Toward a Plausible Methodology to Assess Rock Slope Instabilities at a Regional Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Description of Workflow Steps
3. Results
3.1. Kinematic Analysis
3.2. Back-Analyses for Plane Sliding and Wedge Failure
3.3. Monte Carlo Simulation and Fragility Curves
4. Discussion and Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Argyroudis, S.; Pitilakis, K.; Anastasiadis, A. Roadway Network Seismic Risk Analysis in Urban Areas: The case of Thessaloniki—Greece. In Proceedings of the International Symposium of GEOLINE, Lyon, France, 23–25 May 2005. [Google Scholar]
- Grasso, S.; Maugeri, M. The road map for seismic risk analysis in a Mediterranean city. Soil Dyn. Earthq. Eng. 2009, 29, 1034–1045. [Google Scholar] [CrossRef]
- Mavrouli, O.; Corominas, J.; Ibarbia, I.; Alonso, N.; Jugo, I.; Ruiz, J.; Luzuriaga, S.; Navarro, J.A. Integrated risk assessment due to slope instabilities in the roadway network of Gipuzkoa, Basque Country. Nat. Hazards Earth Syst. Sci. 2019, 19, 399–419. [Google Scholar] [CrossRef] [Green Version]
- Kilanitis, I.; Sextos, A. Integrated seismic risk and resilience assessment of roadway networks in earthquake prone areas. Bull. Earthq. Eng. 2019, 17, 181–210. [Google Scholar] [CrossRef] [Green Version]
- Sepúlveda, S.A.; Murphy, W.; Jibson, R.W.; Petley, D.N. Seismically induced rock slope failures resulting from topographic amplification of strong ground motions: The case of Pacoima Canyon, California. Eng. Geol. 2005, 80, 336–348. [Google Scholar] [CrossRef]
- Newmark, N.M. Effects of Earthquakes on Dams and Embankments. Geotechnique 1965, 15, 139–160. [Google Scholar] [CrossRef] [Green Version]
- Kveldsvik, V.; Kaynia, A.M.; Nadim, F.; Bhasin, R.; Nilsen, B.; Einstein, H.H. Dynamic distinct-element analysis of the 800m high Åknes rock slope. Int. J. Rock Mech. Min. Sci. 2009, 46, 686–698. [Google Scholar] [CrossRef]
- Sumi, T.; Yashima, A.; Sawada, K.; Moriguchi, S. A simple method for evaluating fragility of rock slope. In Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt, 5–9 October 2009. [Google Scholar]
- Shukla, S.K.; Khandelwal, S.; Verma, V.N.; Sivakugan, N. Effect of Surcharge on the Stability of Anchored Rock Slope with Water Filled Tension Crack under Seismic Loading Condition. Geotech. Geol. Eng. 2009, 27, 529–538. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X. Three-dimensional Seismic Displacement Analysis of Rock Slopes based on Hoek-Brown Failure Criterion. KSCE J. Civ. Eng. 2018, 22, 4334–4344. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, A.; Xu, C.; Zheng, J. A Modified Newmark Method for Calculating Permanent Displacement of Seismic Slope considering Dynamic Critical Acceleration. Adv. Civ. Eng. 2019, 2019, 9782515. [Google Scholar] [CrossRef] [Green Version]
- Zang, M.; Qi, S.; Zou, Y.; Sheng, Z.; Zamora, B.S. An improved method of Newmark analysis for mapping hazards of coseismic landslides. Nat. Hazards Earth Syst. Sci. 2020, 20, 713–726. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.Z. Development of fragility functions for slope instability analysis. Landslides 2015, 12, 165–175. [Google Scholar] [CrossRef]
- Roy, N.; Sarkar, R.; Sarkar, K.; Jat, M.K.; Fulwaria, G. Assessment of Vulnerability of Rock Slope Considering Material and Seismic Variability. J. Geol. Soc. India 2018, 92, 449–456. [Google Scholar] [CrossRef]
- Johari, A.; Fotovat, A. Pseudo-static reliability stability analysis of infinite slope with triangle wedge failure. In Proceedings of the 8th International Conference on Seismology and Earthquake Engineering, Tehran, Iran, 11–13 November 2019. [Google Scholar]
- Zhou, A.; Huang, X.; Li, N.; Jiang, P.; Wang, W. A Monte Carlo Approach to Estimate the Stability of Soil–Rock Slopes Considering the Non-Uniformity of Materials. Symmetry 2020, 12, 590. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Liu, H.; Wu, Y.; Zhang, W.; Wang, Y.; Santosh, M. Characterization of geo-material parameters: Gene concept and big data approach in geotechnical engineering. Geosyst. Geoenviron. 2022, 1, 100003. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, C.; Tang, L.; Gu, X.; Wang, L. Efficient time-variant reliability analysis of Bazimen landslide in the Three Gorges Reservoir Area using XGBoost and LightGBM algorithms. Gondwana Res. 2022. [Google Scholar] [CrossRef]
- Maruyama, Y.; Yamazaki, F.; Mizuno, K.; Tsuchiya, Y.; Yogai, H. Fragility curves for expressway embankments based on damage datasets after recent earthquakes in Japan. Soil Dyn. Earthq. Eng. 2010, 30, 1158–1167. [Google Scholar] [CrossRef]
