Geochemical Biodegraded Oil Classification Using a Machine Learning Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Convolutional Neural Network (CNN)
2.2. Convolutional Neural Network using Orange®
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide: Biomarkers and Isotopes in the Environment and Human History; Cambridge University Press: Cambridge, UK, 2004; Volume 1, ISBN 9780521781589. [Google Scholar]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Systems and Earth History; Cambridge University Press: Cambridge, UK, 2004; Volume 2, ISBN 9780521781589. [Google Scholar]
- Kotarba, M.J.; Bilkiewicz, E.; Jurek, K.; Więcław, D.; Machowski, G. Origin, Migration and Secondary Processes of Oil and Natural Gas in the Western Part of the Polish Outer Carpathians: Geochemical and Geological Approach. Int. J. Earth Sci. 2021, 110, 1653–1679. [Google Scholar] [CrossRef]
- Wenger, L.M.; Davis, C.L.; Evensen, J.M.; Gormly, J.R.; Mankiewicz, P.J. Impact of Modern Deepwater Drilling and Testing Fluids on Geochemical Evaluations. Org. Geochem. 2004, 35, 1527–1536. [Google Scholar] [CrossRef]
- Wenger, L.M.; Davis, C.L.; Isaksen, G.H. Multiple Controls on Petroleum Biodegradation and Impact on Oil Quality. SPE Reserv. Eval. Eng. 2001, 5, 375–383. [Google Scholar]
- Röling, W.F.M.; Head, I.M.; Larter, S.R. The Microbiology of Hydrocarbon Degradation in Subsurface Petroleum Reservoirs: Perspectives and Prospects. Res. Microbiol. 2003, 154, 321–328. [Google Scholar] [CrossRef]
- Wenger, L.M.; Isaksen, G.H. Control of Hydrocarbon Seepage Intensity on Level of Biodegradation in Sea Bottom Sediments. Org. Geochem. 2002, 33, 1277–1292. [Google Scholar] [CrossRef]
- Elias, R.; Vieth, A.; Riva, A.; Horsfield, B.; Wilkes, H. Improved Assessment of Biodegradation Extent and Prediction of Petroleum Quality. Org. Geochem. 2007, 38, 2111–2130. [Google Scholar] [CrossRef]
- Connan, J. Biodegradation of Crude Oils in Reservoirs; Academic Press Inc. (London) Ltd.: London, UK, 1984; Volume 1, ISBN 0120320010. [Google Scholar]
- Nascimento, L.R.; Rebouças, L.M.C.; Koike, L.; de A.M Reis, F.; Soldan, A.L.; Cerqueira, J.R.; Marsaioli, A.J. Acidic Biomarkers from Albacora Oils, Campos Basin, Brazil. Org. Geochem. 1999, 30, 1175–1191. [Google Scholar] [CrossRef]
- Hempkins, W.B. Multivariate Statistical Analysis In Formation Evaluation. In Proceedings of the SPE: All Days, San Francisco, CA, USA, 12 April 1978. [Google Scholar]
- McCammon, R.B. The Dendrograph—A New Tool for Correlation. Bull. Geol. Soc. Am. 1968, 79, 1663–1670. [Google Scholar]
- Wang, Y.-P.; Zou, Y.-R.; Shi, J.-T.; Shi, J. Review of the Chemometrics Application in Oil-Oil and Oil-Source Rock Correlations. J. Nat. Gas Geosci. 2018, 3, 217–232. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar]
- Rawat, W.; Wang, Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Comput. 2017, 29, 2352–2449. [Google Scholar] [PubMed]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, M.A.; Liopyris, K.; Dusza, S.W.; Codella, N.C.F.; Gutman, D.A.; Helba, B.; Kalloo, A.; Halpern, A.C.; Soyer, H.P.; Curiel-Lewandrowski, C.; et al. Computer Algorithms Show Potential for Improving Dermatologists’ Accuracy to Diagnose Cutaneous Melanoma: Results of the International Skin Imaging Collaboration 2017. J. Am. Acad. Dermatol. 2020, 82, 622–627. [Google Scholar] [CrossRef]
- Liang, X. Theoretical Basis. In Ascend AI Processor Architecture and Programming; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–40. ISBN 9780128234884. [Google Scholar]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a Convolutional Neural Network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [Google Scholar] [CrossRef]
- de Lima, R.P.; Bonar, A.; Duarte Coronado, D.; Marfurt, K.; Nicholson, C. Deep Convolutional Neural Networks as a Geological Image Classification Tool. Sediment. Rec. 2019, 17, 4–9. [Google Scholar] [CrossRef]
