Provenance of the Papuan Peninsula (Papua New Guinea): Zircon Inheritance from Miocene–Pliocene Volcanics and Volcaniclastics
Abstract
:1. Introduction
2. Geological Setting
3. Samples
4. Methodology
5. Results
6. Discussion
6.1. Miocene–Pliocene Volcanism and Sedimentation
6.2. Origin of the Inherited Zircons
6.3. Regional Zircon Provenance
6.4. Implications for Regional Tectonics
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Honza, E.; Davies, H.L.; Keene, J.B.; Tiffin, D.L. Plate boundaries and evolution of the Solomon Sea region. Geo-Mar. Lett. 1987, 7, 161–168. [Google Scholar] [CrossRef]
- Smith, R.I. Tertiary Plate Tectonic Setting and Evolution of Papua New Guinea. In Petroleum Exploration in Papua New Guinea: Proceedings of the First PNG Petroleum Convention, Port Moresby, Papua New Guinea, 12–14 February 1990; Carman, G.J., Carman, Z., Eds.; AAPG: Tulsa, OK, USA, 1990; pp. 229–244. [Google Scholar]
- Hill, K.C.; Hall, R. Mesozoic-Cenozoic evolution of Australia’s New Guinea margin in a west Pacific context. Geological Society of Australia Special Publication 22. Geol. Soc. Am. Spec. Pap. 2003, 372, 265–289. [Google Scholar]
- Pigram, C.J.; Symonds, P.A. A review of the timing of the major tectonic events in the New Guinea Orogen. J. Southeast Asian Earth Sci. 1991, 6, 307–318. [Google Scholar] [CrossRef]
- Davies, H.L. The geology of New Guinea—The cordilleran margin of the Australian continent. Episodes 2012, 35, 87–102. [Google Scholar] [CrossRef]
- Holm, R.J.; Tapster, S.; Jelsma, H.A.; Rosenbaum, G.; Mark, D.F. Tectonic evolution and copper-gold metallogenesis of the Papua New Guinea and Solomon Islands region. Ore Geol. Rev. 2019, 104, 208–226. [Google Scholar] [CrossRef]
- Van Wyck, N.; Williams, I.S. Age and provenance of basement metasediments from the Kubor and Bena Bena Blocks, central Highlands, Papua New Guinea: Constraints on the tectonic evolution of the northern Australian cratonic margin. Aust. J. Earth Sci. 2002, 49, 565–577. [Google Scholar] [CrossRef]
- Kopi, G.; Williams, I.; Findlay, R.H. New Detrital Zircon Data from the Wau-Bulolo Region, Morobe Province, Papua New Guinea; Geological Survey Technical Note 16/2004; Papua New Guinea Department of Mining: Port Moresby, Papua New Guinea, 2004. [Google Scholar]
- Holm, R.J.; Poke, B. Petrology and crustal inheritance of the Cloudy Bay Volcanics as derived from a fluvial conglomerate, Papuan Peninsula (Papua New Guinea): An example of geological inquiry in the absence of in situ outcrop. Cogent Geosci. 2018, 4, 1450198. [Google Scholar] [CrossRef]
- Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J. Asian Earth Sci. 2002, 20, 353–431. [Google Scholar] [CrossRef]
- Seton, M.; Müller, R.D.; Zahirovic, S.; Gaina, C.; Torsvik, T.H.; Shephard, G.; Talsma, A.; Gurnis, M.; Turner, M.; Maus, S.; et al. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 2012, 113, 212–270. [Google Scholar] [CrossRef]
- Zahirovic, S.; Matthews, K.J.; Flament, N.; Müller, R.D.; Hill, K.C.; Seton, M.; Gurnis, M. Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic. Earth-Sci. Rev. 2016, 162, 293–337. [Google Scholar] [CrossRef]
- Gaina, C.; Müller, D.R.; Royer, J.-Y.; Symonds, P. Evolution of the Louisiade triple junction. J. Geophys. Res. 1999, 104, 12927–12939. [Google Scholar] [CrossRef]
- Schellart, W.P.; Lister, G.S.; Toy, V.G. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes. Earth-Sci. Rev. 2006, 76, 191–233. [Google Scholar] [CrossRef]
- Webb, L.E.; Baldwin, S.L.; Fitzgerald, P.G. The Early-Middle Miocene subduction complex of the Louisiade Archipelago, southern margin of the Woodlark Rift. Geochem. Geophys. Geosyst. 2014, 15, 4024–4046. [Google Scholar] [CrossRef]
- Holm, R.J.; Spandler, C.; Richards, S.W. Continental collision, orogenesis and arc magmatism of the Miocene Maramuni arc, Papua New Guinea. Gondwana Res. 2015, 28, 1117–1136. [Google Scholar] [CrossRef]
- Gehrels, G. Detrital Zircon U-Pb Geochronology Applied to Tectonics. Annu. Rev. Earth Planet. Sci. 2014, 42, 127–149. [Google Scholar] [CrossRef]
- Pieters, P.E. Port Moresby-Kalo-Aroa, Papua New Guinea—1:250,000 Geological Map Series, BMR Australia Explanatory Notes; BMR Australia. 1978; 55p.
