A Kinetic Explanation for Combined Potassium Gains and Radiogenic 40Argon Losses of Diagenetic Illite-Rich Clay Separates
Abstract
:1. Introduction
2. The Handling of Detrital and Authigenic Illite Mixtures
3. A Model for a Combined K Gain and Radiogenic 40Ar Loss
4. Review of the Analytical Database
5. Modeled 40Ar Losses and/or K Gains in K-Ar Apparent Ages of Clay Materials
K addition 40Ar growth 40Ar escape
6. Mixing of Old Detrital and Young Authigenic Clay Particles
7. A Comparison between the Analytical Results and the Modeled Data
7.1. In the Coarse-Grained Size Fractions
7.2. In the Fine-Grained Size Fractions
8. Contribution of the Model to the Current Knowledge of the Illitization Process
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. 40Ar/40K Atomic Ratio and K-Ar Apparent Age in Open and Closed Systems
- Closed system: production of radiogenic 40Ar from 40K, no K or 40Ar addition or loss
- 2.
- Open system: production of 40Ar from 40K and simultaneous loss of 40Ar at a rate ε
40Ar growth 40Ar escape
- 3.
- Open system:
K addition, 40Ar growth
K addition, 40Ar growth
- 4.
- Open system:
K addition 40Ar growth 40Ar escape
K addition, 40Ar growth 40Ar escape
- 5.
- Increase or decrease in the 40Ar/40K ratio and K-Ar apparent age with time
References
- Velde, B. (Ed.) Origin and Mineralogy of Clays; Springer: Berlin/Heidelberg, Germany, 1995; p. 334. [Google Scholar]
- Kübler, B. Concomitant alteration of clay minerals and organic matter during burial diagenesis. In Soils and Sediments—Mineralogy and Geochemistry; Paquet, H., Clauer, N., Eds.; Spinger: Berlin/Heidelberg, Germany, 1997; pp. 327–362. [Google Scholar]
- Kübler, B.; Goy-Eggenberger, D. La cristallinité de l’illite revisitée: Un bilan des connaissances acquises ces trente dernières années. Clay Miner. 2001, 36, 143–157. [Google Scholar] [CrossRef]
- Clauer, N.; Chaudhuri, S. Clays in Crustal Environments. Isotope Dating and Tracing; Springer: Berlin, Germany, 1995; 359p. [Google Scholar]
- Szczerba, M.; Derkowski, A.; Kalinichev, A.G.; Środoń, J. Molecular modeling of the effects of 40Ar recoil in illite particles on their K–Ar isotope dating. Geochim. Cosmochim. Acta 2015, 159, 162–176. [Google Scholar] [CrossRef]
- Clauer, N.; Środoń, J.; Francu, J.; Sucha, V. K-Ar dating of illite fundamental particles separated from illite/smectite. Clay Miner. 1997, 32, 181–196. [Google Scholar] [CrossRef]
- Clauer, N.; Keppens, E.; Uysal, I.T.; Aubert, A. Ultrasonic shaking with diverse reagents of glauconite pellets for a comparison of their K-Ar with already published Rb-Sr results. Geosciences 2021, 11, 439. [Google Scholar] [CrossRef]
- Clauer, N.; Cocker, J.D.; Chaudhuri, S. Isotopic dating of diagenetic illites in reservoir sandstones: Influence of the investigator effect. In Origin, Diagenesis and Petrophysics of Clay Minerals in Sandstones; SEPM Society for Sedimentary Geology: Broken Arrow, OK, USA, 1992; Volume 47, pp. 5–12. [Google Scholar]
- Clauer, N. How Can Technical Aspects Help Improving K-Ar Isotopic Data of Illite-Rich Clay Materials into Meaningful Ages? The Case of the Dominique Peter Uranium Deposit (Saskatchewan, Canada). Geosciences 2020, 10, 285. [Google Scholar] [CrossRef]
