Temperature Variation during Salt Migration in Frozen Hydrate-Bearing Sediments: Experimental Modeling
Abstract
:1. Introduction
2. Methods
- Sand samples were saturated with water until the specified moisture content and placed in a pressure cell for saturation with methane hydrate under vacuum.
- The hydrate-saturated samples in the pressure cell were frozen and brought to a metastable state by reducing the pressure to 0.1 MPa.
- The frozen hydrate-saturated samples were taken out of the pressure cell and measured for water contents, density, and fraction of water converted to hydrate (hydrate coefficient Khin, u.f.).
- Temperature sensors were mounted along the samples at different distances to their bottom end (2.5, 3.5, 6.0, and 7.0 cm).
- The samples were juxtaposed against a frozen NaCl solution (saline ice) at a constant negative temperature (−6.5 ± 0.1 °C) and under atmospheric pressure (0.1 MPa), in a tight thermally insulated box. The interaction process was monitored continuously, with temperature sampling.
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sloan, E.D., Jr.; Koh, C.A. Clathrate Hydrates of Natural Gases; CRC Press: Boca Raton, FL, USA, 2007; p. 752. ISBN 9780429129148. [Google Scholar] [CrossRef]
- Max, M. Natural Gas Hydrate in Oceanic and Permafrost Environments; Kluwer Academic Publishers: Washington, DC, USA, 2000; p. 419. ISBN 978-1-4020-1362-1. [Google Scholar] [CrossRef]
- Solov’yev, V.A.; Ginsburg, G.D. Formation of Submarine Gas Hydrates. Bull. Geol. Soc. Den. 1994, 41, 86–94. [Google Scholar] [CrossRef]
- Collett, T.; Bahk, J.-J.; Baker, R.; Boswell, R.; Divins, D.; Frye, M.; Goldberg, D.; Husebø, J.; Koh, C.; Malone, M.; et al. Methane Hydrates in Nature—Current Knowledge and Challenges. J. Chem. Eng. Data 2015, 60, 319–329. [Google Scholar] [CrossRef]
- Waite, W.F.; Ruppel, C.D.; Boze, L.-G.; Lorenson, T.D.; Buczkowski, B.J.; McMullen, K.Y.; Kvenvolden, K.A. Preliminary Global Database of Known and Inferred Gas Hydrate Locations; U.S. Geological Survey, Coastal and Marine Hazards and Resources Program: Woods Hole, MA, USA, 2020. [CrossRef]
- Ruppel, C.D. Gas Hydrate in Nature; US Geological Survey: Reston, VA, USA, 2018; p. 4. ISBN 2327-6916. [CrossRef]
- Ruppel, C. Permafrost-Associated Gas Hydrate: Is It Really Approximately 1% of the Global System? J. Chem. Eng. Data 2015, 60, 429–436. [Google Scholar] [CrossRef]
- Boswell, R.; Collett, T.S. Current Perspectives on Gas Hydrate Resources. Energy Environ. Sci. 2011, 4, 1206–1215. [Google Scholar] [CrossRef]
- Boswell, R.; Hancock, S.; Yamamoto, K.; Collett, T.; Pratap, M.; Lee, S.-R. Natural Gas Hydrates: Status of Potential as an Energy Resource. In Future Energy; Elsevier: Amsterdam, The Netherlands, 2020; pp. 111–131. [Google Scholar] [CrossRef]
- Yamamoto, K.; Boswell, R.; Collett, T.S.; Dallimore, S.R.; Lu, H. Review of Past Gas Production Attempts from Subsurface Gas Hydrate Deposits and Necessity of Long-Term Production Testing. Energy Fuels 2022, 36, 5047–5062. [Google Scholar] [CrossRef]
- Max, M.D.; Johnson, A.H.; Dillon, W.P. Natural Gas Hydrate—Arctic Ocean Deepwater Resource Potential; Springer: Cham, Switzerland; Dordrecht, The Netherlands, 2013; p. 113. ISBN 9783319025070. [Google Scholar] [CrossRef]