- Xu, Z.; Ma, W.; Lin, P.; Shi, H.; Pan, D.; Liu, T. Deep Learning of Rock Images for Intelligent Lithology Identification. Comput. Geosci. 2021, 154, 104799. [Google Scholar] [CrossRef]
- Alférez, G.H.; Vázquez, E.L.; Martínez Ardila, A.M.; Clausen, B.L. Automatic Classification of Plutonic Rocks with Deep Learning. Appl. Comput. Geosci. 2021, 10, 100061. [Google Scholar] [CrossRef]
- Wilkes, T.C.; Pering, T.D.; McGonigle, A.J.S. Semantic Segmentation of Explosive Volcanic Plumes through Deep Learning. Comput. Geosci. 2022, 168, 105216. [Google Scholar] [CrossRef]
- Wang, H.; Li, C.; Zhang, Z.; Kershaw, S.; Holmer, L.E.; Zhang, Y.; Wei, K.; Liu, P. Fossil Brachiopod Identification Using a New Deep Convolutional Neural Network. Gondwana Res. 2022, 105, 290–298. [Google Scholar] [CrossRef]
- Wang, B.; Wu, L.; Xie, Z.; Qiu, Q.; Zhou, Y.; Ma, K.; Tao, L. Understanding Geological Reports Based on Knowledge Graphs Using a Deep Learning Approach. Comput. Geosci. 2022, 168, 105229. [Google Scholar] [CrossRef]
- Koeshidayatullah, A.; Morsilli, M.; Lehrmann, D.J.; Al-Ramadan, K.; Payne, J.L. Fully Automated Carbonate Petrography Using Deep Convolutional Neural Networks. Mar. Pet. Geol. 2020, 122, 104687. [Google Scholar] [CrossRef]
- Bengio, Y. Deep Learning of Representations for Unsupervised and Transfer Learning. Proc. ICML Work. Unsupervised Transf. Learn. 2012, 27, 17–36. [Google Scholar]
- Pires De Lima, R.; Suriamin, F.; Marfurt, K.J.; Pranter, M.J. Convolutional Neural Networks as Aid in Core Lithofacies Classification. Interpretation 2019, 7, SF27–SF40. [Google Scholar] [CrossRef]
- Byun, H.; Kim, J.; Yoon, D.; Kang, I.S.; Song, J.J. A Deep Convolutional Neural Network for Rock Fracture Image Segmentation. Earth Sci. Inform. 2021, 14, 1937–1951. [Google Scholar] [CrossRef]
- Alzubaidi, F.; Makuluni, P.; Clark, S.R.; Lie, J.E.; Mostaghimi, P.; Armstrong, R.T. Automatic Fracture Detection and Characterization from Unwrapped Drill-Core Images Using Mask R–CNN. J. Pet. Sci. Eng. 2022, 208, 109471. [Google Scholar] [CrossRef]
- Kim, S.; Lee, K.; Lee, M.; Lee, J.; Ahn, T.; Lim, J.T. Evaluation of Saturation Changes during Gas Hydrate Dissociation Core Experiment Using Deep Learning with Data Augmentation. J. Pet. Sci. Eng. 2022, 209, 109820. [Google Scholar] [CrossRef]
- Wang, H.; Wu, W.; Chen, T.; Dong, X.; Wang, G. An Improved Neural Network for TOC, S1 and S2 Estimation Based on Conventional Well Logs. J. Pet. Sci. Eng. 2019, 176, 664–678. [Google Scholar] [CrossRef]
- Wang, H.; Lu, S.; Qiao, L.; Chen, F.; He, X.; Gao, Y.; Mei, J. Unsupervised Contrastive Learning for Few-Shot TOC Prediction and Application. Int. J. Coal Geol. 2022, 259, 104046. [Google Scholar] [CrossRef]
- Souza, J.F.L.; Santos, M.D.; Magalhães, R.M.; Neto, E.M.; Oliveira, G.P.; Roque, W.L. Automatic Classification of Hydrocarbon “Leads” in Seismic Images through Artificial and Convolutional Neural Networks. Comput. Geosci. 2019, 132, 23–32. [Google Scholar] [CrossRef]
- Lei, M.; Rao, Z.; Wang, H.; Chen, Y.; Zou, L.; Yu, H. Maceral Groups Analysis of Coal Based on Semantic Segmentation of Photomicrographs via the Improved U-Net. Fuel 2021, 294, 120475. [Google Scholar] [CrossRef]
- Santos, R.B.M.; Augusto, K.S.; Iglesias, J.C.A.; Rodrigues, S.; Paciornik, S.; Esterle, J.S.; Domingues, A.L.A. A Deep Learning System for Collotelinite Segmentation and Coal Reflectance Determination. Int. J. Coal Geol. 2022, 263, 104111. [Google Scholar] [CrossRef]
- Feng, R. Estimation of Reservoir Porosity Based on Seismic Inversion Results Using Deep Learning Methods. J. Nat. Gas Sci. Eng. 2020, 77, 103270. [Google Scholar] [CrossRef]
