters. Rev. Mineral. Geochem. 2002, 47, 615–700. [Google Scholar] [CrossRef]
- Byrne, D.J.; Broadley, M.W.; Halldórsson, S.A.; Ranta, E.; Ricci, A.; Tyne, R.L.; Stefánsson, A.; Ballentine, C.J.; Barry, P.H. The use of noble gas isotopes to trace subsurface boiling temperatures in Icelandic geothermal systems. Earth Planet. Sci. Lett. 2021, 560, 116805. [Google Scholar] [CrossRef]
- Allègre, C.J.; Moreira, M.; Staudacher, T. 4He/³He dispersion and mantle convection. Geophys. Res. Lett. 1995, 22, 2325–2328. [Google Scholar] [CrossRef]
- Stuart, F.M.; Lass-Evans, S.; Fitton, J.G.; Ellam, R.M. High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 2003, 424, 57–59. [Google Scholar] [CrossRef] [Green Version]
- Broadley, M.W.; Barry, P.H.; Bekaert, D.V.; Byrne, D.J.; Caracausi, A.; Ballentine, C.J.; Marty, B. Identification of chondritic krypton and xenon in Yellowstone gases and the timing of terrestrial volatile accretion. Proc. Nat. Acad. Sci. USA 2020, 117, 13997. [Google Scholar] [CrossRef]
- Pinti, D.L.; Castro, M.C.; López-Hernández, A.; Hernández-Hernández, M.A.; Shouakar-Stash, O.; Hall, C.M.; Bahena-Romero, J.; Ramírez-Montes, M. Origin of volatile species and aqueous fluids in the Los Humeros geothermal field, Mexico. Chem. Geol. 2001, 584, 120539. [Google Scholar] [CrossRef]
- Pinti, D.L.; Castro, M.C.; López-Hernández, A.; Hernández-Hernández, M.A.; Richard, L.; Hall, C.M.; Shouakar-Stash, O.; Flores-Armenta, M.; Rodríguez-Rodríguez, M.H. Cerro Prieto geothermal field (Baja California, Mexico)—A fossil system? Insights from a noble gas study. J. Volcanol. Geother. Res. 2019, 371, 32–45. [Google Scholar] [CrossRef]
- Graham, D.W. Noble Gas Isotope Geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: Characterization of Mantle Source Reservoirs. Rev. Mineral. Geochem. 2002, 47, 247–317. [Google Scholar] [CrossRef]
- Hilton, D.R.; Hammerschmidt, K.; Teufel, S.; Friedrichsen, H. Helium isotope characteristics of Andean geothermal fluids and lavas. Earth Planet. Sci. Lett. 1993, 120, 265–282. [Google Scholar] [CrossRef]
- Poreda, R.; Craig, H. Helium isotope ratios in circum-pacific volcanic arcs. Nature 1989, 338, 473–478. [Google Scholar] [CrossRef]
- van Soest, M.C.; Hilton, D.R.; Kreulen, R. Tracing crustal and slab contributions to arc magmatism in the Lesser Antilles Island arc using helium and carbon relationships in geothermal fluids. Geochim. Cosmochim. Acta 1998, 62, 3323–3335. [Google Scholar] [CrossRef]
- Wen, T.; Pinti, D.L.; Castro, M.C.; López-Hernández, A.; Hall, C.M.; Shouakar-Stash, O.; Sandoval-Medina, F. A noble gas and 87Sr/86Sr study in fluids of the Los Azufres geothermal field, Mexico—Assessing impact of exploitation and constraining heat sources. Chem. Geol. 2018, 483, 426–441. [Google Scholar] [CrossRef]
- Saby, M.; Pinti, D.L.; van Hinsberg, V.; Gautason, B.; Sigurðardóttir, Á.; Castro, M.C.; Hall, C.M.; Óskarsson, F.; Rocher, O.; Hélie, J.-F.; et al. Sources and transport of fluid and heat at the newly-developed Theistareykir geothermal field, Iceland. J. Volcanol. Geother. Res. 2020, 405, 107062. [Google Scholar] [CrossRef]