- Worthing, M.A.; Crawford, A.J. The igneous geochemistry and tectonic setting of metabasites from the emo metamorphics, Papua New Guinea; A record of the evolution and destruction of a backarc basin. Miner. Pet. 1996, 58, 79–100. [Google Scholar] [CrossRef]
- Smith, I.E.M. The chemical characterization and tectonic significance of ophiolite terrains in southeastern Papua New Guinea. Tectonics 2013, 32, 159–170. [Google Scholar] [CrossRef]
- Kopi, G.; Findlay, R.H.; Williams, I. Age and provenance of the Owen Stanley Metamorphic Complex, East Papuan Composite Terrane, Papua New Guinea: Geological Survey of Papua New Guinea, Report. 2000; unpublished. [Google Scholar]
- Dow, D.B.; Smit, J.A.J.; Page, R.W. Wau—1:250 2000,000 Geological Series. Explanatory notes to accompany Wau 1:250,000 geological map: Geological Survey of Papua New Guinea, Explanatory Notes SB/55-14. 1974. [Google Scholar]
- Smith, I.E.M.; Davies, H.L. Geology of the southeast Papuan mainland. BMR J. Aust. Geol. Geophys. 1976, 165, 86. [Google Scholar]
- Österle, J.; Little, T.; Seward, D.; Stockli, D.; Gamble, J. The petrology, geochronology and tectono-magmatic setting of igneous rocks in the Suckling-Dayman metamorphic core complex, Papua New Guinea. Gondwana Res. 2020, 83, 390–414. [Google Scholar] [CrossRef]
- Baldwin, S.L.; Fitzgerald, P.G.; Webb, L.E. Tectonics of the New Guinea Region. Annu. Rev. Earth Planet. Sci. 2012, 40, 495–520. [Google Scholar] [CrossRef]
- Davies, H.L.; Jaques, A.L. Emplacement of ophiolite in Papua New Guinea. Geol. Soc. Lond. Spec. Publ. 1984, 13, 341–349. [Google Scholar] [CrossRef]
- Davies, H.L.; Smith, I.E. Geology of Eastern Papua. Geol. Soc. Am. Bull. 1971, 82, 3299–3312. [Google Scholar] [CrossRef]
- Lus, W.Y.; McDougall, I.; Davies, H.L. Age of the metamorphic sole of the Papuan Ultramafic Belt ophiolite, Papua New Guinea. Tectonophysics 2004, 394, 85–101. [Google Scholar] [CrossRef]
- Jakes, P.; Smith, I.E.M. High potassium calc–alkaline rocks from Cape Nelson, Eastern Papua. Contrib. Mineral. Petrol. 1970, 28, 259–271. [Google Scholar] [CrossRef]
- Smith, I.E. High-potassium intrusive from southeast Papua. Contrib. Mineral. Petrol. 1972, 34, 167–176. [Google Scholar] [CrossRef]
- Smith, I.E. Volcanic evolution of eastern Papua. Tectonophysics 1982, 87, 315–334. [Google Scholar] [CrossRef]
- Smith, I.E.M. High-Magnesium Andesites: The Example of the Papuan Volcanic Arc. In Orogenic Andesites and Crustal Growth; Gómez-Tuena, A., Straub, S.M., Zellmer, G.F., Eds.; Geological Society; Special Publications: London, UK, 2013; p. 385. [Google Scholar]
- Smith, I.E.; Milsom, J.S. Late Cenozoic volcanism and extension in Eastern Papua. Geol. Soc. Lond. Spéc. Publ. 1984, 16, 163–171. [Google Scholar] [CrossRef]
- Luyendyk, B.P.; MacDonald, K.C.; Byran, W.B. Rifting history of the Woodlark Basin in the southwest Pacific. Geol. Soc. Am. Bull. 1973, 84, 1125–1134. [Google Scholar] [CrossRef]
