Large Earthquakes in Subduction Zones around the Polar Regions as a Possible Reason for Rapid Climate Warming in the Arctic and Glacier Collapse in West Antarctica
Abstract
:1. Introduction
2. Time-Lagged Spatio-Temporal Correlation between the Phase of Maximum Earth Seismic Energy Release and the Beginning of Present-Day Global Warming
3. Deformation Waves and Related Trigger Effects of the Destruction of Metastable Gas Hydrates
4. Seismogenic Trigger Mechanism of the Glacier Movement and Collapse in West Antarctica
5. Discussion
5.1. Flow Velocity Estimates for the Ice Sheet
- In case of adhesion at the glacier bed.
- 2.
- In case of slip, assuming Coulomb’s law of friction [88],
5.2. Mechanics of the Ice Shelves Collapse
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lobkovsky, L.I. Seismogenic-triggering mechanism of gas emission activizations on the Arctic shelf and associated phases of abrupt warming. Geosciences 2020, 10, 428. [Google Scholar] [CrossRef]
- Yakushev, V.S.; Chuvilin, E.M. Natural gas and hydrate accumulation within permafrost in Russia. Cold Reg. Sci. Technol. 2000, 149, 46–50. [Google Scholar] [CrossRef]
- Takeya, S.; Ebinuma, T.; Uchida, T.; Nagao, J.; Narita, H. Self-preservation effect and dissociation rates of CH4 hydrate. J. Cryst. Growth 2002, 237–239, 379–382. [Google Scholar] [CrossRef]
- Leibman, M.O.; Kizyakov, A.; Plekhanov, A.V.; Streletskaya, I. New permafrost feature—Deep crater in Central Yamal (West Siberia, Russia) as a response to local cli mate fluctuations. Geogr. Environ. Sustain. 2014, 7, 68–79. [Google Scholar]
- Kizyakov, A.; Leibman, M.; Zimin, M.; Sonyushkin, A.; Dvornikov, Y.; Khomutov, A.; Dhont, D.; Cauquil, E.; Pushkarev, V.; Stanilovskaya, Y. Gas emission craters and mound-predecessors in the north of West Siberia, similarities and differences. Remote Sens. 2020, 12, 2182. [Google Scholar] [CrossRef]
- Bogoyavlensky, V.; Bogoyavlensky, I.; Nikonov, R.; Kargina, T.; Chuvilin, E.; Bukhanov, B.; Umnikov, A. New Catastrophic Gas Blowout and Giant Crater on the Yamal Peninsula in 2020: Results of the Expedition and Data Processing. Geosciences 2021, 11, 71. [Google Scholar] [CrossRef]
- Yakushev, V.S. Natural Gas and Gas Hydrates in Cryolithic Zone; VNIIGAZ: Moscow, Russia, 2009; p. 192. (In Russian) [Google Scholar]
- Baranov, B.V.; Lobkovsky, L.I.; Dozorova, K.A.; Tsukanov, N.V. The fault system controlling methane seeps on the shelf of the Laptev Sea. Dokl. Earth Sci. 2019, 486, 571–574. [Google Scholar] [CrossRef]
- Wallmann, K.; Riedel, M.; Hong, W.L.; Patton, H.; Hubbard, A.; Pape, T.; Hsu, C.W.; Schmidt, C.; Johnson, J.E.; Torres, M.E.; et al. Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming. Nat. Commun. 2018, 9, 83. [Google Scholar] [CrossRef] [Green Version]
- Davidson, D.W.; Garg, S.K.; Gough, S.R.; Handa, Y.P.; Ratcliffe, C.I.; Ripmeester, J.A.; Tse, J.S.; Lawson, W.F. Laboratory analysis of naturally occurring gas hydrate from sediment of the Gulf Mexico. Geochim. Cosmochim. Acta 1986, 50, 619–623. [Google Scholar] [CrossRef]
- Yakushev, V.S.; Istomin, V.A. Gas hydrates self-preservation effect. In Physics and Chemistry of Ice; Maeno, N., Hondoh, T., Eds.; Hokkaido University Press: Sapporo, Japan, 1992; pp. 136–140. [Google Scholar]