- Kennedy, B.M.; Shuster, D.L. Noble gases: Sensitive natural tracers for detection and monitoring injectate returns to geothermal reservoirs. GRC Trans. 2000, 24, 247–252. [Google Scholar]
- Khodayar, M.; Björnsson, S.; Kristinsson, S.G.; Karlsdóttir, R.; Ólafsson, M.; Víkingsson, S. Tectonic control of the Theistareykir geothermal field by rift and transform zones in North Iceland: A multidisciplinary approach. Open J. Geol. 2018, 8, 543–584. [Google Scholar] [CrossRef] [Green Version]
- Þorsteinsdóttir, U.; Guðmundsdóttir, V.; Árnadótir, S.; Blischke, A.; Gautason, B.; Mortensen, A. The Þeistareykir geothermal field, Ne Iceland: Sub-surface structural analysis based on borehole televiewer imaging. In Proceedings of the World Geothermal Congress 2020+1, Reykjavik, Iceland, 24–27 October 2021. [Google Scholar]
- Ármannsson, H.; Gíslason, G.; Torfason, H. Surface exploration of the Theistareykir high-temperature geothermal area, Iceland, with special reference to the application of geochemical methods. Appl. Geochem. 1986, 1, 47–64. [Google Scholar] [CrossRef]
- Maclennan, J.; Jull, M.; McKenzie, D.; Slater, L.; Grönvold, K. The link between volcanism and deglaciation in Iceland. Geochem. Geophys. Geosyst. 2002, 3, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Sæmundsson, K. The Geology of Theistareykir (in Icelandic). In Iceland GeoSurvey, Short Report ÍSOR-07270 (in Icelandic); ISOR: Reykyavik, Iceland, 2007; p. 23. [Google Scholar]
- Yu, G.; Gunnarsson, À.; He, Z.; Tulinius, H. Characterizing a geothermal reservoir using broadband 2-D MT survey in Theistareykir, Iceland. In Proceedings of the World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010. [Google Scholar]
- Kajugus, S.I. Updated Reservoir Analysis of the Theistareykir High-Temperature Geothermal Field, N-Iceland; Report 15; Geothermal Training Programme, United Nations University: Reykjavik, Iceland, 2012; p. 28. [Google Scholar]
- Guðfinnsson, G.H. Alteration in the Theistareykir Geothermal System. A Study of Drill Cuttings in Thin Sections; Report LV-2014-063; Landsvirkjun: Reykjavik, Iceland, 2014; p. 107. [Google Scholar]
- Óskarsson, F. Exploration and development of a conceptual model for the Theistareykir geothermal field, Ne-Iceland. In Proceedings of the Short Course VII on Exploration for Geothermal Resources, Lake Bogoria and Lake Naivasha, Kenya, 9–19 November 2017. [Google Scholar]
- Mutch, E.J.F.; Maclennan, J.; Shorttle, O.; Edmonds, M.; Rudge, J.F. Rapid transcrustal magma movement under Iceland. Nature Geosci. 2019, 12, 569–574. [Google Scholar] [CrossRef]
- Óskarsson, F.; Ármannsson, H.; Ólafsson, M.; Sveinbjörnsdóttir, Á.E.; Markússon, S.H. The Theistareykir geothermal field, NE Iceland: Fluid chemistry and production properties. Proc. Earth Planet. Sci. 2013, 7, 644–647. [Google Scholar] [CrossRef] [Green Version]
- Stefánsson, A.; Hilton, D.R.; Sveinbjörnsdóttir, Á.E.; Torssander, P.; Heinemeier, J.; Barnes, J.D.; Ono, S.; Halldórsson, S.A.; Fiebig, J.; Arnórsson, S. Isotope systematics of Icelandic thermal fluids. J. Volcano. Geother. Res. 2017, 337, 146–164. [Google Scholar] [CrossRef]