- Smith, I.E.M.; Chappell, B.W.; Ward, G.K.; Freeman, R.S. Peralkaline rhyolites associated with andesitic arcs of the southwest Pacific. Earth Planet. Sci. Lett. 1977, 37, 230–236. [Google Scholar] [CrossRef]
- Ibañez-Mejia, M.; Pullen, A.; Pepper, M.; Urbani, F.; Ghoshal, G.; Ibañez-Mejia, J.C. Use and abuse of detrital zircon U-Pb geochronology—A case from the Rio Orinoco delta, eastern Venezuela. Geology 2018, 46, 1019–1022. [Google Scholar] [CrossRef]
- Sircombe, K.N.; Bleeker, W.; Stern, R.A. Detrital zircon geochronology and grain-size analysis of a ~2800 Ma Mesoarchean protocratonic cover succession, Slave Province, Canada. Earth Planet. Sci. Lett. 2001, 189, 207–220. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S.; Vezzoli, G. Grainsize dependence of sediment composition and environmental bias in provenance studies. Earth Planet. Sci. Lett. 2009, 277, 422–432. [Google Scholar] [CrossRef]
- Hajek, E.A.; Huzurbazar, S.V.; Mohrig, D.; Lynds, R.M.; Heller, P.L. Statistical characterization of grain-size distributions in sandy fluvial systems. J. Sediment. Res. 2010, 80, 184–192. [Google Scholar] [CrossRef]
- Lawrence, R.L.; Cox, R.; Mapes, R.W.; Coleman, D.S. Hydrodynamic fractionation of zircon age populations. Geol. Soc. Am. Bull. 2011, 123, 295–305. [Google Scholar] [CrossRef]
- Skwarko, S.K. Stratigraphic Tables, Papua New Guinea. Bureau of Mineral Resources 1978, Geology and Geophysics, Australia, Report 193, BMR Microfilm MF61.
- Holm, R.J.; Spandler, C.; Richards, S.W. Melanesian arc far-field response to collision of the Ontong Java Plateau: Geochronology and pertrogenesis of the Simuku Igneous Complex, New Britain, Papua New Guinea. Tectonophysics 2013, 603, 189–212. [Google Scholar] [CrossRef]
- Van Achterbergh, E.; Ryan, C.G.; Jackson, S.E.; Griffin, W.L. Appendix, Laser Ablation-ICP-Mass Spectrometry in the Earth Sciences: Principle and Applications; Short Course Series; Sylvester, P.J., Ed.; Mineralogical Association of Canada (MAC): Ottawa, ON, Canada, 2001; Volume 29, p. 239. [Google Scholar]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.E. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Davis, D.W.; Aleinkoff, J.N.; Valley, J.W.; Mudil, R.; Campbell, I.H.; Korsch, R.J.; Williams, I.S.; et al. Improved 206Pb/238U microprobe geochronology by the monitoring of trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 2004, 205, 115–140. [Google Scholar] [CrossRef]
- Kennedy, A.K.; Wotzlaw, J.-F.; Schaltegger, U.; Crowley, J.L.; Schmitz, M. Eocene zircon reference material for microanalysis of U-Th-Pb isotopes and trace elements. Can. Mineral. 2014, 52, 409–421. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot 3.70: A Geochronological Toolkit for Microsoft Excel. In Berkeley Geochronology Center Special Publication No. 4; Berkeley Geochronology Center: Berkeley, CA, USA, 2009. [Google Scholar]
- Schärer, U. The effect of initial 230Th disequilibrium on young U-Pb ages: The Makalu case, Himalaya. Earth Planet. Sci. Lett. 1984, 67, 191–204. [Google Scholar] [CrossRef]