- Wang, J.; Cao, J.; Yuan, S. Deep Learning Reservoir Porosity Prediction Method Based on a Spatiotemporal Convolution Bi-Directional Long Short-Term Memory Neural Network Model. Geomech. Energy Environ. 2021, 100282. [Google Scholar] [CrossRef]
- Wu, J.; Yin, X.; Xiao, H. Seeing Permeability from Images: Fast Prediction with Convolutional Neural Networks. Sci. Bull. 2018, 63, 1215–1222. [Google Scholar] [CrossRef]
- Zeng, K.; Wang, Y. A Deep Convolutional Neural Network for Oil Spill Detection from Spaceborne SAR Images. Remote Sens. 2020, 12, 1015. [Google Scholar] [CrossRef]
- de Lima, R.P.; Marfurt, K. Convolutional Neural Network for Remote-Sensing Scene Classification: Transfer Learning Analysis. Remote Sens. 2020, 12, 86. [Google Scholar] [CrossRef]
- Hu, F.; Xia, G.S.; Hu, J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680–14707. [Google Scholar] [CrossRef]
- Yu, D.; Xu, Q.; Guo, H.; Zhao, C.; Lin, Y.; Li, D. An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification. Sensors 2020, 20, 1999. [Google Scholar] [CrossRef]
- Bogdal, C.; Schellenberg, R.; Lory, M.; Bovens, M.; Höpli, O. Recognition of Gasoline in Fire Debris Using Machine Learning: Part II, Application of a Neural Network. Forensic Sci. Int. 2022, 332, 111177. [Google Scholar] [CrossRef]
- Risum, A.B.; Bro, R. Using Deep Learning to Evaluate Peaks in Chromatographic Data. Talanta 2019, 204, 255–260. [Google Scholar] [CrossRef]
- Demšar, J.; Erjavec, A.; Hočevar, T.; Milutinovič, M.; Možina, M.; Toplak, M.; Umek, L.; Zbontar, J.; Zupan, B. Orange: Data Mining Toolbox in Python Tomaž Curk Matija Polajnar Laň Zagar. 2013, Volume 14. Available online: https://jmlr.csail.mit.edu/papers/v14/demsar13a.html (accessed on 29 September 2023).
- Godec, P.; Pančur, M.; Ilenič, N.; Čopar, A.; Stražar, M.; Erjavec, A.; Pretnar, A.; Demšar, J.; Starič, A.; Toplak, M.; et al. Democratized Image Analytics by Visual Programming through Integration of Deep Models and Small-Scale Machine Learning. Nat. Commun. 2019, 10, 4551. [Google Scholar] [CrossRef] [PubMed]
- Pires de Lima, R.; Duarte, D. Pretraining Convolutional Neural Networks for Mudstone Petrographic Thin-Section Image Classification. Geosciences 2021, 11, 336. [Google Scholar] [CrossRef]
- Ribani, R.; Marengoni, M. A Survey of Transfer Learning for Convolutional Neural Networks. In Proceedings of the 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), Rio de Janeiro, Brazil, 28–31 October 2019; pp. 47–57. [Google Scholar] [CrossRef]
Biodegraded | Non-Biodegraded |
---|---|
92 | 129 |
Model | AUC | CA |
---|---|---|
Decision Tree | 0.889 | 0.928 |
Random Forest | 0.973 | 0.939 |
Neural Network | 0.997 | 0.967 |
Naive Bayes | 0.94 | 0.939 |
Logistic Regression | 0.997 | 0.961 |
Model | AUC | CA |
---|---|---|
Neural Network | 0.997 | 0.976 |
ACTUAL | PREDICTED | ∑ | |
---|---|---|---|
Biodegraded | Non-biodegraded | ||
Biodegraded | 14 | 1 | 15 |
Non-biodegraded | 0 | 26 | 26 |
∑ | 14 | 27 | 41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bispo-Silva, S.; de Oliveira, C.J.F.; de Alemar Barberes, G. Geochemical Biodegraded Oil Classification Using a Machine Learning Approach. Geosciences 2023, 13, 321. https://doi.org/10.3390/geosciences13110321
Bispo-Silva S, de Oliveira CJF, de Alemar Barberes G. Geochemical Biodegraded Oil Classification Using a Machine Learning Approach. Geosciences. 2023; 13(11):321. https://doi.org/10.3390/geosciences13110321
Chicago/Turabian StyleBispo-Silva, Sizenando, Cleverson J. Ferreira de Oliveira, and Gabriel de Alemar Barberes. 2023. "Geochemical Biodegraded Oil Classification Using a Machine Learning Approach" Geosciences 13, no. 11: 321. https://doi.org/10.3390/geosciences13110321
APA StyleBispo-Silva, S., de Oliveira, C. J. F., & de Alemar Barberes, G. (2023). Geochemical Biodegraded Oil Classification Using a Machine Learning Approach. Geosciences, 13(11), 321. https://doi.org/10.3390/geosciences13110321