- Darling, W.G.; Ármannsson, H. stable isotopic aspects of fluid flow in the Krafla, Námafjall and Theistareykir geothermal systems of Northeast Iceland. Chem. Geol. 1989, 76, 197–213. [Google Scholar] [CrossRef]
- Hauksson, T. Þeistareykir, Krafla Og Bjarnarflag. Afköst Borhola Og Efnainnihald Vatns Og Gufu Í Borholum Og Vinnslurás Áriò 2019; Report LV-2020-010; Landsvirkjun: Reykjavik, Iceland, 2020; p. 77. [Google Scholar]
- Tardani, D.; Roulleau, E.; Pinti, D.L.; Pérez-Flores, P.; Daniele, L.; Reich, M.; Sanchez-Alfaro, P.; Morata, D.; Richard, L. Structural control on shallow hydrogeochemical processes at Caviahue-Copahue Volcanic Complex (CCVC), Argentina. J. Volcanol. Geother. Res. 2021, 414, 107228. [Google Scholar] [CrossRef]
- Hiyagon, H.; Kennedy, B.M. Noble gases in CH4-rich gas fields, Alberta, Canada. Geochim. Cosmochim. Acta 1992, 56, 1569–1589. [Google Scholar] [CrossRef]
- Kuhn, T.; Herzig, P.M.; Hannington, M.D.; Garbe-Schönberg, D.; Stoffers, P. Origin of fluids and anhydrite precipitation in the sediment-hosted Grimsey hydrothermal field North of Iceland. Chem. Geol. 2003, 202, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Edmond, J.M.; Measures, C.; McDuff, R.E.; Chan, L.H.; Collier, R.; Grant, B.; Gordon, L.I.; Corliss, J.B. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data. Earth Planet. Sci. Lett. 1979, 46, 1–18. [Google Scholar] [CrossRef]
- Smith, S.P.; Kennedy, B.M. The solubility of noble gases in water and NaCl brine. Geochim. Cosmochim. Acta 1983, 47, 503–515. [Google Scholar] [CrossRef]
- Benson, B.B.; Krause, D., Jr. Empirical laws for dilute aqueous solutions of non-polar gases. J. Chem. Phys. 1976, 64, 689–709. [Google Scholar] [CrossRef]
- Stracke, A.; Zindler, A.; Salters, V.J.M.; McKenzie, D.; Blichert-Toft, J.; Albarède, F.; Grönvold, K. Theistareykir revisited. Geochem. Geophys. Geosyst. 2003, 4, 1–49. [Google Scholar] [CrossRef]
- Fox, S.; Katzir, Y.; Bach, W.; Schlicht, L.; Glessner, J. Magmatic volatiles episodically flush oceanic hydrothermal systems as recorded by zoned epidote. Commun. Earth Environ. 2020, 1, 52. [Google Scholar] [CrossRef]
- Marks, N.; Zierenberg, R.A.; Schiffman, P. Strontium and oxygen isotopic profiles through 3 km of hydrothermally altered oceanic crust in the Reykjanes geothermal system, Iceland. Chem. Geol. 2015, 412, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Hindshaw, R.S.; Bourdon, B.; Pogge von Strandmann, P.A.E.; Vigier, N.; Burton, K.V. The stable calcium isotopic composition of rivers draining basaltic catchments in Iceland. Earth Planet. Sci. Lett. 2013, 374, 173–184. [Google Scholar] [CrossRef]
- Andrews, M.G.; Jacobson, A.D. The radiogenic and stable sr isotope geochemistry of basalt weathering in Iceland: Role of hydrothermal calcite and implications for long-term climate regulation. Geochim. Cosmochim. Acta 2017, 215, 247–262. [Google Scholar] [CrossRef]