- Parrish, R.R. U-Pb dating of monazite and its application to geological problems. Can. J. Earth Sci. 1990, 27, 1431–1450. [Google Scholar] [CrossRef]
- Crowley, J.L.; Schoene, B.; Bowring, S.A. U-Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 2007, 35, 1123–1126. [Google Scholar] [CrossRef]
- Tera, F.; Wasserburg, G.J. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet. Sci. Lett. 1972, 14, 281–304. [Google Scholar] [CrossRef]
- Stacey, J.S.; Kramers, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Coutts, D.S.; Matthews, W.A.; Hubbard, M. Assessment of widely used methods to derive depositional ages from detrital zircon populations. Geosci. Front. 2019, 10, 1421–1435. [Google Scholar] [CrossRef]
- Vermeesch, P. Maximum depositional age estimation revisited. Geosci. Front. 2021, 12, 843–850. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Gehrels, G.E. U-Pb ages of detrital zircons in Jurassic eolian and associated sandstones of the Colorado plateau: Evidence for transcontinental dispersal and intraregional recycling of sediment. GSA Bull. 2009, 121, 408–433. [Google Scholar] [CrossRef]
- Ross, J.B.; Ludvigson, G.A.; Möller, A.; Gonzales, L.A.; Walker, J.D. Stable isotope paleohydrology and chemostratigraphy of the Albian Wayan Formation of the wedge-top depozone, North American western interior basin. Sci. China Earth Sci. 2017, 60, 44–57. [Google Scholar] [CrossRef]
- Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Vermeesch, P. On the visualisation of detrital age distributions. Chem. Geol. 2012, 312–313, 190–194. [Google Scholar]
- Ahrens, L.H.; Cherry, R.D.; Erlank, A.J. Observations on the Th-U relationship in zircons from granitic rocks and from kimberlites. Geochem. Cosmochim. Acta 1967, 29, 711–716. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of Zircon Textures. In Reviews in Mineralogy & Geochemistry 53: Zircon; Hanchar, J.M., Hoskin, P.W.O., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2003. [Google Scholar]
- Heaman, L.M.; Bowins, R.; Crocket, J. The chemical composition of igneous zircon suites: Implications for geochemical tracer studies. Geochim. Cosmochim. Acta 1990, 54, 1597–1607. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. In Reviews in Mineralogy & Geochemistry 53: Zircon; Hanchar, J.M., Hoskin, P.W.O., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2003. [Google Scholar]
- Ashley, P.M.; Flood, R.H. Low-K tholeiites and high-K igneous rocks from Woodlark Island, Papua New Guinea. J. Geol. Soc. Aust. 1981, 28, 227–240. [Google Scholar] [CrossRef]
- Bodorkos, S.; Sheppard, S.; Saroa, D.; Tsiperau, C.U.; Sircombe, K.N. New SHRIMP U-Pb Zircon Ages from the Wau-BuloloRegion, Papua New Guinea; Geoscience Australia Record 2013/25; Papua New Guinea Technical Note TN 2013/05; Mineral Resources Authority: Port Moresby, Papua New Guinea, 2013. [Google Scholar]
- Blewett, R.S.; Black, L.P.; Sun, S.-S.; Knutson, J.; Hutton, L.J.; Bain, J.H.C. U-Pb zircon and Sm-Nd geochronology of the Mesoproterozoic of North Queensland: Implications for a Rodian connection with the Belt supergroup of North America. Precambrian Res. 1998, 89, 101–127. [Google Scholar] [CrossRef]
