Th-Rich Zircon from a Pegmatite Vein Hosted in the Wiborg Rapakivi Granite Massif
Abstract
:1. Introduction
2. Geological Setting
3. Methods
4. Results
4.1. EPMA Analytical Results
4.2. SIMS (TE + REE) Analytical Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vlach, S.R.F. On the morphology and geochemistry of hydrothermal crypto- and microcrystalline zircon aggregates in a peralkaline granite. Minerals 2022, 12, 628. [Google Scholar] [CrossRef]
- Kuznetsov, N.B.; Romanyuk, T.V.; Strashko, A.V.; Novikova, A.S. Ophiolite association of Cape Fiolent (western part of the Mountainous Crimea)—The upper age constraint according to the U-Pb isotope dating of plagiorhyolites (Monakh Cliff). J. Min. Inst. 2022, 255, 435–447. [Google Scholar] [CrossRef]
- Smolkin, V.F.; Mokrushin, A.V.; Bayanova, T.B.; Serov, P.A.; Ariskin, A.A. Magma feeding paleochannel in the Monchegorsk ore region: Geochemistry, isotope U-Pb and Sm-Nd analysis (Kola region, Russia). J. Min. Inst. 2022, 255, 405–418. [Google Scholar] [CrossRef]
- Marin, Y.B. On mineralogical studies and the use of mineralogical information in solving petro-and ore genesis problems. Geol. Ore Depos. 2021, 63, 625–633. [Google Scholar] [CrossRef]
- Kudryashov, N.M.; Udoratina, O.V.; Kalinin, A.A.; Lyalina, L.M.; Selivanova, E.A.; Grove, M.J. U-Pb (SHRIMP-RG) age of zircon from rare-metal (Li, Cs) pegmatites of the Okhmylk deposit of the Kolmozero-Voron’ya greenstone belt (northeast of the Fennoscandian shield). J. Min. Inst. 2022, 255, 448–454. [Google Scholar] [CrossRef]
- Levashova, E.V.; Popov, V.A.; Levashov, D.S.; Rumyantseva, N.A. Distribution of trace elements controlled by sector and growth zonings in zircon from a miaskite pegmatite of the Vishnegorsky massif, the Southern Urals. J. Min. Inst. 2022, 254, 136–148. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.I. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Harley, S.L.; Kelly, N.M. Zircon tiny but timely. Elements 2007, 3, 13–18. [Google Scholar] [CrossRef]
- Xiang, W.; Griffin, W.L.; Jie, C.; Pinyun, H.; Xiang, L.I. U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks: Improved zircon-melt distribution coefficients. Acta Geol. Sin. (Engl. Ed.) 2011, 85, 164–174. [Google Scholar] [CrossRef]
- Kudryashov, N.M.; Skublov, S.G.; Galankina, O.L.; Udoratina, O.V.; Voloshin, A.V. Abnormally high-hafnium zircon from rare-metal pegmatites of the Vasin-Mylk deposit (the northeastern part of the Kola Peninsula). Geochemistry 2020, 80, 125489. [Google Scholar] [CrossRef]
- Velikoslavinsky, D.A. Petrology of the Vyborg rapakivi massif. In Trudy Lab. Geol. Dokembriya. 3; (In Russian). USSR: Moscow, Russia, 1953; 142p. [Google Scholar]
- Haapala, I.; Rämö, O.T. Petrogenesis of the Proterozoic rapakivi granites of Finland. Geol. Soc. Am. Spec. Pap. 1990, 246, 275–286. [Google Scholar] [CrossRef]
