Slip Activation Potential of Fractures in the Crystalline Basement Rocks of Kuujjuaq (Nunavik, Canada) to Assess Enhanced Geothermal Systems Development
Abstract
:1. Introduction
- What is the probability of shear slip on pre-existing fractures at the current state of stress?
- Which orientations of fractures are most likely to be activated?
- What in situ fluid pressure is required to overcome the shear stress and activate pre-existing fractures?
2. Fracture Network Characterization
3. Empirical Stress Regime Estimates
4. Slip Tendency Analysis and Reactivation Potential
5. Discussion
- 6 sites ceased operations temporarily or shut down due to seismicity or seismicity concerns;
- 24 EGS projects were delayed or terminated due to drilling and plant operation issues, such as holes and cracks in wellbore casing, stuck drill strings, and well collapses;
- 18 sites faced challenges in reservoir creation and circulation, such as insufficient connectivity between the injection and production wells or water loss.
- What is the probability of shear slip of pre-existing fractures at the current state of stress?
- Which orientations of fractures are most likely to be activated?
- What in situ fluid pressure is required to overcome the shear stress and activate pre-existing fractures?
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canada’s Renewable Power. Available online: https://www.cer-rec.gc.ca/en/data-analysis/energy-commodities/electricity/report/canadas-renewable-power/index.html (accessed on 14 July 2023).
- Gabrys, M. Energy Transition in Canada’s Northern Territories. In Energy Policy Advancement, 1st ed.; Kurochkin, D., Crawford, M.J., Shabliy, E.V., Eds.; Springer: Cham, Switzerland, 2022; pp. 123–143. [Google Scholar]
- Pinto, H.; Gates, I.D. Why is it so difficult to replace diesel in Nunavut, Canada? Renew. Sustain. Energy Rev. 2022, 157, 112030. [Google Scholar] [CrossRef]
- Geology of Nunavut. Available online: https://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fulle.web&search1=R=223684 (accessed on 14 July 2023).
- Services Web Cartographiques. Available online: https://sigeom.mines.gouv.qc.ca/signet/classes/I1108_afchCarteIntr (accessed on 14 July 2023).
- Grasby, S.E.; Allen, D.M.; Bell, S.; Chen, Z.; Ferguson, G.; Jessop, A.; Kelman, M.; Ko, M.; Majorowicz, J.; Moore, M.; et al. Geothermal Energy Resource Potential of Canada; Report No.: Open File 6914; Geological Survey of Canada: Ottawa, ON, Canada, 2012.
- Arriaga, M.; Brooks, M.; Moore, N. Energy Access—The Canadian Context; Waterloo Global Initiative’s OpenAccess Energy Blueprint; WGSI: Waterloo, ON, Canada, 2017. [Google Scholar]
- MacDonald, P.; Stedman, A.; Symons, G. The UK Geothermal Hot Dry Rock R&D Programme. In Proceedings of the Seventeenth Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 29–31 January 1982. [Google Scholar]
- Richards, H.G.; Parker, R.H.; Green, A.S.P.; Jones, R.H.; Nicholls, J.D.M.; Nicol, D.A.C.; Randall, M.M.; Richards, S.; Stewart, R.C.; Willis-Richards, J. The performance and characteristics of the experimental hot dry rock geothermal reservoir at Rosemanowes, Cornwall (1985–1988). Geothermics 1994, 23, 73–109. [Google Scholar] [CrossRef]
- Brown, D.W.; Duchane, D.V. Scientific progress on the Fenton Hill HDR project since 1983. Geothermics 1999, 28, 591–601. [Google Scholar] [CrossRef]
- Parker, R. The Rosemanowes HDR project 1983–1991. Geothermics 1999, 28, 603–615. [Google Scholar] [CrossRef]