- Nimblett, J.N.; Shipp, R.C.; Strijbos, F. Gas Hydrate as a Drilling Hazard: Examples from Global Deepwater Settings. In Proceedings of the Annual Offshore Technology Conference, Houston, TX, USA, 2–5 May 2011; pp. 1429–1435. [Google Scholar] [CrossRef]
- Yakushev, V.S. Natural Gas and Gas Hydrates in the Permafrost; Gazprom VNIIGAZ: Moscow, Russia, 2009; p. 192. (In Russian) [Google Scholar]
- Yakushev, V. Natural Gas Liberations around Production Wells at Russian Arctic Gas Fields. Geosciences 2020, 10, 184. [Google Scholar] [CrossRef]
- Zhao, R.; Chang, H.J.; Chen, K.L. Environmental Risk of Gas Hydrates Exploitation in Tibetan Plateau Permafrost. Adv. Mater. Res. 2014, 955–959, 2114–2117. [Google Scholar] [CrossRef]
- Chuvilin, E.; Tipenko, G.; Bukhanov, B.; Istomin, V.; Pissarenko, D. Simulating Thermal Interaction of Gas Production Wells with Relict Gas Hydrate-Bearing Permafrost. Geosciences 2022, 12, 115. [Google Scholar] [CrossRef]
- Koh, C.A.; Sloan, E.D. Natural Gas Hydrates: Recent Advances and Challenges in Energy and Environmental Applications. AIChE J. 2007, 53, 1636–1643. [Google Scholar] [CrossRef]
- Cherskiy, N.V.; Groysman, A.G.; Nikitina, L.M.; Tserev, V.P. First Experimental Determination of Heats of Decomposition of Natural-Gas Hydrates. Dokl. Acad. Sci. USSR Earth Sci. Sect. 1984, 265, 163–167. (In Russian) [Google Scholar]
- Istomin, V.A.; Yakushev, V.S. Gas Hydrates in Nature; Nedra: Moscow, Russia, 1992; p. 235. (In Russian) [Google Scholar]
- Handa, P.Y. A Calorimetric Study of Naturally Occurring Gas Hydrates. Ind. Eng. Chem. Res. 1988, 27, 872–874. [Google Scholar] [CrossRef]
- Ershov, E.D.; Lebedenko, Y.P.; Chuvilin, E.M.; Istomin, V.A.; Yakushev, V.S. Features of the Existence of Gas Hydrates in the Cryolithozone. Rep. Acad. Sci. USSR 1991, 321, 788–791. (In Russian) [Google Scholar]
- Chuvilin, E.; Bukhanov, B.; Davletshina, D.; Grebenkin, S.; Istomin, V. Dissociation and Self-Preservation of Gas Hydrates in Permafrost. Geosciences 2018, 8, 431. [Google Scholar] [CrossRef] [Green Version]
- Hachikubo, A.; Takeya, S.; Chuvilin, E.; Istomin, V. Preservation Phenomena of Methane Hydrate in Pore Spaces. Phys. Chem. Chem. Phys. 2011, 13, 17449–17452. [Google Scholar] [CrossRef] [PubMed]
- Takeya, S.; Ebinuma, T.; Uchida, T.; Nagao, J.; Narita, H. Self-Preservation Effect and Dissociation Rates of CH4 Hydrate. J. Cryst. Growth 2002, 237, 379–382. [Google Scholar] [CrossRef]
- Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B. Anomalous Preservation of Pure Methane Hydrate at 1 Atm. J. Phys. Chem. B 2001, 105, 1756–1762. [Google Scholar] [CrossRef]
- Kuhs, W.F.; Genov, G.; Staykova, D.K.; Hansen, T. Ice Perfection and Onset of Anomalous Preservation of Gas Hydrates. Phys. Chem. Chem. Phys. 2004, 6, 4917–4920. [Google Scholar] [CrossRef]
- Istomin, V.A.; Yakushev, V.S.; Makhonina, N.A.; Kwon, V.G.; Chuvilin, E.M. Self-Preservation Phenomenon of Gas Hydrate. Gas Ind. Russ. 2006, 4, 16–27. [Google Scholar]
- Istomin, V.A.; Yakushev, V.S. Gas-Hydrates Self-Preservation Effect. In Physics and Chemistry of Ice; Maeno, N., Hondo, T., Eds.; Hokkaido University Press: Sapporo, Japan, 1992; pp. 136–140. [Google Scholar]