- Chuvilin, E.; Bukhanov, B.; Davletshina, D.; Grebenkin, S.; Istomin, V. Dissociation and Self-Preservation of Gas Hydrates in Permafrost. Geosciences 2018, 8, 431. [Google Scholar] [CrossRef] [Green Version]
- Barenblatt, G.I.; Lobkovsky, L.I.; Nigmatulin, R.I. A mathematical model of gas outflow from gas-saturated ice and gas hydrates. Dokl. Earth Sci. 2016, 470, 1046–1049. [Google Scholar] [CrossRef]
- Lobkovsky, L.I.; Ramazanov, M.M. Theory of filtration in a double porosity medium. Dokl. Earth Sci. 2019, 484, 105–108. [Google Scholar] [CrossRef]
- Lobkovsky, L.I.; Baranov, A.A.; Ramazanov, M.M.; Vladimirova, I.S.; Gabsatarov, Y.V.; Semiletov, I.P.; Alekseev, D.A. Trigger Mechanisms of Gas Hydrate Decomposition, Methane Emissions, and Glacier Breakups in Polar Regions as a Result of Tectonic Wave Deformation. Geosciences 2022, 12, 372. [Google Scholar] [CrossRef]
- Domack, E.; Ishman, S.; Leventer, A.; Sylva, S.; Willmont, V.; Huber, B. A chemotrophic ecosystem found beneath Antarctic Ice Shelf. Eos Trans. Am. Geophys. Union 2005, 86, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Wadham, J.L.; Arndt, S.; Tulaczyk, S.; Stibal, M.; Tranter, M.; Telling, J.; Lis, G.P.; Lawson, E.; Ridgwell, A.; Dubnick, A.; et al. Potential methane reservoirs beneath Antarctica. Nature 2012, 488, 633–637. [Google Scholar] [CrossRef]
- Thurber, A.R.; Seabrook, S.; Welsh, R.M. Riddles in the cold: Antarctic endemism and microbial succession impact methane cycling in the Southern Ocean. Proc. R. Soc. B Biol. Sci. 2020, 287, 20201134. [Google Scholar] [CrossRef] [PubMed]
- Lobkovsky, L.I.; Baranov, A.A.; Vladimirova, I.S.; Gabsatarov, Y.V. Possible seismogenic-trigger mechanism of activation of glacier destruction, methane emission, and climate warming in Antarctica. Oceanology 2023, 63, 131–140. [Google Scholar] [CrossRef]
- Lobkovsky, L.I.; Baranov, A.A.; Ramazanov, M.M.; Vladimirova, I.S.; Gabsatarov, Y.V.; Alekseev, D.A. Possible seismogenic-trigger mechanism of methane emission, glacier destruction and climate warming in the Arctic and Antarctic. Izv. Phys. Solid Earth 2023, 63, 33–47. [Google Scholar]
- Wille, J.D.; Favier, V.; Jourdain, N.C.; Kittel, C.; Turton, J.V.; Agosta, C.; Gorodetskaya, I.V.; Picard, G.; Codron, F.; Leroy-Dos Santos, C.; et al. Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula. Commun. Earth Environ. 2022, 3, 90. [Google Scholar] [CrossRef]
- Bykov, V.G. Nonlinear waves and solitons in models of fault block geological media. Russ. Geol. Geophys. 2015, 56, 793–803. [Google Scholar] [CrossRef]
- Bykov, V.G. Stick-slip and strain waves in the physics of earthquake rupture: Experiments and models. Acta Geophys. 2008, 56, 270–285. [Google Scholar] [CrossRef]
- Nikolaevskii, V.N. Mathematical modeling of the solitary deformation and seismic waves. Dokl. Acad. Sci. 1995, 341, 403–405. (In Russian) [Google Scholar]
- Nikolaevskii, V.N. Geomechanics and Fluid Dynamics; Nedra: Moscow, Russia, 1996; p. 447. (In Russian) [Google Scholar]
- Nikolaevskii, V.N.; Ramazanov, T.K. Theory of the fast tectonic waves. J. Appl. Math. Mech. 1985, 49, 462–469. (In Russian) [Google Scholar] [CrossRef]
- Nikolaevskii, V.N.; Ramazanov, T.K. Generation and propagation of tectonic waves along the deep faults. Izv. Acad. Sci. USSR Ser. Fiz. Zemli 1986, 10, 3–13. [Google Scholar]