- Murgulov, V.; Beyer, E.; Griffin, W.L.; O’Reilly, S.Y.; Walters, S.G.; Stephens, D. Crustal evolution in the Georgetown Inlier, North Queensland, Australia: A detrital zircon grain study. Chem. Geol. 2007, 245, 198–218. [Google Scholar] [CrossRef]
- Shaanan, U.; Rosenbaum, G.; Sihombing, F.M.H. Continuation of the Ross-Delamerian Orogen: Insights from eastern Australian detrital-zircon data. Aust. J. Earth Sci. 2017, 65, 1123–1131. [Google Scholar] [CrossRef]
- Cheng, Y.; Todd, C.N.; Henderson, R.A.; Danišík, M.; Sahlström, F.; Chang, Z.; Corral, I. Jurassic uplift and erosion of the northeast Queensland continental margin: Evidence from (U–Th)/He thermochronology combined with U–Pb detrital zircon age spectra. Aust. J. Earth Sci. 2020, 67, 591–604. [Google Scholar] [CrossRef]
- Tucker, R.T.; Roberts, E.M.; Henderson, R.A.; Kemp, A.I. Large igneous province or long-lived magmatic arc along the eastern margin of Australia during the Cretaceous? Insights from the sedimentary record. GSA Bull. 2016, 128, 1461–1480. [Google Scholar] [CrossRef]
- Korsch, R.J.; Adams, C.J.; Black, L.P.; Foster, D.A.; Fraser, G.L.; Murray, C.G.; Foudoulis, C.; Griffin, W.L. Geochronology and provenance of the Late Paleozoic accretionary wedge and Gympie Terrane, New England Orogen, eastern Australia. Aust. J. Earth Sci. 2009, 56, 655–685. [Google Scholar] [CrossRef]
- Shaanan, U.; Rosenbaum, G.; Hoy, D.; Mortimer, N. Late Paleozoic geology of the Queensland Plateau (offshore northeastern Australia). Aust. J. Earth Sci. 2018, 65, 357–366. [Google Scholar] [CrossRef]
- Campbell, M.J.; Shaanan, U.; Rosenbaum, G.; Allen, C.M.; Cluzel, D.; Maurizot, P. Permian rifting and isolation of New Caledonia: Evidence from detrital zircon geochronology. Gondwana Res. 2018, 60, 54–68. [Google Scholar] [CrossRef]
- Pirard, C.; Spandler, C. The zircon record of high-pressure metasedimentary rocks of New Caledonia: Implications for regional tectonics of the south-west Pacific. Gondwana Res. 2017, 46, 79–94. [Google Scholar] [CrossRef]
- Rosenbaum, G. The Tasmanides: Phanerozoic tectonic evolution of eastern Australia. Annu. Rev. Earth Planet. Sci. 2018, 46, 291–325. [Google Scholar] [CrossRef]
- Champion, D.C.; Bultitude, R.J. Kennedy Igneous Association. In Geology of Queensland; Jell, P.A., Ed.; Geological Survey of Queensland: Brisbane, QLD, Austrilia, 2013; pp. 473–514. [Google Scholar]
- Matthews, K.J.; Maloney, K.T.; Zahirovic, S.; Williams, S.E.; Seton, M.; Muller, R.D. Global plate boundary evolution and kinematics since the late Paleozoic. Glob. Planet. Change 2016, 146, 226–250. [Google Scholar] [CrossRef]
- Boyden, J.A.; Müller, R.D.; Gurnis, M.; Torsvik, T.H.; Clark, J.A.; Turner, M.; Ivey-Law, H.; Watson, R.J.; Cannon, J.S. Next-Generation Plate-Tectonic Reconstructions using GPlates. In Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences; Keller, G.R., Baru, C., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 95–114. [Google Scholar]