- Genter, A.; Evans, K.; Cuenot, N.; Fritsch, D.; Sanjuan, B. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS). Comptes Rendus Geosci. 2010, 342, 502–516. [Google Scholar] [CrossRef]
- Brown, D.W.; Duchane, D.V.; Heiken, G.; Hriscu, V.T. Mining the Earth’s Heat: Hot Dry Rock Geothermal Energy, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Kelkar, S.; WoldeGabriel, G.; Rehfeldt, K. Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA. Geothermics 2016, 63, 5–14. [Google Scholar] [CrossRef]
- Amann, F.; Gischig, V.; Evans, K.; Doetsch, J.; Jalali, R.; Valley, B.; Krietsch, H.; Dutler, N.; Villiger, L.; Brixel, B.; et al. The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: Open questions tackled in a decameter-scale in situ stimulation experiment. Solid Earth 2018, 9, 115–137. [Google Scholar] [CrossRef]
- Gischig, V.S.; Giardini, D.; Amann, F.; Hertrich, M.; Krietsch, H.; Doetsch, S.; Doonechaly, N.G.; Driesner, T.; Dutler, N.; Evans, K.F.; et al. Hydraulic stimulation and fluid circulation experiments in underground laboratories: Stepping up the scale towards engineered geothermal systems. Geomech. Energy Environ. 2020, 24, 100175. [Google Scholar] [CrossRef]
- McClure, M.W.; Horne, R.N. An investigation of stimulation mechanisms in Enhanced Geothermal Systems. Int. J. Rock Mech. Min. Sci. 2014, 72, 242–260. [Google Scholar] [CrossRef]
- Norbeck, J.H.; McClure, M.W.; Horne, R.N. Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation. Geothermics 2018, 74, 135–149. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Tang, H. Stimulation mechanism and design of enhanced geothermal systems: A comprehensive review. Renew. Sustain. Energy Rev. 2022, 155, 111914. [Google Scholar] [CrossRef]
- Peacock, D.C.P.; Sanderson, D.J.; Leiss, B. Use of Mohr Diagrams to Predict Fracturing in a Potential Geothermal Reservoir. Geosciences 2021, 11, 501. [Google Scholar] [CrossRef]
- Sibson, R.H. Reverse fault rupturing: Competition between non-optimal and optimal fault orientations. Geol. Soc. Lond. Spec. Publ. 2012, 367, 39–50. [Google Scholar] [CrossRef]
- Xie, L.; Min, K.-B.; Song, Y. Observations of hydraulic stimulations in seven enhanced geothermal system projects. Renew. Energy 2015, 79, 56–65. [Google Scholar] [CrossRef]
- Majer, E.L.; Baria, R.; Stark, M.; Oates, S.; Bommer, J.; Smith, B.; Asanuma, H. Induced seismicity associated with Enhanced Geothermal Systems. Geothermics 2007, 36, 185–222. [Google Scholar] [CrossRef]
- Buijze, L.; van Bijsterveldt, L.; Cremer, H.; Paap, B.; Veldkamp, H.; Wassing, B.B.T.; van Wees, J.-D.; van Yperen, G.C.N.; ter Heege, J.H.; Jaarsma, B. Review of induced seismicity in geothermal systems worldwide and implications for geothermal systems in the Netherlands. Neth. J. Geosci. 2019, 98, e13. [Google Scholar] [CrossRef]
- Pine, R.J.; Batchelor, A.S. Downward migration of shearing in jointed rock during hydraulic injections. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1984, 21, 249–263. [Google Scholar] [CrossRef]
- Deichmann, N.; Giardini, D. Earthquakes Induced by the Stimulation of an Enhanced Geothermal System below Basel (Switzerland). Seismol. Res. Lett. 2009, 80, 784–798. [Google Scholar] [CrossRef]
- Zang, A.; Oye, V.; Jousset, P.; Deichmann, N.; Gritto, R.; McGarr, A.; Majer, E.; Bruhn, D. Analysis of induced seismicity in geothermal reservoirs—An overview. Geothermics 2014, 52, 6–21. [Google Scholar] [CrossRef]
- Moeck, I.; Kwiatek, G.; Zimmermann, G. Slip tendency analysis, fault reactivation potential and induced seismicity in a deep geothermal reservoir. J. Struct. Geol. 2009, 31, 1174–1182. [Google Scholar] [CrossRef]