- Elliott, W.C.; Aronson, J.L.; Matisoff, G.; Gautier, D.L. Kinetics of the smectite to illite transformation in the Denver Basin; Clay mineral, K-Ar data and mathematical model results: American Association of Petroleum. Geol. Bull. 1991, 75, 436–462. [Google Scholar]
- Mossmann, J.R. K-Ar dating of authigenic illite-smectite clay material: Application to complex mixtures of mixed-layer assemblages. Clay Miner. 1991, 26, 189–198. [Google Scholar] [CrossRef]
- Velde, B.; Vasseur, G. Estimation of the diagenetic smectite to illite transformation in time-temperature space. Am. Mineral. 1992, 77, 967–976. [Google Scholar]
- Huang, W.L.; Longo, J.M.; Pevear, D.R. An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer. Clays Clay Miner. 1993, 41, 162–177. [Google Scholar] [CrossRef]
- Elliott, W.C.; Matisoff, G. Evaluation of kinetic models for the smectite to illite transformation. Clays Clay Miner. 1996, 44, 77–87. [Google Scholar] [CrossRef]
- Środoń, J. Extracting K-Ar ages from shales: A theoretical test. Clay Miner. 1999, 33, 375–378. [Google Scholar] [CrossRef]
- Lerman, A.; Ray, B.M.; Clauer, N. Radioactive production and diffusional loss of radiogenic 40Ar in clays in relation to its flux to the atmosphere. Chem. Geol. 2007, 243, 205–224. [Google Scholar] [CrossRef]
- Szczerba, M.; Środoń, J. Extraction of diagenetic and detrital ages and of the 40Kdetrital/40Kdiagenetic ratio from K-Ar dates of clay fractions. Clays Clay Miner. 2009, 57, 93–103. [Google Scholar] [CrossRef]
- Dunoyer de Segonzac, G. The transformation of clay minerals during diagenesis and low-grade metamorphism: A review. Sedimentology 1970, 15, 281–346. [Google Scholar] [CrossRef]
- Weaver, C.E.; Wampler, J.M. K, Ar, illite burial. Geol. Soc. Am. Bull. 1970, 81, 3423–3430. [Google Scholar] [CrossRef]
- Boles, J.R.; Franks, S.G. Clay diagenesis in Wilcox sandstones of southwest Texas: Implications of smectite diagenesis on sandstone cementation. J. Sediment. Petrol. 1979, 49, 55–70. [Google Scholar]
- Altaner, S.P. Comparison of Rates of Smectite Illitization with Rates of K-Feldspar Dissolution. Clays Clay Miner. 1986, 34, 608–611. [Google Scholar] [CrossRef]
- Glasmann, J.R.; Larter, S.; Briedis, N.A.; Lundegard, P.D. Shale diagenesis in the Bergen High Area, North Sea. Clays Clay Miner. 1989, 37, 97–112. [Google Scholar] [CrossRef]
- Awwiller, D.N. Illite/smectite formation and potassium mass transfer during burial diagenesis of mudrocks: A study from the Texas Gulf Coast Paleocene-Eocene. J. Sediment. Petrol. 1993, 63, 501–512. [Google Scholar]
- Furlan, S.; Clauer, N.; Chaudhuri, S.; Sommer, F. K transfer during burial diagenesis in the Mahakam Delta Basin (Kalimantan, Indonesia). Clays Clay Miner. 1996, 44, 157–169. [Google Scholar] [CrossRef]
- Perry, E.A., Jr. Diagenesis and the K-Ar dating of shales and clay minerals. Geol. Soc. Am. Bull. 1974, 85, 827–830. [Google Scholar] [CrossRef]
- Faure, G. Principles of Isotope Geology, 2nd ed.; Wiley: New York, NY, USA, 1986; p. 589. [Google Scholar]
- Clauer, N.; Chaudhuri, S. Inter-basinal comparison of the diagenetic evolution of illite/smectite minerals in buried shales on the basis of K-Ar systematics. Clays Clay Miner. 1996, 44, 818–824. [Google Scholar] [CrossRef]
- Pollastro, R.M. Mineralogical and morphological evidence for the formation of illite at the expense of illite/smectite. Clays Clay Miner. 1985, 33, 265–274. [Google Scholar] [CrossRef]