- Little, T.A.; Webber, S.; Mizera, M.; Boulton, C.; Oesterle, J.; Ellis, S.; Boles, A.; Van der Pluijm, B.; Norton, K.; Seward, D.; et al. Evolution of a rapidly slipping, active low-angle normal fault, Suckling-Dayman metamorphic core complex, SE Papua New Guinea. GSA Bull. 2019, 131, 1333–1363. [Google Scholar] [CrossRef]
- Klootwijk, C.; Giddings, J.; Pigram, C.; Loxton, C.; Davies, H.; Rogerson, R.; Falvey, D. Papua New Guinea Highlands: Palaeomagnetic constraints on terrane tectonics. Tectonophysics 2003, 362, 239–272. [Google Scholar] [CrossRef]
- Gold, D.P.; Casas-Gallego, M.; Holm, R.; Webb, M.; White, L.T. New Tectonic Reconstructions of New Guinea Derived from Biostratigraphy and Geochronology. In Proceedings of the Indonesian Petroleum Association, Digital Technology Conference, Jakarta, Indonesia, 14–17 September 2020. 26p. [Google Scholar]
- Decker, J.; Ferdian, F.; Morton, A.; Fanning, M.; White, L.T. New Geochronology Data from Eastern Indonesia—An Aid to Understanding Sedimentary Provenance in a Frontier Region. In Proceedings of the Indonesian Petroleum Association 41st Annual Convention & Exhibition 2017, IPA17-551-G, Jakarta, Indonesia, 17–19 May 2017. 18p. [Google Scholar]
- Webb, M.; White, L.T.; Jost, B.M.; Tiranda, H. The Tamrau Block of NW New Guinea records late Miocene-Pliocene collision at the northern tip of the Australian Plate. J. Asian Earth Sci. 2019, 179, 238–260. [Google Scholar] [CrossRef]
- Holm, R.; Gold, D.; White, L.; Webb, M.; Mahoney, L.; McLaren, S.; Heilbronn, K.; Oesterle, J.; Mizera, M.; Saroa, D.; et al. Provenance and Tectonics of the Allochthonous New Guinea Terranes: Implications for the Formation and Evolution of Regional Basins. In Proceedings of the 1st AAPG/EAGE PNG Geoscience Conference & Exhibition, Port Moresby, Papua New Guinea, 25–27 February 2020. [Google Scholar]
- Dow, D.B. A Geological Synthesis of Papua New Guinea; Geology and Geophysics, Bulletin 201; Bureau of Mineral Resources: Canberra, ACT, Australia, 1977; 58p. [Google Scholar]
- Dow, D.B.; Smit, J.A.J.; Bain, J.H.C.; Ryburn, R.J. Geology of the South Sepik Region, New Guinea. Geology and Geophysics, Bulletin 133, Bulletin PNG 4; Department of National Development, Bureau of Mineral Resources: Osborne Park, WA, Australia, 1972; 109p. [Google Scholar]
- Hill, K.C.; Gleadow, A.J.W. Apatite Fission Track Analysis of the Papuan Basin. In Petroleum Exploration and Development in Papua New Guinea: Proceedings of the First PNG Petroleum Convention; Carman, G.J., Carman, Z., Eds.; PNG Chamber of Mines and Petroleum: Port Moresby, Papua New Guinea, 1990; pp. 119–136. [Google Scholar]
- Bryan, S.E.; Constantine, A.E.; Stephens, C.J.; Ewart, A.; Schön, R.W.; Parianos, J. Early Cretaceous volcano-sedimentary successions along the eastern Australian continental margin: Implications for the break-up of eastern Gondwana. Earth Planet. Sci. Lett. 1997, 153, 85–102. [Google Scholar] [CrossRef]