- Chuvilin, E.M.; Guryeva, O.M. Experimental Study of Self-Preservation Effect of Gas Hydrates in Frozen Sediments. In Proceedings of the 9th International Conference on Permafrost, Fairbanks, AK, USA, 29 June–3 July 2008; Volume 28. [Google Scholar]
- Chuvilin, E.M.; Yakushev, V.S.; Perlova, E.V. Gas and Possible Gas Hydrates in the Permafrost of Bovanenkovo Gas Field, Yamal Peninsula, West Siberia. Polarforschung 2000, 68, 215–219. [Google Scholar]
- Yakushev, V.S.; Chuvilin, E.M. Natural Gas and Gas Hydrate Accumulations within Permafrost in Russia. Cold Reg. Sci. Technol. 2000, 31, 189–197. [Google Scholar] [CrossRef]
- Chuvilin, E.; Davletshina, D.; Ekimova, V.; Bukhanov, B.; Shakhova, N.; Semiletov, I. Role of Warming in Destabilization of Intrapermafrost Gas Hydrates in the Arctic Shelf: Experimental Modeling. Geosciences 2019, 9, 407. [Google Scholar] [CrossRef] [Green Version]
- Sloan, E.D. Clathrate Hydrates of Natural Gases, Second Edition, Revised and Expanded; CRC Press: New York, NY, USA, 1998; p. 705. ISBN 9780824799373. [Google Scholar]
- Saw, V.K.; Das, B.B.; Ahmad, I.; Mandal, A.; Laik, S. Influence of Electrolytes on Methane Hydrate Formation and Dissociation. Energy Sources Part A Recovery Util. Environ. Eff. 2014, 36, 1659–1669. [Google Scholar] [CrossRef]
- Najibi, H.; Mohammadi, A.H.; Tohidi, B. Estimating the Hydrate Safety Margin in the Presence of Salt and/or Organic Inhibitor Using Freezing Point Depression Data of Aqueous Solutions. Ind. Eng. Chem. Res. 2006, 45, 4441–4446. [Google Scholar] [CrossRef]
- Qi, Y.; Wu, W.; Liu, Y.; Xie, Y.; Chen, X. The Influence of NaCl Ions on Hydrate Structure and Thermodynamic Equilibrium Conditions of Gas Hydrates. Fluid Phase Equilib. 2012, 325, 6–10. [Google Scholar] [CrossRef]
- Kamath, V.A.; Mutalik, P.N.; Sira, J.H.; Patil, S.L. Experimental Study of Brine Injection Depressurization of Gas Hydrates Dissociation of Gas Hydrates. SPE Form. Eval. 1991, 6, 477–484. [Google Scholar] [CrossRef]
- Masoudi, R.; Tohidi, B. On Modelling Gas Hydrate Inhibition by Salts and Organic Inhibitors. J. Pet. Sci. Eng. 2010, 74, 132–137. [Google Scholar] [CrossRef]
- Chong, Z.R.; Chan, A.H.M.; Babu, P.; Yang, M.; Linga, P. Effect of NaCl on Methane Hydrate Formation and Dissociation in Porous Media. J. Nat. Gas Sci. Eng. 2015, 27, 178–189. [Google Scholar] [CrossRef]
- Halliday, W.; Clapper, D.K.; Smalling, M. New Gas Hydrate Inhibitors for Deepwater Drilling Fluids. In Proceedings of the IADC/SPE Asia Pacific Drilling Technology Conference, APDT, Dallas, TX, USA, 3–6 March 1998; pp. 201–211. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Lv, X.; Ge, K.; Jiang, Z.; Li, Y. Experimental Measurement and Thermodynamic Modeling of Methane Hydrate Phase Equilibria in the Presence of Chloride Salts. Chem. Eng. J. 2020, 395, 125126. [Google Scholar] [CrossRef]
- Zatsepina, O.Y.; Buffett, B.A. Thermodynamic Conditions for the Stability of Gas Hydrate in the Seafloor. J. Geophys. Res. Solid Earth 1998, 103, 24127–24139. [Google Scholar] [CrossRef]
- Dholabhai, P.D.; Englezos, P.; Kalogerakis, N.; Bishnoi, P.R. Equilibrium Conditions for Methane Hydrate Formation in Aqueous Mixed Electrolyte Solutions. Can. J. Chem. Eng. 1991, 69, 800–805. [Google Scholar] [CrossRef]