- Pollastro, R.M. Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays Clay Miner. 1993, 41, 119–133. [Google Scholar] [CrossRef]
- Jennings, S.; Thompson, G.R. Diagenesis of Plio-Pleistocene sediments of the Colorado River delta, southern California. J. Sediment. Petrol. 1986, 56, 89–98. [Google Scholar]
- Freed, R.L.; Peacor, D.R. Diagenesis and the formation of authigenic illite-rich crystals in Gulf Coast shales: TEM study of clay separates. J. Sediment. Petrol. 1992, 62, 220–234. [Google Scholar]
- Milliken, K.L. Chemical behavior of detrital feldspars in mudrocks versus sandstones, Frio Formation (Oligocene), South Texas. J. Sediment. Petrol. 1992, 62, 790–801. [Google Scholar]
- Kübler, B. La cristallinité de l’illite et les zones tout à fait supérieures du métamorphisme. In Colloque sur les Etages Tectoniques; La Baconnière: Neuchatel, Switzerland, 1966; pp. 105–122. [Google Scholar]
- Hower, J.; Eslinger, E.V.; Hower, M.; Perry, E.A. Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence. Geol. Soc. Am. Bull. 1976, 87, 725–737. [Google Scholar] [CrossRef]
- Clauer, N.; Rinckenbach, T.; Weber, F.; Sommer, F.; Chaudhuri, S.; O’Neil, J.R. Diagenetic evolution of clay minerals in oil-bearing Neogene sandstones and associated shales, Mahakam Delta Basin, Kalimantan, Indonesia. Am. Assoc. Pet. Geol. Bull. 1999, 83, 62–87. [Google Scholar]
- Aronson, J.L.; Hower, J. Mechanism of burial metamorphism of argillaceous sediments: 2. Radiogenic argon evidence. Geol. Soc. Am. Bull. 1976, 87, 738–744. [Google Scholar] [CrossRef]
- Eberl, D.D. Three zones for illite formation during burial diagenesis and metamorphism. Clays Clay Miner. 1993, 41, 26–37. [Google Scholar] [CrossRef]
- Lerman, A.; Clauer, N. Loss of radiogenic 40Ar in the fine-clay size fractions of sediments. Clays Clay Miner. 2005, 53, 234–249. [Google Scholar] [CrossRef]
- 3D Paleogeographic and Plate Tectonic Reconstructions: The PALEOMAP Project is Back in Town. Houst. Geol. Soc. Bull. 2002, 44, 13–15.
- Clauer, N.; Chaudhuri, S. Extracting K-Ar ages from shales: The analytical evidence. Clay Miner. 2001, 36, 227–235. [Google Scholar] [CrossRef]
- Steiger, R.H.; Jäger, E. Subcommission on Geochronology: Convention on the use of decay constants in Geo- and Cosmochronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Clauer, N.; Rousset, D.; Środoń, J. Modeled shale and sandstone burial diagenesis based on the K-Ar systematics of illite-type fundamental particles. Clays Clay Miner. 2004, 52, 576–588. [Google Scholar] [CrossRef]
- Odin, G.S.; Hunziker, J.C. Étude isotopique de l’altération naturelle d’une formation a glauconie (méthode à l’argon). Contrib. Mineral. Petrol. 1974, 48, 9–22. [Google Scholar] [CrossRef]
- Hunziker, J.C.; Frey, M.; Clauer, N.; Dallmeyer, R.D.; Friedrichsen, H.; Flehmig, W.; Hochstrasser, K.; Roggwiler, P.; Schwander, H. The evolution of illite to muscovite: Mineralogical and isotopic data from the Glarus Alps, Switzerland. Contrib. Mineral. Petrol. 1986, 92, 157–180. [Google Scholar] [CrossRef]
- Hassanipak, A.A.; Wampler, J.M. Radiogenic argon released by stepwise heating of glauconite and illite: The influence of composition and particle size. Clays Clay Miner. 1996, 44, 717–726. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Marti, K.; Severinghaus, J.P.; Kawamura, K.; Yoo, H.-S.; Lee, J.B.; Kim, J.S. A redetermination of the isotopic abundances of atmospheric Ar. Geochim. Et Cosmochim. Acta 2006, 70, 4507–4512. [Google Scholar] [CrossRef]