- Óskarsson, F. The origin of the warm groundwater near Lake Mývatn, NE Iceland, traced by stable isotopes. In E3S Web of Conferences; EDP Sciences: Ulis, France, 2019; Volume 98, p. 5. [Google Scholar]
- Fowler, A.P.G.; Zierenberg, R.A.; Schiffman, P.; Marks, N.; Friðleifsson, G.Ó. Evolution of fluid–rock interaction in the Reykjanes geothermal system, Iceland: Evidence from Iceland Deep Drilling Project Core Rn-17b. J. Volcanol. Geother. Res. 2015, 302, 47–63. [Google Scholar] [CrossRef] [Green Version]
- O’Nions, R.K.; Grönvold, K. Petrogenetic relationships of acid and basic rocks in Iceland: Sr-Isotopes and Rare-Earth Elements in late and postglacial volcanics. Earth Planet. Sci. Lett. 1973, 19, 397–409. [Google Scholar] [CrossRef]
- O’Nions, R.K.; Pankhurst, R.J. Secular variation in the Sr-isotope composition of Icelandic volcanic rocks. Earth Planet. Sci. Lett. 1973, 21, 13–21. [Google Scholar] [CrossRef]
- O’Nions, R.K.; Pankhurst, R.J.; Grönvold, K. Nature and development of basalt magma sources beneath Iceland and the Reykjanes Ridge. J. Petrol. 1976, 17, 315–338. [Google Scholar] [CrossRef] [Green Version]
- Zindler, A.; Hart, S.R.; Frey, F.A.; Jakobsson, S.P. Nd and Sr isotope ratios and rare earth element abundances in Reykjanes Peninsula basalts evidence for mantle heterogeneity beneath Iceland. Earth Planet. Sci. Lett. 1979, 45, 249–262. [Google Scholar] [CrossRef]
- Condomines, M.; Grönvold, K.; Hooker, P.J.; Muehlenbachs, K.; O’Nions, R.K.; Óskarsson, N.; Oxburgh, E.R. Helium, oxygen, strontium and neodymium isotopic relationships in Icelandic volcanics. Earth Planet. Sci. Lett. 1983, 66, 125–136. [Google Scholar] [CrossRef]
- Furman, T.; Frey, F.A.; Park, K.-H. Chemical constraints on the petrogenesis of mildly alkaline lavas from Vestmannaeyjar, Iceland: The Eldfell (1973) and Surtsey (1963–1967) eruptions. Contrib. Mineral. Petrol. 1991, 109, 19–37. [Google Scholar] [CrossRef]
- Nicholson, H.; Condomines, M.; Godfrey Fitton, J.; Fallick, A.E.; Grönvold, K.; Rogers, G. Geochemical and isotopic evidence for crustal assimilation beneath Krafla, Iceland. J. Petrol. 1991, 32, 1005–1020. [Google Scholar] [CrossRef]
- Sigmarsson, O.; Condomines, M.; Fourcade, S. Mantle and crustal contribution in the genesis of recent basalts from off-rift zones in Iceland: Constraints from Th, Sr and O isotopes. Earth Planet. Sci. Lett. 1992, 110, 149–162. [Google Scholar] [CrossRef]
- Hemond, C.; Arndt, N.T.; Lichtenstein, U.; Hofmann, A.W.; Oskarsson, N.; Steinthorsson, S. The heterogeneous Iceland plume: Nd-Sr-O isotopes and trace element constraints. J. Geophys. Res. Solid Earth 1993, 98, 15833–15850. [Google Scholar] [CrossRef]
- Gee, M.A.M.; Thirlwall, M.F.; Taylor, R.N.; Lowry, D.; Murton, B.J. Crustal processes: Major controls on Reykjanes Peninsula lava chemistry, SW Iceland. J. Petrol. 1998, 39, 819–839. [Google Scholar] [CrossRef]
- Breddam, K. Kistufell: Primitive melt from the Iceland mantle plume. J. Petrol. 2002, 43, 345–373. [Google Scholar] [CrossRef] [Green Version]