- Dickens, G.R.; Quinby-Hunt, M.S. Methane Hydrate Stability in Seawater. Geophys. Res. Lett. 1994, 21, 2115–2118. [Google Scholar] [CrossRef]
- Chen, J.; Liu, C.; Zhang, Z.; Wu, N.; Liu, C.; Ning, F.; Fang, B.; Wan, Y.; Bu, Q.; Hu, G. Molecular Study on the Behavior of Methane Hydrate Decomposition Induced by Ions Electrophoresis. Fuel 2022, 307, 121866. [Google Scholar] [CrossRef]
- Ding, T.; Wang, R.; Xu, J.; Camara, M.; Zhou, W.; Zhang, J. Dissociation Mechanism of Methane Hydrate by CaCl2: An Experimental and Molecular Dynamics Study. J. Mol. Model. 2022, 28, 109. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-S.; Wan, L.-H.; Li, G.; Li, Q.-P.; Chen, Z.-Y.; Yan, K.-F. Experimental Investigation into the Production Behavior of Methane Hydrate in Porous Sediment with Hot Brine Stimulation. Ind. Eng. Chem. Res. 2008, 47, 9696–9702. [Google Scholar] [CrossRef]
- Xu, J.; Gu, T.; Sun, Z.; Li, X.; Wang, X. Molecular Dynamics Study on the Dissociation of Methane Hydrate via Inorganic Salts. Mol. Phys. 2016, 114, 34–43. [Google Scholar] [CrossRef]
- Ahn, T.; Park, C.; Lee, J.; Kang, J.M.; Nguyen, H.T. Experimental Characterization of Production Behaviour Accompanying the Hydrate Reformation in Methane-Hydrate-Bearing Sediments. J. Can. Pet. Technol. 2012, 51, 14–19. [Google Scholar] [CrossRef]
- Li, S.; Xu, X.; Zheng, R.; Chen, Y.; Hou, J. Experimental Investigation on Dissociation Driving Force of Methane Hydrate in Porous Media. Fuel 2015, 160, 117–122. [Google Scholar] [CrossRef]
- Chen, Z.; Feng, J.; Li, X.; Zhang, Y.; Li, B.; Lv, Q. Preparation of Warm Brine in Situ Seafloor Based on the Hydrate Process for Marine Gas Hydrate Thermal Stimulation. Ind. Eng. Chem. Res. 2014, 53, 14142–14157. [Google Scholar] [CrossRef]
- Chuvilin, E.; Ekimova, V.; Bukhanov, B.; Grebenkin, S.; Shakhova, N.; Semiletov, I. Role of Salt Migration in Destabilization of Intra Permafrost Hydrates in the Arctic Shelf: Experimental Modeling. Geosciences 2019, 9, 188. [Google Scholar] [CrossRef] [Green Version]
- Alekseev, S. Cryogenesis of Groundwater and Rocks (on the Example of the Daldino-Alakitsky Region of Western Yakutia); SRC OIGGM SO: Novosibirsk, Russia, 2000; p. 119. (In Russian) [Google Scholar]
- Borisov, V.; Alekseev, S. Factors of Interaction of Brines with Ice (Frozen Rock) at a Negative Temperature. In Fundamental Problems of Water and Water Resources at the Turn of the III Millennium; NTL: Tomsk, Russia, 2000; pp. 584–589. (In Russian) [Google Scholar]
- Volkov, N.G.; Komarov, I.A.; Mironenko, M.V.; Fotiev, S.M. Methods for Assessing the Formation Temperature of the Ion-Salt Composition of Cryopegs. Kriosf. Zemli 2005, 9, 54–61. (In Russian) [Google Scholar]
- Chuvilin, E.M.; Ershov, E.D.; Smirnova, O.G. Ionic Migration in Frozen Soils and Ice. In Proceedings of the 7th International Permafrost Conference, Yellowknife, NT, Canada, 23–27 June 1998; pp. 167–171. [Google Scholar]
- Gaidaenko, E.P. Solubility of Ice in Frozen Soils under the Influence of Saline Solutions. In Problems of engineering glaciology; Nauka: Novosibirsk, Russia, 1986; pp. 32–36. (In Russian) [Google Scholar]