- Elsasser, W.V. Convection and stress propagation in the upper mantle. In The Application of Modern Physics to the Earth and Planetary Interiors; Runcorn, S.K., Ed.; John Wiley: New York, NY, USA, 1969; pp. 223–246. [Google Scholar]
- Anderson, D.L. Accelerated plate tectonics. Science 1975, 187, 1077–1079. [Google Scholar] [CrossRef]
- Melosh, H.J. Nonlinear stress propagation in the Earth’s upper mantle. J. Geophys. Res. 1976, 32, 5621–5632. [Google Scholar] [CrossRef] [Green Version]
- Garagash, I.A.; Lobkovsky, L.I. Deformation tectonic waves as a possible trigger mechanism for the activation of methane emissions in the Arctic. Arct. Ecol. Econ. 2021, 11, 42–50. (In Russian) [Google Scholar] [CrossRef]
- Lobkovsky, L.I.; Ramazanov, M.M. Thermomechanical waves in the elastic lithosphere–viscous asthenosphere system. Fluid Dyn. 2021, 56, 765–779. [Google Scholar] [CrossRef]
- Dziewonski, A.M.; Chou, T.-A.; Woodhouse, J.H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. 1981, 86, 2825–2852. [Google Scholar] [CrossRef]
- Ekström, G.; Nettles, M.; Dziewonski, A.M. The global CMT project 2004–2010: Centroid-Moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 2012, 200–201, 1–9. [Google Scholar] [CrossRef]
- Climate at a Glance: Global Time Series. NOAA National Centers for Environmental Information. Available online: https://www.ncei.noaa.gov/cag/ (accessed on 14 April 2023).
- Lay, T. The surge of great earthquakes from 2004 to 2014. Earth Planet. Sci. Lett. 2015, 409, 133–146. [Google Scholar] [CrossRef]
- Lan, X.; Thoning, K.W.; Dlugokencky, E.J. Trends in Globally-Averaged CH4, N2O, and SF6 Determined from NOAA Global Monitoring Laboratory Measurements. Version 2023-02. Available online: https://doi.org/10.15138/P8XG-AA10 (accessed on 15 April 2023).
- Dlugokencky, E.J.; Steele, L.P.; Lang, P.M.; Masarie, K.A. The growth rate and distribution of atmospheric methane. J. Geophys. Res. 1994, 99, 17021–17043. [Google Scholar] [CrossRef]
- Kasahara, K. Migration of crustal deformation. Tectonophysics 1979, 52, 329–341. [Google Scholar] [CrossRef]
- Di Giovambattista, R.; Tyupkin, Y. Cyclic migration of weak earthquakes between Lunigiana earthquake of October 10, 1995 and Reggio Emilia earthquake of October 15, 1996 (Northern Italy). J. Seismol. 2001, 5, 147–156. [Google Scholar] [CrossRef]
- Liu, M.; Stein, S.; Wang, H. 2000 years of migrating earthquakes in North China: How earthquakes in midcontinents differ from those at plate boundary. Lithosphere 2011, 3, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Trofimenko, S.V.; Bykov, V.G.; Merkulova, T.V. Space-time model for migration of weak earthquakes along the northern boundary of the Amurian microplate. J. Seismol. 2017, 21, 277–286. [Google Scholar] [CrossRef]
- Kuz’min, Y.O. Deformation autowaves in fault zones. Izv. Phys. Solid Earth 2012, 48, 1–16. [Google Scholar] [CrossRef]
- Bykov, V.G. Prediction and observation of strain waves in the Earth. Geodyn. Tectonophys. 2018, 9, 721–754. [Google Scholar] [CrossRef] [Green Version]
- Reuveni, Y.; Kedar, S.; Moore, A.; Webb, F. Analyzing slip events along the Cascadia margin using an improved subdaily GPS analysis strategy. Geophys. J. Int. 2014, 198, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Harada, M.; Furuzawa, T.; Teraishi, M.; Ohya, F. Temporal and spatial correlations of the strain field in tectonic active region, southern Kyusyu, Japan. J. Geodyn. 2003, 35, 471–481. [Google Scholar] [CrossRef]