- Morris, A.; Ferrill, D.A.; Henderson, D.B. Slip-tendency analysis and fault reactivation. Geology 1996, 24, 275–278. [Google Scholar] [CrossRef]
- Ito, T.; Hayashi, K. Role of Stress-controlled Flow Pathways in HDR Geothermal Reservoirs. Pure Appl. Geophys. 2003, 160, 1103–1124. [Google Scholar] [CrossRef]
- Yaghoubi, A.; Hickson, C.J.; Leonenko, Y.; Dusseault, M.B. Probabilistic assessment of induced seismicity at the Alberta No. 1 geothermal project site. Can. J. Earth Sci. 2023, 60, 294–306. [Google Scholar] [CrossRef]
- Bauer, J.F.; Krumbholz, M.; Meier, S.; Tanner, D.C. Predictability of properties of a fractured geothermal reservoir: The opportunities and limitations of an outcrop analogue study. Geotherm. Energy 2017, 5, 24. [Google Scholar] [CrossRef]
- Wydte, L.M.; Bär, K.; Colombero, C.; Comina, C.; Deb, P.; Lepillier, B.; Mandrone, G.; Milsch, H.; Rochelle, C.A.; Vagnon, F.; et al. Outcrop analogue study to determine reservoir properties of the Los Humeros and Acoculco geothermal fields, Mexico. Adv. Geosci. 2018, 45, 281–287. [Google Scholar] [CrossRef]
- Lepillier, B.; Bruna, P.-O.; Bruhn, D.; Bastesen, E.; Daniilidis, A.; Garcia, O.; Torabi, A.; Wheeler, W. From outcrop scanlines to discrete fracture networks, an integrative workflow. J. Struct. Geol. 2020, 133, 103992. [Google Scholar] [CrossRef]
- Peacock, D.C.P.; Sanderson, D.J.; Leiss, B. Use of Analogue Exposures of Fractured Rock for Enhanced Geothermal Systems. Geosciences 2022, 12, 318. [Google Scholar] [CrossRef]
- Hudson, J.A.; Cornet, F.H.; Christiansson, R. ISRM Suggested Methods for rock stress estimation—Part 1: Strategy for rock stress estimation. Int. J. Rock Mech. Min. Sci. 2003, 40, 991–998. [Google Scholar] [CrossRef]
- Sjöberg, J.; Christiansson, R.; Hudson, J.A. ISRM Suggested Methods for rock stress estimation—Part 2: Overcoring methods. Int. J. Rock Mech. Min. Sci. 2003, 40, 999–1010. [Google Scholar] [CrossRef]
- Haimson, B.C.; Cornet, F.H. ISRM Suggested Methods for rock stress estimation—Part 3: Hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). Int. J. Rock Mech. Min. Sci. 2003, 40, 1011–1020. [Google Scholar] [CrossRef]
- Stephansson, O.; Zang, A. ISRM Suggested Methods for Rock Stress Estimation—Part 5: Establishing a Model for the In Situ Stress at a Given Site. In The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014, 1st ed.; Ulusay, R., Ed.; Springer: Cham, Switzerland, 2014; pp. 187–201. [Google Scholar]
- Yaghoubi, A.; Dusseault, M.B.; Leonenko, Y. Injection-induced fault slip assessment in Montney Formation in Western Canada. Sci. Rep. 2022, 12, 11551. [Google Scholar] [CrossRef]
- Giordano, N.; Raymond, J. Alternative and sustainable heat production for drinking water needs in a subarctic climate (Nunavik, Canada): Borehole thermal energy storage to reduce fossil fuel dependency in off-grid communities. Appl. Energy 2019, 252, 113463. [Google Scholar] [CrossRef]
- Kanzari, I. Évaluation du Potentiel des Pompes à Chaleur Géothermique Pour La Communauté Nordique de Kuujjuaq. Master’s Thesis, Université du Québec, Institut national de la Recherche Scientifique, Québec, QC, Canada, 2019. [Google Scholar]
- Gunawan, E.; Giordano, N.; Jensson, P.; Newson, J.; Raymond, J. Alternative heating systems for northern remote communities: Techno-economic analysis of ground-coupled heat pumps in Kuujjuaq, Nunavik, Canada. Renew. Energy 2020, 147, 1540–1553. [Google Scholar] [CrossRef]