- Pekhovich, A.I.; Shatalina, I.N. Experimental Studies of Ice Melting in Aqueous Solution. In Heat and Mass Transfer; Minsk: Nauka i Tekhnika, Belarus, 1968; Volume 2, pp. 98–104. (In Russian) [Google Scholar]
- Fedorov, A.M. Laboratory Studies of the Destruction of Ice and Ice-Rock Monoliths by Brines. In Conditions and Processes of Cryogenic Migration of Matter; Permafrost Institute SB AS USSR: Yakutsk, Russia, 1989; pp. 83–96. (In Russian) [Google Scholar]
- Yakushev, V.S.; Istomin, V.A. Causes of Gas Emissions in Frozen Rocks of the Yamburg Gas Condensate Field. In Features of Gas Well Development in Difficult Geocryological Conditions; VNIIGAZ: Moscow, Russia, 1987; pp. 119–127. (In Russian) [Google Scholar]
- Chuvilin, E.M.; Bukhanov, B.A.; Mukhametdinova, A.Z.; Grechishcheva, E.S.; Sokolova, N.S.; Alekseev, A.G.; Istomin, V.A. Freezing Point and Unfrozen Water Contents of Permafrost Soils: Estimation by the Water Potential Method. Cold Reg. Sci. Technol. 2022, 196, 103488. [Google Scholar] [CrossRef]
- Porokhniak, A.M. Gas Hydrates of the Permafrost Zone in Western Yakutia; Publishing House of TsNIITsvetmet: Moscow, Russia, 1988; p. 30. (In Russian) [Google Scholar]
Sample | Particle-Size Distribution, % | Mineralogy 1 | |||||
---|---|---|---|---|---|---|---|
1–0.5 | 0.5–0.25 | 0.25–0.1 | 0.1–0.05 | 0.05–0.001 | <0.001 | ||
Fine sand | >0.1 | 1.5 | 80.4 | 17.3 | 0.8 | >0.1 | >98% quartz |
Soil Type | Anions, mg—EQ/100 g | Cations, mg—EQ/100 g | TDS, % | |||||
---|---|---|---|---|---|---|---|---|
pH | HCO3− | Cl− | SO₄2− | Ca2+ | Mg2+ | Na+ + K+ | ||
Sand | 7.1 | 0.075 | 0.025 | 0.06 | 0.025 | -- | 0.135 | 0.01 |
Sample | Water Content, % | Density, g/cm3 | Porosity, % | Ice Saturation, % | Hydrate Saturation, % |
---|---|---|---|---|---|
1 | 12 | 1.8 | 40 | 50 | 0 |
2 | 12 | 1.85 | 38 | 18 | 35 |
Solution N | Sample | Water Content, % | Density, g/cm3 | Porosity, % | Ice Saturation, % | Hydrate Saturation, % |
---|---|---|---|---|---|---|
0.2 | 1 | 12 | 1.80 | 40 | 12 | 41 |
0.4 | 2 | 1.85 | 38 | 18 | 35 | |
0.6 | 3 | 1.79 | 39 | 11 | 40 | |
1.0 | 4 | 1.83 | 38 | 15 | 38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuvilin, E.; Ekimova, V.; Davletshina, D.; Bukhanov, B.; Krivokhat, E.; Shilenkov, V. Temperature Variation during Salt Migration in Frozen Hydrate-Bearing Sediments: Experimental Modeling. Geosciences 2022, 12, 261. https://doi.org/10.3390/geosciences12070261
Chuvilin E, Ekimova V, Davletshina D, Bukhanov B, Krivokhat E, Shilenkov V. Temperature Variation during Salt Migration in Frozen Hydrate-Bearing Sediments: Experimental Modeling. Geosciences. 2022; 12(7):261. https://doi.org/10.3390/geosciences12070261
Chicago/Turabian StyleChuvilin, Evgeny, Valentina Ekimova, Dinara Davletshina, Boris Bukhanov, Ekaterina Krivokhat, and Vladimir Shilenkov. 2022. "Temperature Variation during Salt Migration in Frozen Hydrate-Bearing Sediments: Experimental Modeling" Geosciences 12, no. 7: 261. https://doi.org/10.3390/geosciences12070261
APA StyleChuvilin, E., Ekimova, V., Davletshina, D., Bukhanov, B., Krivokhat, E., & Shilenkov, V. (2022). Temperature Variation during Salt Migration in Frozen Hydrate-Bearing Sediments: Experimental Modeling. Geosciences, 12(7), 261. https://doi.org/10.3390/geosciences12070261