- Ewart, A.; Schon, R.W.; Chappell, B.W. The Cretaceous volcanic-plutonic province of the central Queensland (Australia) coast—A rift related ‘calc-alkaline’ province. Earth Environ. Sci. Trans. R. Soc. Edinb. 1992, 83, 327–345. [Google Scholar]
- Bryan, S.E.; Cook, A.G.; Allen, C.M.; Siegel, C.; Purdy, D.J.; Greentree, J.S.; Uysal, I.T. Early-mid Cretaceous tectonic evolution of eastern Gondwana: From silicic LIP magmatism to continental rupture. Episodes 2012, 35, 142–152. [Google Scholar] [CrossRef]
- Whattam, S.A. Arc-continent collisional orogenesis in the SW Pacific and the nature, source and correlation of emplaced ophiolitic nappe components. Lithos 2009, 113, 88–114. [Google Scholar] [CrossRef]
Sample | Formation | Easting | Northing | Locality | Brief Description |
---|---|---|---|---|---|
103021 | Mt Davidson Volcanics | 480508 | 9046783 | Bakoiudu Village roadside | Coarse-grained volcaniclastic sandstone; deeply weathered with relict plagioclase, amphibole and biotite. |
103220 | Mt Davidson Volcanics | 484681 | 9056640 | Tapini Highway, Jailobo–Ninifi 2 | Medium-grained volcaniclastic sandstone with intermediate volcanic pebble clasts, plagioclase, biotite and minor quartz. |
103252 | Yaifa Formation | 484973 | 9060133 | Ninifi 1, Mona Highway | Highly degraded mudstone to claystone; no thin section. |
103253 | Yaifa Formation | 484952 | 9059892 | Ninifi 2, Mona Highway | Highly degraded sandstone to mudstone; no thin section. |
103254A | Apinaipi Formation | 466423 | 9035278 | Mona Highway | Matrix-supported pebble to cobble conglomerate with clasts comprising intermediate volcanics. |
103256 | Apinaipi Formation | 466423 | 9035278 | Mona Highway | Tuffaceous sandstone with intermediate volcanic pebble clasts, and plagioclase and biotite fragments. |
103257 | Yaifa Formation | 496928 | 9006075 | Doa Plantation | Mudstone to siltstone with minor shards of biotite. |
103258 | Yaifa Formation | 496928 | 9006075 | Doa Plantation | Fine-grained tuffaceous sandstone; plagioclase, biotite and pyroxene; minor volcanic pebble clasts. |
103259 | Mt Davidson Volcanics | 498999 | 9005213 | Doa Plantation | Basaltic volcanic agglomerate; clasts predominantly comprise porphyritic basalt with phenocrysts of plagioclase, and pyroxene. |
103261 | Astrolabe Agglomerate | 542733 | 8958003 | Rouna Power Station 2 | Basaltic volcanic agglomerate; clasts predominantly comprise porphyritic basalt with phenocrysts of plagioclase and olivine. |
103271 | Kore Volcanics | 591677 | 8893242 | Kore Village roadside | Clast of porphyritic basaltic andesite derived from volcanic conglomerate. |
103272 | Kore Volcanics | 591677 | 8893242 | Kore Village roadside | Clast of basalt derived from volcanic conglomerate. |
103273 | Kore Volcanics | 591736 | 8893276 | Kore Village roadside | Tuffaceous sandstone with basaltic pebble clasts, and plagioclase, olivine and pyroxene fragments. |