- Bella, F.; Biagi, P.F.; Caputo, M.; Della Monica, G.; Ermini, A.; Manjgaladze, P.; Sgrigna, V.; Zilpimian, D. Very slow-moving crustal strain disturbances. Tectonophysics 1990, 179, 131–139. [Google Scholar] [CrossRef]
- Bott, M.H.P.; Dean, D.S. Stress diffusion from plate boundaries. Nature 1973, 243, 339–341. [Google Scholar] [CrossRef]
- Savage, J.C. A theory of creep waves propagating along a transform fault. J. Geophys. Res. 1971, 76, 1954–1966. [Google Scholar] [CrossRef]
- Ida, Y. Slow-moving deformation pulses along tectonic faults. Phys. Earth Planet. Inter. 1974, 9, 328–337. [Google Scholar] [CrossRef]
- Rice, J.R. The mechanics of earthquake rupture. In Physics of the Earth’s Interior; Dziewonski, A.M., Boschi, E., Eds.; Italian Physical Society/North-Holland: Amsterdam, The Netherlands, 1980; pp. 555–649. [Google Scholar]
- Birger, B.I. Propagation of stresses in the Earth’s lithosphere. Izv. Akad. Nauk SSSR Ser. Fiz. Zemli 1989, 12, 3–18. (In Russian) [Google Scholar]
- Chuvilin, E.M.; Tumskoy, V.E.; Tipenko, G.S.; Gavrilov, A.V.; Bukhanov, B.A.; Tkacheva, E.V.; Audibert-Hayet, A.; Cau-quil, E. Relic gas hydrate and possibility of their existence in permafrost within the South-Tambey gas field. In Proceedings of the SPE Arctic and Extreme Environments, Moscow, Russia, 15–17 October 2013; pp. 1–9. [Google Scholar]
- Wallmann, K.; Pinero, E.; Burwicz, E.; Haeckel, M.; Hensen, C.; Dale, A.; Ruepkeet, L. The global inventory of methane hydrate in marine sediments: A theoretical approach. Energies 2012, 5, 2449–2498. [Google Scholar] [CrossRef] [Green Version]
- Dickens, G.R.; O’Neil, J.R.; Rea, D.K.; Owen, R.M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 1995, 10, 965–971. [Google Scholar] [CrossRef]
- Maslin, M.; Owen, M.; Day, S.; Long, D. Linking continental-slope failure and climate change: Testing the clathrate gun hypothesis. Geology 2004, 32, 53–56. [Google Scholar] [CrossRef]
- Ruppel, C.D.; Kessler, J.D. The interaction of climate change and methane hydrates. Rev. Geophys. 2017, 55, 126–168. [Google Scholar] [CrossRef]
- Kennett, J.; Cannariato, K.G.; Henry, I.L.; Behl, P.J. Methane Hydrate in Quaternary Climate Change: The Clathrate Gun Hypothesis; American Geophysical Union: Washington, DC, USA, 2003; p. 217. [Google Scholar]
- Kvenvolden, K.A. Methane hydrates and global climate. Glob. Biogeochem. Cycles 1988, 2, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Koven, C.D.; Ringeval, B.; Friedlingstein, P.; Ciais, P.; Cadule, P.; Khvorostyanov, D.; Krinner, G.; Tarnocai, C. Permafrost carbon-climate feedback accelerated global warming. Proc. Natl. Acad. Sci. USA 2011, 108, 14769–14774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakhova, N.; Semiletov, I.; Gustafsson, O.; Sergienko, V.; Lobkovsky, L.; Dudarev, O.; Tumskoy, V.; Grigoriev, M.; Mazurov, A.; Salyuk, K.; et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nat. Commun. 2017, 8, 15872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergienko, V.I.; Lobkovsky, L.I.; Semiletov, I.P.; Dudarev, O.V.; Dmitrievskii, N.N.; Shakhova, N.E.; Romanovskii, N.N.; Kosmach, D.A.; Nikol’skii, D.N.; Nikiforov, S.L.; et al. The degradation of submarine permafrost and the destruction of hydrates on the shelf of East Arctic seas as a potential cause of the methane catastrophe: Some results of integrated studies in 2011. Dokl. Earth Sci. 2012, 446, 1132–1137. [Google Scholar] [CrossRef]
