Receiver Function Imaging of the Crustal Structure Beneath Northern Taiwan Using Dense Linear Arrays
Abstract
:1. Introduction
2. Seismic Data
3. Methods of Receiver Function and CCP Stacking
3.1. Receiver Function
3.2. CCP Stacking (Common Conversion Point Stacking)
4. Imaging results
4.1. A-A′ Profile
4.2. B-B′ Profile
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ching, K.E.; Rau, R.J.; Johnson, K.M.; Lee, J.C.; Hu, J.C. Present-day kinematics of active mountain building in Taiwan from GPS observations during 1995–2005. J. Geophys. Res. 2011, 116, B09405. [Google Scholar] [CrossRef]
- Yu, S.B.; Chen, H.Y.; Kuo, L.C. Velocity field of GPS stations in the Taiwan area. Tectonophysics 1997, 274, 41–59. [Google Scholar] [CrossRef]
- Tsai, Y.B.; Teng, T.L.; Chiu, J.M.; Liu, H.L. Tectonic implications of the seismicity in the Taiwan region. Mem. Geol. Soc. China 1977, 2, 13–41. [Google Scholar]
- Suppe, J. Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China 1981, 4, 67–89. [Google Scholar]
- Wu, F.T.; Rau, R.J.; Salzberg, D. Taiwan orogeny: Thin-skinned or lithospheric collision? Tectonophysics 1997, 274, 191–220. [Google Scholar] [CrossRef]
- Teng, L.S.; Lee, C.T.; Tsai, Y.B.; Hsiao, L.Y. Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan. Geology 2000, 28, 155–158. [Google Scholar] [CrossRef]
- Lin, C.H. Active continental subduction and crustal exhumation: The Taiwan orogeny. Terra Nova 2002, 14, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.T.; Liang, W.T.; Lee, J.C.; Benz, H.; Villasenor, A. A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries. J. Geophys. Res. 2009, 114, B07404. [Google Scholar] [CrossRef] [Green Version]
- Roecker, S.W.; Yeh, Y.H.; Tsai, Y.B. Three-dimensional P and S wave velocity structures beneath Taiwan; deep structure beneath an arc-continent collision. J. Geophys. Res. 1987, 92, 10547–10570. [Google Scholar] [CrossRef]
- Rau, R.J.; Wu, F.T. Tomographic imaging of lithospheric structures under Taiwan. Earth Planet. Sci. Lett. 1995, 133, 517–532. [Google Scholar] [CrossRef]
- Kim, K.H.; Chiu, J.M.; Pujol, J.; Chen, K.C.; Huang, B.S.; Yeh, Y.H.; Shen, P. Three-dimensional Vp and Vs structural model associated with the active subduction and collision tectonics in the Taiwan region. Geophys. J. Int. 2005, 162, 204–220. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.M.; Chang, C.H.; Zhao, L.; Shyu, J.B.H.; Chen, Y.G.; Sieh, K.; Avouac, J.P. Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations. J. Geophys. Res. 2007, 112, B08312. [Google Scholar] [CrossRef]
- Kuo-Chen, H.; Wu, F.T.; Roecker, S.W. Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. J. Geophys. Res. 2012, 117, B06306. [Google Scholar] [CrossRef] [Green Version]
- Phinney, R.A. Structure of the Earth’s crust from spectral behavior of long-period body waves. J. Geophys. Res. 1964, 62, 2997–3017. [Google Scholar] [CrossRef]
- Langston, C.A. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J. Geophys. Res. 1979, 84, 4749–4762. [Google Scholar] [CrossRef] [Green Version]
- Owens, T.J.; Zant, G.; Taylor, S.R. Seismic evidence for an ancient rift beneath the Crumberland Plateau, Tennessee: A Detailed analysis of broadband teleseismic P waveforms. J. Geophys. Res. 1984, 89, 7783–7795. [Google Scholar] [CrossRef]
- Ammon, C.J.; Randall, G.E.; Zandt, G. On the nonuniqueness of receiver function inversions. J. Geophys. Res. 1990, 95, 15303–15318. [Google Scholar] [CrossRef]
- Ammon, C.J. The isolation of receiver effects from teleseismic P waveforms. Bull. Seismol. Soc. Am. 1991, 81, 2504–2510. [Google Scholar] [CrossRef]
- Peng, X.; Humphreys, E.D. Crustal velocity structure across the eastern Snake River Plain and Yellowstone swell. J. Geophys. Res. 1998, 103, 7171–7186. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Rondenay, S.; van der Hilst, R.D. Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions. Phys. Earth Planet. Inter. 2007, 165, 176–193. [Google Scholar] [CrossRef]
- Zhu, L. Crustal structure across the San Andreas Fault, southern California from teleseismic converted waves. Earth Planet. Sci. Lett. 2000, 179, 183–190. [Google Scholar] [CrossRef]
- Farra, V.; Vinnik, L. Upper mantle stratification by P and S receiver functions. Geophys. J. Int. 2000, 141, 699–712. [Google Scholar] [CrossRef]
- Chen, Y.; Niu, F.; Liu, R.; Huang, Z.; Tkalčić, H.; Sun, L.; Chan, W. Crustal structure beneath China from receiver function analysis. J. Geophys. Res. 2010, 115, B03307. [Google Scholar] [CrossRef] [Green Version]