- Miranda, M.M.; Giordano, N.; Raymond, J.; Pereira, A.J.S.C.; Dezayes, C. Thermophysical properties of surficial rocks: A tool to characterize geothermal resources of remote northern regions. Geotherm. Energy 2020, 8, 4. [Google Scholar] [CrossRef]
- Miranda, M.M.; Raymond, J.; Dezayes, C. Uncertainty and Risk Evaluation of Deep Geothermal Energy Source for Heat Production and Electricity Generation in Remote Northern Regions. Energies 2020, 13, 4221. [Google Scholar] [CrossRef]
- Miranda, M.M.; Velez Marquez, M.I.; Raymond, J.; Dezayes, C. A numerical approach to infer terrestrial heat flux from shallow temperature profiles in remote northern regions. Geothermics 2021, 93, 102064. [Google Scholar] [CrossRef]
- Miranda, M.M.; Raymond, J.; Willis-Richards, J.; Dezayes, C. Are Engineered Geothermal Energy Systems a Viable Solution for Arctic Off-Grid Communities? A Techno-Economic Study. Water 2021, 13, 3526. [Google Scholar] [CrossRef]
- Miranda, M.M.; Raymond, J.; Dezayes, C. Estimating theoretical stress regime for engineered geothermal energy systems in an arctic community (Kuujjuaq, Canada). Comptes Rendus Geosci. 2023, 355, 85–108. [Google Scholar] [CrossRef]
- Miranda, M.M.; Raymond, J.; Dezayes, C.; Wigston, A.; Perreault, S. Multiscale fracture networks and their impact on hydroshearing response in the Canadian Shield (Kuujjuaq, Canada). Geomech. Geophys. Geo-Energy Geo-Resour. 2023, 9, 85. [Google Scholar] [CrossRef]
- Miranda, M.M.; Raymond, J. Assessing Kuujjuaq’s (Nunavik, Canada) Deep Geothermal Energy Potential: Core Analysis, Thermal Properties Characterization and Surface Heat Flux Estimation of a 234 m Deep Geothermal Exploration Well; Research Report R2109; INRS: Québec, QC, Canada, 2023. [Google Scholar]
- What is Magnetic Declination in Kuujjuaq, Canada? Available online: https://www.magnetic-declination.com/Canada/Kuujjuaq/335810.html (accessed on 16 July 2023).
- Zeeb, C.; Gomez-Rivas, E.; Bons, P.D.; Blum, P. Evaluation of sampling methods for fracture network characterization using outcrops. AAPG Bull. 2013, 97, 1545–1566. [Google Scholar] [CrossRef]
- Watkins, H.; Bond, C.E.; Healy, D.; Butler, R.W.H. Appraisal of fracture sampling methods and a new workflow to characterise heterogeneous fracture networks at outcrop. J. Struct. Geol. 2015, 72, 67–82. [Google Scholar] [CrossRef]
- Grapher. Available online: https://www.goldensoftware.com/products/grapher (accessed on 16 July 2023).
- Stereonet. Available online: https://www.rickallmendinger.net/stereonet (accessed on 16 July 2023).
- World Stress Map Project. Available online: https://www.world-stress-map.org/ (accessed on 16 July 2023).
- Simplified Seismic Hazard Map for Canada, the Provinces and Territories. Available online: https://www.seismescanada.rncan.gc.ca/hazard-alea/simphaz-en.php#QC (accessed on 16 July 2023).
- Adams, J. Crustal stresses in Eastern Canada. In Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound; Gregersen, S., Basham, P.W., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989; pp. 289–298. [Google Scholar]
- Arjang, B. Pre-mining stresses at some hard rock mines in the Canadian Shield. CIM Bull. 1991, 84, 80–86. [Google Scholar]
- Arjang, B. Canadian crustal stresses and their application in mine design. In Mine Planning and Equipment Selection 1998; Singhal, R.K., Ed.; A. A. Balkema: Rotterdam, The Netherlands, 1998; pp. 269–274. [Google Scholar]
- Herget, G. High stress occurrences in the Canadian Shield. In Proceedings of the 23rd US Symposium on Rock Mechanics (USRMS), Berkeley, CA, USA, 25 August 1982. [Google Scholar]