- Chuvilin, E.; Ekimova, V.; Davletshina, D.; Sokolova, N.; Bukhanov, B. Evidence of Gas Emissions from Permafrost in the Russian Arctic. Geosciences 2020, 10, 383. [Google Scholar] [CrossRef]
- Lobkovsky, L.I.; Ramazanov, M.M. A generalized model of filtration in a fractured-porous medium with low-permeable inclusions and its possible applications. Izv. Phys. Solid Earth 2022, 58, 281–290. [Google Scholar] [CrossRef]
- Cook, A.J.; Vaughan, D.G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 2010, 4, 77–98. [Google Scholar] [CrossRef] [Green Version]
- Scambos, T.A.; Bohlander, J.A.; Shuman, C.A.; Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 2004, 31, L18402. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, H.; Jezek, K.; Alley, R.B.; Wang, L.; Alexander, P.; Huang, Y. Controls on Larsen C Ice Shelf retreat from a 60-year satellite data record. J. Geophys. Res. 2022, 127, e2021JF006346. [Google Scholar] [CrossRef]
- Domack, E.; Duran, D.; Leventer, A.; Ishman, S.; Doane, S.; McCallum, S.; Amblas, D.; Ring, J.; Gilbert, R.; Prentice, M. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature 2005, 436, 681–685. [Google Scholar] [CrossRef]
- Jones, R.S.; Johnson, J.S.; Lin, Y.; Mackintosh, A.N.; Sefton, J.P.; Smith, J.A.; Thomas, E.R.; Whitehouse, P.L. Stability of the Antarctic Ice Sheet during the pre-industrial Holocene. Nat. Rev. Earth Environ. 2022, 3, 500–515. [Google Scholar] [CrossRef]
- Kaufman, D.S.; Broadman, E. Revisiting the Holocene global temperature conundrum. Nature 2023, 614, 425–435. [Google Scholar] [CrossRef]
- Lösing, M.; Ebbing, J.; Szwillus, W. Geothermal heat flux in Antarctica: Assessing models and observations by Bayesian inversion. Front. Earth Sci. 2020, 8, 105. [Google Scholar] [CrossRef] [Green Version]
- Baranov, A.; Morelli, A. The Moho depth map of the Antarctica region. Tectonophysics 2013, 609, 299–313. [Google Scholar] [CrossRef]
- Baranov, A.; Tenzer, R.; Morelli, A. Updated Antarctic Crustal Model. Gondwana Res. 2021, 89, 1–18. [Google Scholar] [CrossRef]
- Baranov, A.; Tenzer, R.; Bagherbandi, M. Combined Gravimetric-Seismic Crustal Model for Antarctica. Surv. Geophys. 2018, 39, 23–56. [Google Scholar] [CrossRef] [Green Version]
- Baranov, A.; Morelli, A. The structure of sedimentary basins of Antarctica and a new three-layer sediment model. Tectonophysics 2023, 846, 299–313. [Google Scholar] [CrossRef]
- Baranov, A.; Morelli, A.; Chuvaev, A. ANTASed—An Updated Sediment Model for Antarctica. Front. Earth Sci. 2021, 9, 722699. [Google Scholar] [CrossRef]
- Morelli, A.; Danesi, S. Seismological imaging of the Antarctic continental lithosphere: A review. Glob. Planet. Change 2004, 42, 155–165. [Google Scholar] [CrossRef]
- Danesi, S.; Morelli, A. Structure of the upper mantle under the Antarctic Plate from surface wave tomography. Geophys. Res. Lett. 2001, 28, 4395–4398. [Google Scholar] [CrossRef]
- van Wyk de Vries, M.; Bingham, R.; Hein, A. A new volcanic province: An inventory of subglacial volcanoes in West Antarctica. Geol. Soc. Spec. Publ. 2018, 461, 231. [Google Scholar] [CrossRef]