- Sharkov, E.V. Middle-Proterozoic anorthosite-rapakivi granite complexes: An example of within plate magmatism in abnormally thick crust: Evidence from the East European Craton. Prec. Res. 2010, 183, 689–700. [Google Scholar] [CrossRef]
- Larin, A.M. Granite Rapakivi and the Associating Rocks; Nauka Publisher: St. Petersburg, Russia, 2011; 356p. (In Russian) [Google Scholar]
- Härmä, P. Natural stone exploration in the classic Wiborg rapakivi granite batholith of southeastern Finland—New insights from integration of lithological, geophysical and structural data. Geol. Surv. Finl. 2020, 411, 90. [Google Scholar] [CrossRef]
- Bulakh, A.G.; Gavrilenko, V.V.; Panova, E.G. Rapakivi granite in St. Petersburg: Architecture and mineralogical-petrografical observations. Vestnik SPbSU. Ser. 7. Geol. Geogr. 2016, 3, 40–53. (In Russian) [Google Scholar] [CrossRef]
- Bulakh, A.G.; Popov, G.N.; Yanson, S.Y.; Ivanov, M.A. New data on the granite pedestal of the monument to Peter the Great “The Bronze Horseman” in Saint Petersburg. J. Min. Inst. 2021, 248, 180–189. [Google Scholar] [CrossRef]
- Belyaev, A.M. Mineralogical and geochemical specialization of the Vyborg rapakivi granite massif. Vestnik Leningrad Univ. Ser. 7. Geol. Geogr. 1983, 6, 17–26. (In Russian) [Google Scholar]
- Rämö, O.T.; Turkki, V.; Mänttäri, I.; Heinonen, A.; Larjamo, K.M.; Lahaye, Y. Age and isotopic fingerprints of some plutonic rocks in the Wiborg rapakivi granite batholith with special reference to the dark wiborgite of the Ristisaari Island. Bull. Geol. Soc. Finl. 2014, 86, 71–91. [Google Scholar] [CrossRef]
- Salonen, L. 238U series radionuclides as a source of increased radioactivity in groundwater originating from Finnish bedrock. IAHS Publ. 1994, 222, 71–84. Available online: https://silo.tips/download/radioactivity-in-groundwater-originating-from-finnish-bedrock (accessed on 20 October 2023).
- Nikishin, V.V.; Blinov, P.A.; Fedorov, V.V.; Nikishina, E.K.; Tokarev, I.V. Analysis of the problems of high-quality drinking water extraction from underground water intakes on Vysotsky Island in the Vyborg district of the Leningrad region. J. Min. Inst. 2023. Available online: https://pmi.spmi.ru/index.php/pmi/article/view/15915 (accessed on 20 October 2023).
- Heinonen, A.; Mänttäri, I.; Rämö, O.T.; Andersen, T.; Larjamo, K. A priori evidence for zircon antecryst entrainment in megacrystic Proterozoic granites. Geology 2016, 44, 227–230. [Google Scholar] [CrossRef]
- Hinton, R.W.; Upton, B.G.J. The chemistry of zircon: Variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim. Cosmochim. Acta 1991, 55, 3287–3302. [Google Scholar] [CrossRef]
- Fedotova, A.A.; Bibikova, E.V.; Simakin, S.G. Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies. Geochem. Intern. 2008, 46, 912–927. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Min. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Finch, R.J.; Hanchar, J.M. Structure and chemistry of zircon and zircon-group minerals. Rev. Min. Geochem. 2003, 53, 1–25. [Google Scholar] [CrossRef]