- Kokfelt, T.F.; Hoernle, K.A.J.; Hauff, F.; Fiebig, J.; Werner, R.; Garbe-Schönberg, D. Combined trace element and Pb-Nd–Sr-O isotope evidence for recycled oceanic crust (Upper and Lower) in the Iceland mantle plume. J. Petrol. 2006, 47, 1705–1749. [Google Scholar] [CrossRef]
- Lacasse, C.; Sigurdsson, H.; Carey, S.N.; Jóhannesson, H.; Thomas, L.E.; Rogers, N.W. Bimodal volcanism at the Katla subglacial caldera, Iceland: Insight into the geochemistry and petrogenesis of rhyolitic magmas. Bull. Volcanol. 2006, 69, 373–399. [Google Scholar] [CrossRef]
- Martin, E.; Sigmarsson, O. Thirteen million years of silicic magma production in Iceland: Links between petrogenesis and tectonic settings. Lithos 2010, 116, 129–144. [Google Scholar] [CrossRef]
- Peate, D.W.; Breddam, K.; Baker, J.A.; Kurz, M.D.; Barker, A.K.; Prestvik, T.; Grassineau, N.; Skovgaard, A.C. Compositional characteristics and spatial distribution of enriched Icelandic mantle components. J. Petrol. 2010, 51, 1447–1475. [Google Scholar] [CrossRef] [Green Version]
- Shorttle, O.; Maclennan, J.; Piotrowski, A.M. Geochemical provincialism in the Iceland plume. Geochim. Cosmochim. Acta 2013, 122, 363–397. [Google Scholar] [CrossRef] [Green Version]
- Zierenberg, R.A.; Schiffman, P.; Barfod, G.H.; Lesher, C.E.; Marks, N.E.; Lowenstern, J.B.; Mortensen, A.K.; Pope, E.C.; Bird, D.K.; Reed, M.H.; et al. Composition and origin of rhyolite melt intersected by drilling in the Krafla geothermal field, Iceland. Contrib. Mineral. Petrol. 2013, 165, 327–347. [Google Scholar] [CrossRef]
- Sigmarsson, O.; Halldórsson, S.A. Delimiting Baroarbunga and Askja volcanic systems with Sr- and Nd-isotope ratios. Jökull 2015, 65, 17–28. [Google Scholar]
- Millot, R.; Àsmundsson, R.; Négrel, P.; Sanjuan, B.; Bullen, T. Multi-isotopic (H, O, C, S, Li, B, Si, Sr, Nd) approach for geothermal fluid characterization in Iceland. Geochim. Cosmochim. Acta 2009, 73, A883, abstract. [Google Scholar]
- Kelemen, P.B.; Hanghøj, K.; Greene, A.R. 3.18—One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Pergamon: Oxford, UK, 2007; Volume 3, pp. 1–70. [Google Scholar]
- Arnórsson, S.; Andrésdóttir, A. Processes controlling the distribution of boron and chlorine in natural waters in Iceland. Geochim. Cosmochim. Acta 1995, 59, 4125–4146. [Google Scholar] [CrossRef]
- Clark, I.D. Groundwater Geochemistry and Isotopes, 1st ed.; CRC Press: Boca Raton, FL, USA, 2015; p. 442. [Google Scholar]
- Eiriksdottir, E.S.; Sigurdsson, Á.; Gislason, S.R.; Torssander, P. Chemical composition of precipitation and river water in Southern Iceland: Effects of Eyjafjallajökull volcanic eruptions and geothermal power plants. Proc. Earth Planet. Sci. 2014, 10, 358–364. [Google Scholar] [CrossRef] [Green Version]
- Bragason, G.Ö. Strontium Isotope Shift in Clay Minerals, Epidote and Geothermal Fluid in the Hellisheiði Geothermal Field, SW-Iceland. Master’s Thesis, University of Iceland, Reykjavik, Iceland, 2012. [Google Scholar]