- Mouginot, J.; Rignot, E.; Scheuchl, B. Continent-wide, interferometric SAR phase, mapping of Antarctic ice velocity. Geophys. Res. Lett. 2019, 46, 9710–9718. [Google Scholar] [CrossRef]
- Mouginot, J.; Rignot, E.; Scheuchl, B.; Millan, R. Comprehensive annual ice sheet velocity mapping using Landsat-8, Sentinel-1, and RADARSAT-2 data. Remote Sens. 2017, 9, 364. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Mouginot, J.; Scheuchl, B.; van den Broeke, M.; van Wessem, M.J.; Morlighem, M. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl. Acad. Sci. USA 2019, 116, 1095–1103. [Google Scholar] [CrossRef] [Green Version]
- Loose, B.; Naveira Garabato, A.C.; Schlosser, P.; Jenkins, W.J.; Vaughan, D.; Heywood, K.J. Evidence of an active volcanic heat source beneath the Pine Island Glacier. Nat. Commun. 2018, 9, 2431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, A.G.C.; Wåhlin, A.; Hogan, K.A.; Nitsche, F.O.; Heywood, K.J.; Totten, R.L.; Smith, J.A.; Hillenbrand, C.-D.; Simkins, L.M.; Anderson, J.B.; et al. Rapid retreat of Thwaites Glacier in the pre-satellite era. Nat. Geosci. 2022, 15, 706–713. [Google Scholar] [CrossRef]
- Morlighem, M.; Rignot, E.; Binder, T.; Blankenship, D.; Drews, R.; Eagles, G.; Eisen, O.; Ferraccioli, F.; Forsberg, R.; Fretwell, P.; et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 2020, 13, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Fretwell, P.; Pritchard, H.D.; Vaughan, D.G.; Bamber, J.L.; Barrand, N.E.; Bell, R.; Bianchi, C.; Bingham, R.G.; Blankenship, D.D.; Casassa, G.; et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 2013, 7, 375–393. [Google Scholar] [CrossRef] [Green Version]
- Winkelmann, R.; Martin, M.A.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A. The Potsdam Parallel Ice Sheet Model (PISM-PIK)—Part 1: Model description. Cryosphere 2011, 5, 715–726. [Google Scholar] [CrossRef] [Green Version]
- Pattyn, F. Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0). Cryosphere 2017, 11, 1851–1878. [Google Scholar] [CrossRef] [Green Version]
- Epifanov, V.P. Physical simulation of glacier motion modes. Ice Snow 2016, 56, 333–344. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Feldmann, J.; Levermann, A. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin. Proc. Natl. Acad. Sci. USA 2015, 112, 14191–14196. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Aitken, A.R.A.; Lindsay, M.D.; Kulessa, B. Sedimentary basins reduce stability of Antarctic ice streams through groundwater feedbacks. Nat. Geosci. 2022, 15, 645–650. [Google Scholar] [CrossRef]
- Mackintosh, A. Thwaites Glacier and the bed beneath. Nat. Geosci. 2022, 15, 687–688. [Google Scholar] [CrossRef]
- Bindschadler, R.; Choi, H.; Wichlacz, A.; Bingham, R.; Bohlander, J.; Brunt, K.; Corr, H.; Drews, R.; Fricker, H.; Hall, M.; et al. Getting around Antarctica: New high-resolution mappings of the grounded and freely-floating boundariesof the Antarctic ice sheet created for the International Polar Year. Cryosphere 2011, 5, 569–588. [Google Scholar] [CrossRef] [Green Version]
- Rosier, S.; Gudmundsson, G. Tidal bending of ice shelves as a mechanism for large-scale temporal variations in ice flow. Cryosphere 2018, 12, 1699–1713. [Google Scholar] [CrossRef] [Green Version]