- Tsompanakis, Y.; Lagaros, N.D.; Psarropoulos, P.N.; Georgopoulos, E.C. Probabilistic seismic slope stability assessment of geostructures. Struct. Infrastruct. Eng. 2010, 6, 179–191. [Google Scholar] [CrossRef]
- Argyroudis, S.; Kaynia, A.M. Analytical seismic fragility functions for highway and railway embankments and cuts. Earthq. Eng. Struct. Dyn. 2015, 44, 1863–1879. [Google Scholar] [CrossRef]
- Che, F.; Yin, C.; Zhao, X.; Hu, Z.; Sheng, L.; Liu, D. Embankment seismic fragility assessment: A case study on Xi’an-Baoji expressway (China). PLoS ONE 2021, 16, e0246407. [Google Scholar] [CrossRef]
- Ahmadi, M.; Eslami, M. A new approach to plane failure of rock slope stability based on water flow velocity in discontinuities for the Latian dam reservoir landslide. J. Mt. Sci. 2011, 8, 124–130. [Google Scholar] [CrossRef]
- Martinović, K.; Reale, C.; Gavin, K. Fragility curves for rainfall-induced shallow landslides on transport networks. Can. Geotech. J. 2016, 55, 852–861. [Google Scholar] [CrossRef] [Green Version]
- Perippayi, S.; Khu, S.-T.; Raghunandan, M. Application of Fragility Curves to Investigate the Effect of Rainfall Pattern in the Performance of an Idealized Slope. In Proceedings of the GeoMeast Conference, Cairo, Egypt, 24–28 November 2018. [Google Scholar]
- Zhang, S.; Xu, Q.; Peng, D.; Zhu, Z.; Li, W.; Wong, H.; Shen, P. Stability analysis of rock wedge slide subjected to groundwater dynamic evolution. Eng. Geol. 2020, 270, 105528. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Zhang, K. Failure Mechanism of Weak Rock Slopes considering Hydrological Conditions. KSCE J. Civ. Eng. 2021, 26, 685–702. [Google Scholar] [CrossRef]
- Dimadis, E.; Epitropou, N.; Tsompos, P. Geological Map of Greece Scale 1:50000, Thasos Island Sheet; IGME: Athens, Greece, 1982. [Google Scholar]
- Rocscience. Dips v7.0 Graphical and Statistical Analysis of Orientation Data; Rocscience: Toronto, ON, Canada, 2019. [Google Scholar]
- Wylie, D.C.; Mah, C.W. Rock Slope Engineering—Civil and Mining, 4th ed.; CRC Press: London, UK, 2004; pp. 1–456. [Google Scholar]
- Kaynia, A.; Iervolino, I.; Taucer, F.; Hancilar, U. Guidelines for Deriving Seismic Fragility Functions of Elements at Risk: Buildings, Lifelines, Transportation Networks and Critical Facilities; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Height of sliding mass, H (m) | 1.5–5.0 |
Dip of slope face, ψf (°) | 71 |
Dip of the upper slope, ψs (°) | 20–34 |
Cohesion of the discontinuity, c′ (kPa) | 2–15 |
Friction angle of the discontinuity, φ′ (°) | 25–40 |
Unit weight of the rock mass, γ (kN/m3) | 26.0 |
The ratio of water height in tension crack, Ζw/Z | 0.3–1.0 |
Parameter | Value |
---|---|
Height of sliding mass, H (m) | 2.0–3.0 |
Dip of slope face, ψ4 (°) | 71 |
Dip direction of slope face, α4 (°) | Based on kinematic analysis |
Dip of the upper slope, ψ3 (°) | 0–30 |
Dip direction of upper slope, α3 (°) | 0–150 |
Dip of tension crack plane, ψ5 (°) | 70–90 |
Dip direction of tension crack plane, α5 (°) | Same as a4 |
Distance of tension crack from slope crest, L (m) | 0.5–2.5 |
Cohesion of the discontinuity planes, c′ (kPa) | 2–15 |
Friction angle of the discontinuity planes, φ′ (°) | 25–40 |
Unit weight of the rock mass, γ (kN/m3) | 26.0 |
The ratio of water height in fissures, Ζw/Z | 0.3–1.0 |
ID | Dip | Dip Direction |
---|---|---|
1 | 36 | 123 |
2 | 37 | 138 |
3 | 29 | 123 |
4 | 31 | 130 |
5 | 56 | 132 |
6 | 60 | 137 |
7 | 66 | 241 |
8 | 60 | 240 |
9 | 63 | 238 |
10 | 45 | 238 |
11 | 66 | 232 |
12 | 67 | 225 |
13 | 54 | 222 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotiriadis, D.; Klimis, N.; Koutsoupaki, E.I.; Petala, E.; Valkaniotis, S.; Taftsoglou, M.; Margaris, V.; Dokas, I. Toward a Plausible Methodology to Assess Rock Slope Instabilities at a Regional Scale. Geosciences 2023, 13, 98. https://doi.org/10.3390/geosciences13040098
Sotiriadis D, Klimis N, Koutsoupaki EI, Petala E, Valkaniotis S, Taftsoglou M, Margaris V, Dokas I. Toward a Plausible Methodology to Assess Rock Slope Instabilities at a Regional Scale. Geosciences. 2023; 13(4):98. https://doi.org/10.3390/geosciences13040098
Chicago/Turabian StyleSotiriadis, Dimitris, Nikolaos Klimis, Elisavet Isavela Koutsoupaki, Eleni Petala, Sotiris Valkaniotis, Maria Taftsoglou, Vasileios Margaris, and Ioannis Dokas. 2023. "Toward a Plausible Methodology to Assess Rock Slope Instabilities at a Regional Scale" Geosciences 13, no. 4: 98. https://doi.org/10.3390/geosciences13040098
APA StyleSotiriadis, D., Klimis, N., Koutsoupaki, E. I., Petala, E., Valkaniotis, S., Taftsoglou, M., Margaris, V., & Dokas, I. (2023). Toward a Plausible Methodology to Assess Rock Slope Instabilities at a Regional Scale. Geosciences, 13(4), 98. https://doi.org/10.3390/geosciences13040098