- Tomfohrde, D.A.; Nowack, R.L. Crustal structure beneath Taiwan using frequency-band inversion of receiver function waveforms. Pure Appl. Geophys. 2000, 157, 737–764. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Chiu, J.M.; Kao, H.; Liu, Q.; Yeh, Y.H. A preliminary study of crustal structure in Taiwan area using receiver function analysis. Geophys. J. Int. 2004, 159, 146–164. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.L.; Zhu, L.; Chen, H.W. Moho depth variation in Taiwan from teleseismic receiver functions. J. Asian Earth Sci. 2010, 37, 286–291. [Google Scholar] [CrossRef]
- Langston, C.A. The effect of planar dipping structure on source and receiver responses for constant ray parameter. Bull. Seismol. Soc. Am. 1977, 67, 1029–1050. [Google Scholar]
- Ligorría, J.P.; Ammon, C.J. Iterative deconvolution and receiver-function estimation. Seismol. Soc. Am. 1999, 89, 1395–1400. [Google Scholar] [CrossRef]
- Wu, Y.M.; Chang, C.H.; Zhao, L.; Teng, T.L.; Nakamura, M. A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005. Bull. Seismol. Soc. Am. 2008, 98, 1471–1481. [Google Scholar] [CrossRef] [Green Version]
- Kidder, S.; Avouac, J.P.; Chan, Y.C. Constraints from rocks in the Taiwan orogen on crustal stress levels and rheology. J. Geophys. Res. 2012, 117, B09408. [Google Scholar] [CrossRef]
- Korhonen, H.; Porkka, M.T. The structure of the baltic shield region on the basis of DSS and earthquake data. Pure Appl. Geophys. 1981, 119, 1093–1099. [Google Scholar] [CrossRef]
- Kao, H.; Rau, R.J. Detailed structures of the subducted Philippine Sea plate beneath northeast Taiwan: A new type of double seismic zone. J. Geophys. Res. 1999, 104, 1015–1033. [Google Scholar] [CrossRef] [Green Version]
- Ustaszewski, K.; Wu, Y.M.; Suppe, J.; Huang, H.H.; Chang, C.H.; Carena, S. Crust-Mantle boundaries in the Taiwan-Luzon arc-continent collision system determined from local earthquake tomography and 1D models: Implications for the mode of subduction polarity reversal. Tectonophysics 2012, 578, 31–49. [Google Scholar] [CrossRef]
- Li, Z.; Roecker, S.; Kim, K.; Xu, Y.; Hao, T. Moho depth variations in the Taiwan orogen from joint inversion of seismic arrival time and Bouguer gravity data. Tectonophysics 2014, 632, 151–159. [Google Scholar] [CrossRef]
- Fu, L. Quantitative assessment of the complexity of geological structures in terms of seismic propagators. Sci. China. Earth Sci. 2010, 53, 54–63. [Google Scholar] [CrossRef]
- Zhu, L.; Kanamori, H. Moho depth variation in southern California from teleseismic receiver functions. J. Geophys. Res. 2000, 105, 2890–2969. [Google Scholar] [CrossRef] [Green Version]
- Goyal, A.; Hung, S.H. Lateral variations of Moho depth and average crustal properties across the Taiwan orogen from H-V stacking of P and S receiver functions. Geochem. Geophys. Geosyst. 2021, 22, e2020GC009527. [Google Scholar] [CrossRef]
- Rychert, C.A.; Harmon, N. Stacked P-to-S and S-to-P receiver functions determination of crustal thickness, Vp, and Vs: The H-V stacking method. Geophys. Res. Lett. 2016, 43, 1487–1494. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, H.H.; Yen, H.Y. Three-dimensional density structures of Taiwan and tectonic implications based on the analysis of gravity data. J. Asian Earth Sci. 2016, 124, 247–259. [Google Scholar] [CrossRef]
- Carena, S.; Suppe, J.; Kao, H. Active detachment of Taiwan illuminated by small earthquakes and its control of first-order topography. Geology 2002, 30, 935–938. [Google Scholar] [CrossRef]
- Kind, R.; Eken, T.; Tilmann, F.; Sodoudi, F.; Taymaz, T.; Bulut, F.; Yuan, X.; Can, B.; Schneider, F. Thickness of the lithosphere beneath Turkey and surroundings from S-receiver functions. Solid Earth 2015, 6, 971–984. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, W.B.; Klemperer, S.L.; Lawrence, J.F.; Rai, S.S.; Ashish. Characterizing the Main Himalayan thrust in the Garhwal Himalaya, India, with receiver function CCP stacking. Earth Planet. Sci. Lett. 2013, 367, 15–27. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, T.-C.; Chang, Y.-F.; Huang, B.-S. Receiver Function Imaging of the Crustal Structure Beneath Northern Taiwan Using Dense Linear Arrays. Geosciences 2022, 12, 136. https://doi.org/10.3390/geosciences12030136
Chi T-C, Chang Y-F, Huang B-S. Receiver Function Imaging of the Crustal Structure Beneath Northern Taiwan Using Dense Linear Arrays. Geosciences. 2022; 12(3):136. https://doi.org/10.3390/geosciences12030136
Chicago/Turabian StyleChi, Tsung-Chih, Young-Fo Chang, and Bor-Shouh Huang. 2022. "Receiver Function Imaging of the Crustal Structure Beneath Northern Taiwan Using Dense Linear Arrays" Geosciences 12, no. 3: 136. https://doi.org/10.3390/geosciences12030136
APA StyleChi, T. -C., Chang, Y. -F., & Huang, B. -S. (2022). Receiver Function Imaging of the Crustal Structure Beneath Northern Taiwan Using Dense Linear Arrays. Geosciences, 12(3), 136. https://doi.org/10.3390/geosciences12030136