- Holdsworth, G.; Glynn, J. Iceberg calving from floating glaciers by a vibrating mechanism. Nature 1978, 274, 464–466. [Google Scholar] [CrossRef]
- Timoshenko, S.P.; Voinovskii-Kriger, S. Plates and Shells; Nauka: Moscow, Russia, 1966; p. 635. (In Russian) [Google Scholar]
- Fish, A.M.; Zaretsky, Y.K. Ice Strength as a Function of Hydrostatic Pressure and Temperature; CRREL Report 97-6; U.S. Army Corps of Engineers: Washington, DC, USA, 1997; p. 14. [Google Scholar]
- Bogoyavlensky, V.I.; Garagash, I.A. Substantiation gas emission craters formation in the Arctic by mathematical modeling. Arct. Ecol. Econ. 2015, 3, 12–17. (In Russian) [Google Scholar]
- Rudnicki, J.W.; Rice, J.R. Conditions for localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids 1975, 23, 371–390. [Google Scholar] [CrossRef]
- Garagash, I.A.; Nikolaevskii, V.N. Non-associated flow laws and plastic strain localization. Adv. Mech. 1989, 12, 131–183. [Google Scholar]
- Itasca Consulting Group, Inc. FLAC3D—Fast Lagrangian Analysis of Continua in 3 Dimension; Version 3.1, User’s Manual; Itasca: Minneapolis, MN, USA, 2006. [Google Scholar]
- Viterito, A. The Correlation of Seismic Activity and Recent Global Warming. J. Earth Sci. Clim. Change 2016, 7, 345. [Google Scholar] [CrossRef]
- Viterito, A. The relationship between mid-ocean spreading zone seismic activity and global temperatures remains strong through 2018. Int. J. Environ. Sci. Nat. Res. 2019, 20, 556039. [Google Scholar] [CrossRef]
Glacier Thickness | Velocity in Case of Adhesion | Velocity in Case of Slip (Sliding) |
---|---|---|
3000 m | 22.7 m/year | 3.2 × 103 m/year |
3500 m | 66.7 m/year | 6.0 × 103 m/year |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobkovsky, L.I.; Baranov, A.A.; Garagash, I.A.; Ramazanov, M.M.; Vladimirova, I.S.; Gabsatarov, Y.V.; Alekseev, D.A.; Semiletov, I.P. Large Earthquakes in Subduction Zones around the Polar Regions as a Possible Reason for Rapid Climate Warming in the Arctic and Glacier Collapse in West Antarctica. Geosciences 2023, 13, 171. https://doi.org/10.3390/geosciences13060171
Lobkovsky LI, Baranov AA, Garagash IA, Ramazanov MM, Vladimirova IS, Gabsatarov YV, Alekseev DA, Semiletov IP. Large Earthquakes in Subduction Zones around the Polar Regions as a Possible Reason for Rapid Climate Warming in the Arctic and Glacier Collapse in West Antarctica. Geosciences. 2023; 13(6):171. https://doi.org/10.3390/geosciences13060171
Chicago/Turabian StyleLobkovsky, Leopold I., Alexey A. Baranov, Igor A. Garagash, Mukamay M. Ramazanov, Irina S. Vladimirova, Yurii V. Gabsatarov, Dmitry A. Alekseev, and Igor P. Semiletov. 2023. "Large Earthquakes in Subduction Zones around the Polar Regions as a Possible Reason for Rapid Climate Warming in the Arctic and Glacier Collapse in West Antarctica" Geosciences 13, no. 6: 171. https://doi.org/10.3390/geosciences13060171
APA StyleLobkovsky, L. I., Baranov, A. A., Garagash, I. A., Ramazanov, M. M., Vladimirova, I. S., Gabsatarov, Y. V., Alekseev, D. A., & Semiletov, I. P. (2023). Large Earthquakes in Subduction Zones around the Polar Regions as a Possible Reason for Rapid Climate Warming in the Arctic and Glacier Collapse in West Antarctica. Geosciences, 13(6), 171. https://doi.org/10.3390/geosciences13060171