Formation | Sample | Number of Analyses | Number of Concordant Analyses | Number of Cenozoic Ages | Number of Cretaceous Ages | Number of Ages > Cenozoic | Cenozoic YSG (Ma ± 2σ) | Cenozoic Y3Zo (Ma ± 2σ) | Cenozoic MLA (Ma ± 2σ) | Interpreted Cretaceous Source YSG (Ma ± 2σ) | Interpreted Cretaceous Source Y3Zo (Ma ± 2σ) | Interpreted Cretaceous Source MLA (Ma ± 2σ) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Apinaipi Formation | 103254A | 91 | 77 | 2 | 10 | 75 | 6.53 ± 0.27 | - | 6.54 ± 0.31 | 103.5 ± 3.1 | ||
103256 | 74 | 71 | 70 | 1 | 1 | 4.34 ± 0.26 | 4.52 ± 0.43 | 4.78 ± 0.09 | 100.8 ± 2.9 | |||
Formation | 165 | 148 | 72 | 11 | 76 | 4.34 ± 0.26 | 4.52 ± 0.43 | 5.08 ± 0.03 | 100.8 ± 2.9 | 102.9 ± 5.2 | 102.3 ± 3.2 | |
Yaifa Formation | 103252 | 100 | 60 | 37 | 3 | 23 | 5.81 ± 0.67 | 6.10 ± 0.35 | 6.21 ± 0.22 | 103.9 ± 3.4 | ||
103253 | 102 | 61 | 31 | 8 | 30 | 6.38 ± 0.40 | 6.59 ± 0.19 | 6.73 ± 0.12 | 96.9 ± 3.4 | |||
103257 | 65 | 51 | 1 | 2 | 50 | 6.36 ± 0.26 | - | - | 105.8 ± 3.4 | |||
103258 | 55 | 36 | 7 | 0 | 29 | 5.27 ± 0.80 | 7.81 ± 0.31 | 5.70 ± 0.84 | - | |||
Formation | 322 | 208 | 76 | 13 | 132 | 5.27 ± 0.80 | 5.8 ± 1.1 | 6.76 ± 0.1 | 96.9 ± 3.4 | 103.1 ± 6.8 | 98.0 ± 5.5 | |
Mt Davidson Volcanics | 103021 | 100 | 71 | 42 | 2 | 29 | 4.59 ± 0.54 | 4.66 ± 0.18 | 4.84 ± 0.19 | 96.7 ± 3.1 | ||
103220 | 91 | 48 | 29 | 5 | 19 | 5.47 ± 0.81 | 5.79 ± 0.22 | 6.00 ± 0.14 | 76.5 ± 2.5 | |||
103259 | 86 | 72 | 0 | 0 | 72 | - | - | - | - | |||
Formation | 277 | 191 | 71 | 7 | 120 | 4.59 ± 0.54 | 4.66 ± 1.7 | 4.97 ± 0.09 | 76.5 ± 2.5 | - | 76.95 ± 3.7 | |
Astrolabe Agglomerate | 103261 | 55 | 53 | 1 | 6 | 52 | 36.9 ± 1.7 | - | 37.0 ± 2.2 | 98.1 ± 2.8 | 99.9 ± 1.5 | 99.8 ± 1.8 |
Kore Volcanics | 103271 | 55 | 49 | 1 | 2 | 48 | 5.64 ± 0.40 | - | 5.66 ± 0.49 | 101.2 ± 2.9 | ||
103272 | 76 | 72 | 0 | 7 | 72 | - | - | - | 96.4 ± 2.8 | |||
103273 | 100 | 82 | 0 | 0 | 82 | - | - | - | - | |||
Formation | 231 | 203 | 1 | 9 | 202 | 5.64 ± 0.40 | - | 5.66 ± 0.49 | 96.4 ± 2.8 | 103.5 ± 5.6 | 97.6 ± 3.7 | |
Total | 1050 | 803 | 221 | 46 | 582 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holm, R.J.; Heilbronn, K.; Saroa, D.; Maim, G. Provenance of the Papuan Peninsula (Papua New Guinea): Zircon Inheritance from Miocene–Pliocene Volcanics and Volcaniclastics. Geosciences 2023, 13, 324. https://doi.org/10.3390/geosciences13110324
Holm RJ, Heilbronn K, Saroa D, Maim G. Provenance of the Papuan Peninsula (Papua New Guinea): Zircon Inheritance from Miocene–Pliocene Volcanics and Volcaniclastics. Geosciences. 2023; 13(11):324. https://doi.org/10.3390/geosciences13110324
Chicago/Turabian StyleHolm, Robert J., Kelly Heilbronn, Dulcie Saroa, and Gideon Maim. 2023. "Provenance of the Papuan Peninsula (Papua New Guinea): Zircon Inheritance from Miocene–Pliocene Volcanics and Volcaniclastics" Geosciences 13, no. 11: 324. https://doi.org/10.3390/geosciences13110324
APA StyleHolm, R. J., Heilbronn, K., Saroa, D., & Maim, G. (2023). Provenance of the Papuan Peninsula (Papua New Guinea): Zircon Inheritance from Miocene–Pliocene Volcanics and Volcaniclastics. Geosciences, 13(11), 324. https://doi.org/10.3390/geosciences13110324