- Środoń, J.; Clauer, N.; Eberl, D.D. Interpretation of K-Ar dates of illitic clays from sedimentary rocks aided by modeling. Am. Mineral. 2002, 87, 1528–1535. [Google Scholar] [CrossRef]
- McCarty, D.K.; Sakharov, B.A.; Drits, V. Early clay diagenesis in Gulf Coast sediments: New insights from XRD profile modeling. Clays Clay Miner. 2008, 56, 359–379. [Google Scholar] [CrossRef]
- Odin, G.S. Green Marine Clays. Developments in Sedimentology, 45; Elsevier Science Publishers: Amsterdam, The Netherlands, 1988. [Google Scholar]
Location | Approximate Depositional Age (Ma) and Depth Range (m) | Particle Size Fraction | Gain or Loss K Content from Top to Bottom of Section (wt.%) | K Linear Change Rate e (%/Ma) | 40Ar Linear Change Rate e (%/Ma) | This Study: | ||
---|---|---|---|---|---|---|---|---|
Depositional Age Range (Ma) | Particle Size Fraction | Linear K Increase Rate b, and First-Order 40Ar Release Rate ε (%/Ma) | ||||||
East Borneo, Mahakam Delta, shales a | 1(?)–20 Ma 183–4232 m | 2–20 μm <0.4 μm total <0.4 μm adjusted d | 0.74 to 2.42 2.19 to 2.96 3.98 to 4.91 | 11.3 f 1.85 1.22 | 6.09 −1.17 | 1(?)–20 Ma 1(?)–8 Ma 8–20 Ma | 2–20 μm <0.4 μm <0.4 μm | b = 1, ε = 0.9 (bracketing values: b = from 0.5 to 0.8, ε = from 0.8 to 2) b = 3.5, ε = 3 b = 1, ε = 0.9 |
Same location, sandstones a | 1(?)–20 Ma 350–4228 m | 2–40, 2–20 μm <0.4 μm total <0.4 μm adjusted d | 0.76 to 0.35 1.74 to 1.59 3.87 to 6.38 | −2.68 −0.45 3.41 | −5.26 −4.06 | 0–20 Ma 1(?)–20 Ma | 2–40, 2–20 μm <0.4 μm | From b = −0.6, ε = from 2.5 to b = –1, ε = 2 (bracketing values: b = from −0.7 to −0.5, ε = from 2.0 to 3.3) b = 5, ε = 4 (bracketing values b = from 3 to 5, ε = from 3.5 to 6) |
North Sea, Bergen High area, Huldra field b | 78–190 Ma 2473–4132 m | 2–10, 2–15 μm <0.1 μm | 1.61 to 4.65 2.56 to 6.13 | 1.68 1.24 | 0.60 1.39 | 70–190 Ma | 2–10, 2–15 μm <0.1 μm | bracketing values: b = from 0.2 to 0.3, ε = from 0.5 to 0.7 b = 0.8, ε = 0.7 |
U.S. Gulf Coast, Harris County, Texas c | 20–34 Ma 1250–5500 m | whole rock <0.1 μm | 2.03 to 3.07 1.88 to 4.02 | 3.66 high 18–28 8.15 | −2.17 2.05 | 20–34 Ma 26–30 Ma 20–27 Ma 28–34 Ma | whole rock <0.1 μm <0.1 μm | b = from 1.5 to 3, ε = from 2 to 4.5 b = from 15 to 23, ε = from 0 to −3.5 b = 1, ε = 1 b = 2.2, ε = 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clauer, N.; Lerman, A. A Kinetic Explanation for Combined Potassium Gains and Radiogenic 40Argon Losses of Diagenetic Illite-Rich Clay Separates. Geosciences 2022, 12, 186. https://doi.org/10.3390/geosciences12050186
Clauer N, Lerman A. A Kinetic Explanation for Combined Potassium Gains and Radiogenic 40Argon Losses of Diagenetic Illite-Rich Clay Separates. Geosciences. 2022; 12(5):186. https://doi.org/10.3390/geosciences12050186
Chicago/Turabian StyleClauer, Norbert, and Abraham Lerman. 2022. "A Kinetic Explanation for Combined Potassium Gains and Radiogenic 40Argon Losses of Diagenetic Illite-Rich Clay Separates" Geosciences 12, no. 5: 186. https://doi.org/10.3390/geosciences12050186
APA StyleClauer, N., & Lerman, A. (2022). A Kinetic Explanation for Combined Potassium Gains and Radiogenic 40Argon Losses of Diagenetic Illite-Rich Clay Separates. Geosciences, 12(5), 186. https://doi.org/10.3390/geosciences12050186