- Geisler, T.; Schleicher, H. Improved U–Th–total Pb dating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon. Chem. Geol. 2000, 163, 269–285. [Google Scholar] [CrossRef]
- Fu, B.; Page, F.Z.; Cavosie, A.J.; Fournelle, J.; Kita, N.T.; Lackey, J.S.; Wilde, S.A.; Valley, J.W. Ti-in-zircon thermometry: Applications and limitations. Contrib. Miner. Petrol. 2008, 156, 197–215. [Google Scholar] [CrossRef]
- Levashova, E.V.; Mamykina, M.E.; Skublov, S.G.; Galankina, O.L.; Li, Q.L.; Li, X.H. Geochemistry (TE, REE, Oxygen) of zircon from leucogranites of the Belokurikhinsky Massif, Gorny Altai, as indicator of formation conditions. Geochem. Int. 2023, 1–17. [Google Scholar] [CrossRef]
- Heinonen, A.P.; Andersen, T.; Rämö, O.T. Re-evaluation of rapakivi petrogenesis: Source constraints from the Hf isotope composition of zircon in the rapakivi granites and associated mafic rocks of southern Finland. J. Petrol. 2010, 51, 1687–1709. [Google Scholar] [CrossRef]
- Ushikubo, T.; Kita, N.T.; Cavosie, A.J.; Wilde, S.A.; Rudnick, R.L.; Valley, J.W. Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust. Earth Planet. Sci. Lett. 2008, 272, 666–676. [Google Scholar] [CrossRef]
- De Hoog, J.C.M.; Lissenberg, C.J.; Brooker, R.A.; Hinton, R.; Trail, D.; Hellebrand, E. Hydrogen incorporation and charge balance in natural zircon. Geochim. Cosmochim. Acta 2014, 141, 472–486. [Google Scholar] [CrossRef]
- Beskin, S.M.; Marin, Y.B. Granite systems with rare-metal pegmatites. Geol. Ore Depos. 2020, 62, 554–563. [Google Scholar] [CrossRef]
- Lukkari, S.; Thomas, R.; Haapala, I. Crystallization of the Kymi topaz granite stock within the Wiborg rapakivi granite batholith, Finland: Evidence from melt inclusions. Canad. Miner. 2009, 47, 1359–1374. [Google Scholar] [CrossRef]
- Asthana, D.; Pophare, A.M.; Kumar, H. Neoarchaean Dongargarh rapakivi A-type granites and its relationship to Pitepani tholeiites. Gondwana Geol. Mag. 2014, 16, 25–40. [Google Scholar]
- Mumpton, F.A.; Roy, R. Hydrothermal stability studies of the zircon-thorite group. Geochim. Cosmochim. Acta 1961, 21, 217–238. [Google Scholar] [CrossRef]
- Xie, L.; Wang, R.; Chen, X.; Qiu, J.; Wang, D. Th-rich zircon from peralka line A-type granite: Mineralogical features and petrological implications. Chin. Sci. Bull. 2005, 50, 809–817. [Google Scholar] [CrossRef]
- Rubin, J.N.; Henry, C.D.; Price, J.G. Hydrothermal zircons and zircon overgrowths, Sierra Blanca Peaks, Texas. Amer. Miner. 1989, 74, 865–869. [Google Scholar]
- Breiter, K.; Förster, H.J.; Škoda, R. Extreme P-, Bi-, Nb-, Sc-, U- and F-rich zircon from fractionated perphosphorous granites: The peraluminous Podlesí granite system, Czech Republic. Lithos 2006, 88, 15–34. [Google Scholar] [CrossRef]