- Junge, C.E.; Werby, R.T. The Concentration of Chloride, Sodium, Potassium, Calcium, and Sulfate in rain water over the United States. J. Atm. Sci. 1958, 15, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Sveinbjornsdottir, Á.E.; Ármannsson, H.; Ólafsson, M.; Óskarsson, F.; Markússon, S.; Magnusdottir, S. The Theistareykir Geothermal Field, NE Iceland. Isotopic characteristics and origin of circulating fluids. Proc. Earth Planet. Sci. 2013, 7, 822–825. [Google Scholar] [CrossRef] [Green Version]
- Bernatowicz, T.J.; Podosek, F.A.; Honda, M.; Kramer, F.E. The atmospheric inventory of xenon and noble gases in shales: The plastic bag experiment. J. Geophys. Res. Solid Earth 1984, 89, 4597–4611. [Google Scholar] [CrossRef]
- Pitre, F.; Pinti, D.L. Noble gas enrichments in porewater of estuarine sediments and their effect on the estimation of net denitrification rates. Geochim. Cosmochim. Acta 2010, 74, 531–539. [Google Scholar] [CrossRef]
- Langmuir, C.H.; Vocke, R.D.; Hanson, G.N.; Hart, S.R. A general mixing equation with applications to Icelandic basalts. Earth Planet. Sci. Lett. 1978, 37, 380–392. [Google Scholar] [CrossRef]
- Fernández-Prini, R.; Alvarez, J.L.; Harvey, A.H. Henry’s constants and vapor–liquid distribution constants for gaseous solutes in H2O and D2O at high temperatures. J. Phys. Chem. Ref. Data 2003, 32, 903–916. [Google Scholar] [CrossRef] [Green Version]
- Ballentine, C.J.; O’Nions, R.K.; Coleman, M.L. A Magnus Opus: Helium, neon, and argon isotopes in a North Sea oilfield. Geochim. Cosmochim. Acta 1996, 60, 831–849. [Google Scholar] [CrossRef]
- Warrier, R.B.; Castro, M.C.; Hall, C.M.; Lohmann, K.C. Noble gas composition in rainwater and associated weather patterns. Geophys. Res. Lett. 2013, 40, 3248–3252. [Google Scholar] [CrossRef]
- Niu, Y.; Castro, M.C.; Hall, C.M.; Gingerich, S.B.; Scholl, M.A.; Warrier, R.B. Noble gas signatures in the Island of Maui, Hawaii: Characterizing groundwater sources in fractured systems. Water Resour. Res. 2017, 53, 3599–3614. [Google Scholar] [CrossRef]
- Hall, C.M.; Castro, M.C.; Scholl, M.A.; Amalberti, J.; Gingerich, S.B. Anomalous noble gas solubility in liquid cloud water: Possible implications for noble gas temperatures and cloud physics. Water Resour. Res. 2021, 57, e2020WR029306. [Google Scholar] [CrossRef]
- Utting, N.; Lauriol, B.; Lacelle, D.; Clark, I.D. Using noble gas ratios to determine the origin of ground ice. Quarter. Res. 2016, 85, 177–184. [Google Scholar] [CrossRef]
- Malone, J.L.; Castro, M.C.; Hall, C.M.; Doran, P.T.; Kenig, F.; McKay, C.P. New insights into the origin and evolution of Lake Vida, McMurdo Dry Valleys, Antarctica—A noble gas study in ice and brines. Earth Planet. Sci. Lett. 2010, 289, 112–122. [Google Scholar] [CrossRef]
- Amalberti, J.; Hall, C.M.; Castro, M.C. Noble Gas Signatures in Snow. Chem. Geol. 2018, 483, 275–285. [Google Scholar] [CrossRef]
- Pope, E.C.; Bird, D.K.; Arnórsson, S.; Giroud, N. Hydrogeology of the Krafla geothermal system, Northeast Iceland. Geofluids 2016, 16, 175–197. [Google Scholar] [CrossRef]
Well | Cl (ppm) | Sr (ppm) | 87Sr/86Sr | ± | F(20Ne) | ± | F(84Kr) | ± | F(132Xe) | ± |
---|---|---|---|---|---|---|---|---|---|---|