- Herget, G. Stress assumptions for underground excavations in the Canadian shield. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1987, 24, 95–97. [Google Scholar] [CrossRef]
- Herget, G. Rock stresses and rock stress monitoring in Canada. In Rock Testing and Site Characterization: Principles, Practice and Projects; Hudson, J.A., Ed.; Elsevier: Berlin, Germany, 1993; pp. 473–496. [Google Scholar]
- Young, S.; Maloney, S. An Update to the Canadian Shield Stress Database; NWMO-TR-2015-18; NWMO: Toronto, ON, Canada, 2015. [Google Scholar]
- Andrieux, P.P.; Li, H.; Brummer, R.K.; Caumartin, R.; Rispoli, A. Rock mechanics approach for the recovery of the zone G crown pillar at the Raglan Katinniq Mine. In Proceedings of the 3rd CANUS Rock Mechanics Symposium, Toronto, ON, Canada, 9–15 May 2009. [Google Scholar]
- Kaiser, P.K.; Maloney, S.M.; Yong, S. Role of large scale heterogeneities on in-situ stress and induced stress fields. In Proceedings of the 50th US Rock Mechanics/Geomechanics Symposium, Houston, TX, USA, 26–29 June 2016. [Google Scholar]
- Hoek, E.; Brown, E.T. Underground Excavation in Rock; Institute of Mining & Metallurgy: London, UK, 1980. [Google Scholar]
- Zhang, L. Engineering Properties of Rocks; Elsevier: Oxford, UK, 2017. [Google Scholar]
- Sibson, R.H. Controls on maximum fluid overpressure defining conditions for mesozonal mineralization. J. Struct. Geol. 2004, 26, 1127–1136. [Google Scholar] [CrossRef]
- Zoback, M.D.; Townend, J. Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere. Tectonophysics 2001, 336, 19–30. [Google Scholar] [CrossRef]
- Jaeger, J.C.; Cook, N.G.W.; Zimmerman, R.W. Fundamentals of Rock Mechanics; Blackwell Publishing: Oxford, UK, 2007. [Google Scholar]
- Byerlee, J. Friction of rocks. Pure Appl. Geophys. 1978, 116, 615–626. [Google Scholar] [CrossRef]
- Mahbaz, S.B.; Yaghoubi, A.; Dehghani-Sanij, A.; Sarvaramini, E.; Leonenko, Y.; Dusseault, M.B. Well-Doublets: A First-Order Assessment of Geothermal SedHeat Systems. Appl. Sci. 2021, 11, 697. [Google Scholar] [CrossRef]
- Pollack, A.; Horne, R.; Mukerji, T. What Are the Challenges in Developing Enhanced Geothermal Systems (EGS)? Observations from 64 EGS Sites. In Proceedings of the World Geothermal Congress 2020+1, Reykjavik, Iceland, 24–27 October 2021. [Google Scholar]
- Krietsch, H.; Doetsch, J.; Dutler, N.; Jalali, M.; Gischig, V.; Loew, S.; Amann, F. Comprehensive geological dataset describing a crystalline rock mass for hydraulic stimulation experiments. Sci. Data 2018, 5, 180269. [Google Scholar] [CrossRef]
- Krietsch, H.; Gischig, V.S.; Doetsch, J.; Evans, K.F.; Villiger, L.; Jalali, M.; Valley, B.; Löw, S.; Amann, F. Hydromechanical processes and their influence on the stimulation effected volume: Observations from a decameter-scale hydraulic stimulation project. Solid Earth 2020, 11, 1699–1729. [Google Scholar] [CrossRef]
- Villiger, L.; Gischig, V.S.; Kwiatek, G.; Krietsch, H.; Doetsch, J.; Jalali, M.; Amann, F.; Giardini, D.; Wiemer, S. Metre-scale stress heterogeneities and stress redistribution drive complex fracture slip and fracture growth during a hydraulic stimulation experiment. Geophys. J. Int. 2021, 225, 1689–1703. [Google Scholar] [CrossRef]
Principal Stress | Orientation | Magnitude | Observations | Ref. | |
---|---|---|---|---|---|
SV | --- | (0.0260–0.0324)z | 0 < z < 2200 m | SV < SH,average | [61,62] |
SH,average | --- | 9.9 + 0.0371z | 0 < z < 900 m | ||
33.4 + 0.0111z | 900 < z 2200 m | ||||