- Hoshino, M.; Kimata, M.; Nishida, N.; Shimizu, M.; Akasaka, T. Crystal chemistry of zircon from granitic rocks, Japan: Genetic implications of HREE, U and Th enrichment. N. Jb. Miner. Abh. 2010, 187, 167–188. [Google Scholar] [CrossRef]
- Park, C.; Song, Y.; Chung, D.; Kang, I.M.; Khulganakhuu, C.; Yi, K. Recrystallization and hydrothermal growth of high U–Th zircon in the Weondong deposit, Korea: Record of post-magmatic alteration. Lithos 2016, 260, 268–285. [Google Scholar] [CrossRef]
- Anderson, Ε.B.; Burakov, Β.E.; Pazukhin, Ε.M. High-Uranium zircon from “Chernobyl Lavas”. Radiochim. Acta 1993, 60, 149–152. [Google Scholar] [CrossRef]
- Geisler, T.; Burakov, B.E.; Zirlin, V.; Nikolaeva, L.; Pöml, P.A. Raman spectroscopic study of high-uranium zircon from the Chernobyl. Eur. J. Miner. 2005, 17, 883–894. [Google Scholar] [CrossRef]
Element/Spot | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 16.28 | 20.33 | 16.56 | 17.74 | 15.96 | 16.35 | 16.16 | 17.64 | 16.44 | 19.07 | 16.84 | 19.99 |
ZrO2 | 35.63 | 42.11 | 33.82 | 33.08 | 30.37 | 30.98 | 31.44 | 31.95 | 31.47 | 39.56 | 30.03 | 42.11 |
HfO2 | 1.76 | 2.27 | 1.85 | 1.66 | 1.48 | 1.44 | 1.40 | 1.57 | 1.56 | 2.27 | 1.47 | 2.12 |
ThO2 | 9.16 | 4.41 | 9.41 | 14.52 | 18.08 | 18.34 | 17.93 | 8.89 | 9.73 | 6.26 | 18.08 | 3.79 |
UO2 | 0.67 | 0.42 | 0.54 | 0.69 | 0.75 | 0.70 | 0.69 | 0.60 | 0.63 | 0.54 | 0.70 | 0.44 |
P2O5 | 2.06 | 1.24 | 1.87 | 2.17 | 2.03 | 2.00 | 2.05 | 1.67 | 1.64 | 1.57 | 2.14 | 1.23 |
CaO | 0.46 | 0.70 | 0.41 | 0.57 | 0.59 | 0.66 | 0.63 | 0.50 | 0.47 | 0.40 | 0.61 | 0.57 |
FeO | 7.04 | 4.78 | 8.81 | 3.02 | 6.14 | 2.16 | 2.32 | 10.33 | 8.21 | 4.99 | 6.91 | 8.81 |
Al2O3 | 2.33 | 1.86 | 2.15 | 2.26 | 2.06 | 2.15 | 2.04 | 2.51 | 2.32 | 2.17 | 2.19 | 2.12 |
Y2O3 | 5.12 | 3.90 | 4.34 | 4.84 | 3.96 | 4.39 | 4.25 | 4.33 | 4.20 | 4.58 | 4.57 | 3.91 |
Nb2O5 | 0.24 | 0.27 | 0.34 | 0.30 | 0.26 | 0.30 | 0.30 | 0.24 | 0.39 | 0.20 | 0.27 | 0.13 |
Ce2O3 | 0.70 | 0.54 | 0.55 | 0.72 | 0.55 | 0.64 | 0.62 | 0.61 | 0.64 | 0.68 | 0.53 | 0.51 |
Dy2O3 | 0.69 | 0.55 | 0.56 | 0.68 | 0.48 | 0.52 | 0.48 | 0.54 | 0.59 | 0.64 | 0.60 | 0.53 |
Ta2O5 | 1.63 | 0.88 | 1.90 | 1.49 | 1.42 | 1.48 | 1.23 | 1.64 | 1.94 | 1.08 | 0.94 | 1.05 |
Total | 83.76 | 84.25 | 83.09 | 83.74 | 84.14 | 82.11 | 81.53 | 83.01 | 80.22 | 84.01 | 85.87 | 87.30 |
Element/Spot | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
La | 1908 | 1742 | 2173 | 1860 | 1411 | 2375 | 874 | 1748 | 1740 |
Ce | 4454 | 4036 | 4164 | 6380 | 4157 | 5583 | 4059 | 5390 | 6882 |
Pr | 571 | 520 | 664 | 807 | 544 | 708 | 457 | 717 | 826 |
Nd | 2432 | 2179 | 2796 | 3584 | 2434 | 3116 | 2172 | 3251 | 3719 |
Sm | 1155 | 1079 | 1166 | 1734 | 1177 | 1299 | 1124 | 1492 | 1902 |
Eu | 47.6 | 44.8 | 41.3 | 71.3 | 45.9 | 53.6 | 50.1 | 55.1 | 84.9 |