ÞG-1 | 96.26 | 0.005 | 0.70376 | 0.00003 | 0.520 | 0.020 | 1.721 | 0.068 | 3.240 | 0.166 |
ÞG-3 | 80.2 | 0.005 | 0.70358 | 0.00003 | 0.546 | 0.020 | 1.719 | 0.068 | 3.097 | 0.158 |
ÞG-4 | 59.71 | 0.002 | 0.70466 | 0.00015 | 0.480 | 0.018 | 1.667 | 0.066 | 3.176 | 0.162 |
ÞG-5 | 61.08 | 0.002 | 0.70355 | 0.00004 | 0.451 | 0.016 | 1.659 | 0.066 | 3.508 | 0.180 |
ÞG-6 | 173.03 | 0.004 | 0.70671 | 0.00008 | 0.521 | 0.020 | 1.789 | 0.072 | 3.337 | 0.170 |
ÞG-7 | 18.52 | 0.005 | 0.70564 | 0.00004 | 0.667 | 0.012 | 1.458 | 0.029 | 2.473 | 0.063 |
ÞG-12 | 86.88 | 0.002 | 0.70602 | 0.00004 | 0.509 | 0.018 | 1.590 | 0.064 | 3.169 | 0.162 |
ÞG-13 | 70.94 | 0.002 | 0.70452 | 0.00009 | 0.596 | 0.011 | 1.678 | 0.033 | 3.068 | 0.078 |
ÞG-16 | 52.53 | 0.001 | 0.70650 | 0.00007 | 0.533 | 0.010 | 1.658 | 0.033 | 2.926 | 0.075 |
ÞG-17 | 85.09 | 0.001 | 0.70467 | 0.00007 | 0.587 | 0.018 | 2.293 | 0.068 | 3.171 | 0.102 |
Seawater 1 | 18980 | 13 | 0.709225 | 0.00005 | 0.298 | - | 1.865 | - | 3.381 | - |
Basalt 2 | 45 | 141.42 | 0.70320 | 0.00005 | - | - | - | - | - | - |
Air | - | - | - | - | 1 | - | 1 | - | 1 | - |
ASW 3 | - | - | - | - | 0.249 | - | 2.027 | - | 4.009 | - |
Well | Magmatic-Fluid (%) | Seawater (%) | WRI (%) |
---|---|---|---|
ÞG-1 | 17.30 | 8.77 | 73.93 |
ÞG-3 | 14.44 | 5.88 | 79.68 |
ÞG-4 | 26.60 | 23.38 | 50.02 |
ÞG-5 | 27.65 | 5.01 | 67.34 |
ÞG-6 | 38.00 | 56.95 | 5.05 |
ÞG-7 | 2.43 | 40.26 | 57.31 |
ÞG-12 | 38.43 | 45.53 | 16.04 |
ÞG-13 | 31.76 | 20.93 | 47.31 |
ÞG-16 | 46.77 | <0.01 | 53.23 |
ÞG-17 | 76.84 | 22.14 | 1.02 |
Krafla 1 | 2.08 | 2.75 | 95.17 |
Námafjall 1 | 0.69 | 16.84 | 82.47 |
Reykjanes 1 | 1.57 | 16.65 | 81.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinti, D.L.; Haut-Labourdette, M.; Poirier, A.; Saby, M.; van Hinsberg, V.J.; Berlo, K.; Castro, M.C.; Gautason, B.; Sigurðardóttir, Á.K. 87Sr/86Sr Ratios and Atmospheric Noble Gases in Theistareykir Geothermal Fluids: A Record of Glacial Water. Geosciences 2022, 12, 119. https://doi.org/10.3390/geosciences12030119
Pinti DL, Haut-Labourdette M, Poirier A, Saby M, van Hinsberg VJ, Berlo K, Castro MC, Gautason B, Sigurðardóttir ÁK. 87Sr/86Sr Ratios and Atmospheric Noble Gases in Theistareykir Geothermal Fluids: A Record of Glacial Water. Geosciences. 2022; 12(3):119. https://doi.org/10.3390/geosciences12030119
Chicago/Turabian StylePinti, Daniele Luigi, Marie Haut-Labourdette, André Poirier, Marion Saby, Vincent J. van Hinsberg, Kim Berlo, Maria Clara Castro, Bjarni Gautason, and Ásgerður K. Sigurðardóttir. 2022. "87Sr/86Sr Ratios and Atmospheric Noble Gases in Theistareykir Geothermal Fluids: A Record of Glacial Water" Geosciences 12, no. 3: 119. https://doi.org/10.3390/geosciences12030119
APA StylePinti, D. L., Haut-Labourdette, M., Poirier, A., Saby, M., van Hinsberg, V. J., Berlo, K., Castro, M. C., Gautason, B., & Sigurðardóttir, Á. K. (2022). 87Sr/86Sr Ratios and Atmospheric Noble Gases in Theistareykir Geothermal Fluids: A Record of Glacial Water. Geosciences, 12(3), 119. https://doi.org/10.3390/geosciences12030119