SV | --- | (0.0266 ± 0.008)z | 60 < z < 1890 m | SV < Shmin < SHmax | [59] |
SH,average | --- | 5.9 + 0.0349z | |||
SHmax | --- | 8.2 + 0.0422z | |||
Shmin | --- | 3.6 + 0.0276z | |||
SV | --- | 0.0285z | 0 < z < 2200 m | SV < Shmin < SHmax | [63] |
S1 | N248°/10° | 12.1 + (0.0403 ± 0.0020)z | |||
S2 | N300–340°/0° | 6.4 + (0.0293 ± 0.0019)z | |||
S3 | Vertical | 1.4 + (0.0225 ± 0.0015)z | |||
SV | --- | 0.0260z | 0 < z < 6000 m | SV < Shmin < SHmax | [60] |
S1 | NE/horizontal | 13.5 + 0.0344z | |||
S2 | NW/sub-horizontal | 8.0 + 0.0233z | |||
S3 | Vertical | 3.0 + 0.0180z | |||
S1 | N-S/horizontal | 0.0513z | --- | SV < Shmin < SHmax | [65] |
S2 | E-W/horizontal | 0.0378z | |||
S3 | Vertical | 0.0270z | |||
SV | --- | (0.0258–0.0263)z | 12 < z < 2552 m | SV < Shmin < SHmax | [64] |
S1 | N227°/02° | (0.040 ± 0.001)z − (9.2 ± 1.5) | |||
S2 | N310°/08° | (0.029 ± 0.001)z + (4.6 ± 1.159) | |||
S3 | N270°/88° | (0.021 ± 0.001)z − (0.8 ± 0.872) | |||
SV | --- | 0.021z | 0 < z < 1300 m | SV < Shmin < SHmax | [66] |
S1 | --- | 0.012z + 42.4 | 660 < z < 1300 m | ||
S2 | --- | 0.013z + 24.1 | |||
S3 | --- | 0.007z + 9.7 |
Stress Ratio Coefficient | Expression | Reference |
---|---|---|
kmax | [62] | |
kmin | [62] | |
kmax | [63] | |
kmin | [63] | |
kmax | [60] | |
kmin | [60] |
Depth (km) | Statistical Parameters | Principal Stresses | |||
---|---|---|---|---|---|
SV (MPa) | Shmin (MPa) | SHmax (MPa) | Pp (MPa) | ||
1 | Mean | 27 | 30 | 42 | 11 |
St dev | 1.3 | 3.0 | 5.7 | 0.5 | |
Median | 26.8 | 30.3 | 42.9 | 10.9 | |
[Min–Max] | [24–30] | [22–38] | [28–56] | [10–12] | |
2 | Mean | 54 | 57 | 75 | 22 |
St dev | 2.6 | 5.0 | 10.2 | 0.9 | |
Median | 53.7 | 57.0 | 75.7 | 21.7 | |
[Min–Max] | [48–61] | [44–71] | [49–98] | [19–24] | |
3 | Mean | 81 | 83 | 107 | 33 |
St dev | 3.9 | 6.8 | 14.4 | 1.3 | |
Median | 80.5 | 83.6 | 108.1 | 32.6 | |
[Min–Max] | [73–91] | [65–103] | [71–139] | [29–36] | |
4 | Mean | 108 | 110 | 138 | 44 |
St dev | 5.2 | 8.7 | 18.7 | 1.8 | |
Median | 107.4 | 109.9 | 140.0 | 43.5 | |
[Min–Max] | [97–122] | [85–136] | [93–185] | [39–48] | |
5 | Mean | 135 | 136 | 170 | 54 |
St dev | 6.6 | 10.7 | 22.7 | 2.2 | |
Median | 134.2 | 137.1 | 171.2 | 54.3 | |
[Min–Max] | [121–152] | [107–168] | [113–226] | [49–61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda, M.M.; Yaghoubi, A.; Raymond, J.; Wigston, A.; Dusseault, M.B. Slip Activation Potential of Fractures in the Crystalline Basement Rocks of Kuujjuaq (Nunavik, Canada) to Assess Enhanced Geothermal Systems Development. Geosciences 2023, 13, 340. https://doi.org/10.3390/geosciences13110340
Miranda MM, Yaghoubi A, Raymond J, Wigston A, Dusseault MB. Slip Activation Potential of Fractures in the Crystalline Basement Rocks of Kuujjuaq (Nunavik, Canada) to Assess Enhanced Geothermal Systems Development. Geosciences. 2023; 13(11):340. https://doi.org/10.3390/geosciences13110340
Chicago/Turabian StyleMiranda, Mafalda M., Ali Yaghoubi, Jasmin Raymond, Andrew Wigston, and Maurice B. Dusseault. 2023. "Slip Activation Potential of Fractures in the Crystalline Basement Rocks of Kuujjuaq (Nunavik, Canada) to Assess Enhanced Geothermal Systems Development" Geosciences 13, no. 11: 340. https://doi.org/10.3390/geosciences13110340
APA StyleMiranda, M. M., Yaghoubi, A., Raymond, J., Wigston, A., & Dusseault, M. B. (2023). Slip Activation Potential of Fractures in the Crystalline Basement Rocks of Kuujjuaq (Nunavik, Canada) to Assess Enhanced Geothermal Systems Development. Geosciences, 13(11), 340. https://doi.org/10.3390/geosciences13110340