Gd | 1930 | 1726 | 1821 | 2824 | 1932 | 2129 | 1776 | 2346 | 2679 |
Dy | 3353 | 3221 | 3794 | 5463 | 3764 | 4306 | 4053 | 5306 | 6827 |
Er | 4083 | 3900 | 4178 | 6561 | 4289 | 4735 | 4830 | 6313 | 8416 |
Yb | 6204 | 6393 | 6875 | 10,754 | 6903 | 8143 | 7882 | 10,442 | 14,431 |
Lu | 697 | 692 | 863 | 1273 | 851 | 982 | 1042 | 1398 | 1868 |
Li | 3.02 | 11.6 | 5.76 | 1.04 | 2.77 | 3.64 | 0.75 | 0.67 | 0.69 |
P | 6286 | 5526 | 4685 | 7683 | 6260 | 7402 | 4746 | 8426 | 9047 |
Ca | 2171 | 2526 | 1929 | 2796 | 2733 | 2334 | 2205 | 1974 | 1691 |
Ti | 693 | 12,565 | 734 | 1281 | 1509 | 1144 | 2589 | 1381 | 2236 |
Sr | 23.5 | 26.5 | 21.0 | 40.1 | 29.8 | 31.3 | 69.3 | 36.1 | 22.2 |
Y | 28,282 | 24,927 | 28,724 | 43,717 | 27,670 | 33,159 | 30,917 | 36,185 | 51,524 |
Nb | 2117 | 3510 | 1590 | 2384 | 2337 | 2997 | 2017 | 1497 | 1952 |
Ba | 369 | 388 | 504 | 363 | 330 | 376 | 673 | 321 | 524 |
Hf | 7421 | 5863 | 6315 | 11,160 | 6567 | 11,575 | 17,364 | 15,775 | 16,150 |
Th | 105,603 | 85,635 | 87,848 | 125,257 | 92,994 | 146,245 | 58,613 | 80,589 | 46,399 |
U | 3528 | 3488 | 4024 | 6243 | 4301 | 4659 | 2706 | 5745 | 6825 |
Th/U | 29.9 | 24.6 | 21.8 | 20.1 | 21.6 | 31.4 | 21.7 | 14.0 | 6.80 |
Eu/Eu* | 0.10 | 0.10 | 0.09 | 0.10 | 0.09 | 0.10 | 0.11 | 0.09 | 0.11 |
Ce/Ce* | 1.03 | 1.03 | 0.84 | 1.26 | 1.15 | 1.04 | 1.55 | 1.16 | 1.39 |
ΣREE | 26,835 | 25,532 | 28,535 | 41,311 | 27,508 | 33,432 | 28,319 | 38,459 | 49,374 |
ΣLREE | 9366 | 8477 | 9797 | 12,630 | 8547 | 11,783 | 7562 | 11,106 | 13,167 |
ΣHREE | 16,267 | 15,931 | 17,531 | 26,876 | 17,739 | 20,296 | 19,584 | 25,805 | 34,221 |
LuN/LaN | 3.52 | 3.83 | 3.83 | 6.60 | 5.81 | 3.98 | 11.5 | 7.71 | 10.3 |
LuN/GdN | 2.92 | 3.25 | 3.83 | 3.65 | 3.56 | 3.73 | 4.75 | 4.82 | 5.64 |
SmN/LaN | 0.97 | 0.99 | 0.86 | 1.49 | 1.34 | 0.88 | 2.06 | 1.37 | 1.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skublov, S.G.; Petrov, D.A.; Galankina, O.L.; Levashova, E.V.; Rogova, I.V. Th-Rich Zircon from a Pegmatite Vein Hosted in the Wiborg Rapakivi Granite Massif. Geosciences 2023, 13, 362. https://doi.org/10.3390/geosciences13120362
Skublov SG, Petrov DA, Galankina OL, Levashova EV, Rogova IV. Th-Rich Zircon from a Pegmatite Vein Hosted in the Wiborg Rapakivi Granite Massif. Geosciences. 2023; 13(12):362. https://doi.org/10.3390/geosciences13120362
Chicago/Turabian StyleSkublov, Sergey G., Dmitriy A. Petrov, Olga L. Galankina, Ekaterina V. Levashova, and Ilona V. Rogova. 2023. "Th-Rich Zircon from a Pegmatite Vein Hosted in the Wiborg Rapakivi Granite Massif" Geosciences 13, no. 12: 362. https://doi.org/10.3390/geosciences13120362
APA StyleSkublov, S. G., Petrov, D. A., Galankina, O. L., Levashova, E. V., & Rogova, I. V. (2023). Th-Rich Zircon from a Pegmatite Vein Hosted in the Wiborg Rapakivi Granite Massif. Geosciences, 13(12), 362. https://doi.org/10.3390/geosciences13120362