Water Erosion Risk Assessment for Conservation Planning in the East Hararghe Zone, Ethiopia
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Geospatial Data Sources
3.2. Methods
3.2.1. Land-Use and Land-Cover Classification
3.2.2. Derivation of the RUSLE Model Factors
Rainfall Erosivity (R) Factor
Soil Erodibility (K) Factor
Slope Length and Slope Steepness (LS) Factor
Cover Management (C) Factor
Support Practice (P) Factor
4. Results and Discussion
4.1. Overview of the RUSLE Factors
4.2. Soil Erosion Dynamics over 30 Years (1990–2020)
4.3. Evaluating Erosion Susceptibility on Different Slope Gradients
4.4. A District-Level Investigation of Soil Erosion Risk
4.5. Examining the Link between LULC Changes and Soil Erosion
4.6. Exploring Diverse Approaches to Combat Soil Erosion
5. Conclusions and Perspectives
- First, it is critical to note that independent sets of actual field measurements and soil loss monitoring at specific sites should be used to validate RUSLE-based estimates to ensure the model’s accuracy and better understand its performance, replicability, and relevance to policy decisions. However, validating model-derived soil erosion with on-site measurements is often challenging due to a lack of field observations. This rings true in the studied landscape, a field-data-scarce zone in eastern Ethiopia. Thus, when applying the model to broad regional studies encompassing unobserved areas, it is decisive to recognize that uncertainties may stem from constraints or the absence of access to high-quality datasets for accurately determining model sub-components.
- Second, we have incorporated values aligned with RUSLE factors, such as C and P, adopted from published coefficients. Interestingly, given the development of ranges of alternative empirical methods for generating the model factors, we propose examining the workability of various model parameterization approaches in the context of the study area. Furthermore, one must consider the uncertainties prevalent in the RUSLE model factors that depend on data quality, expert decisions, and assumptions made during the modeling process, which may introduce errors/biases in sol loss estimates.
- Third, the study does not extensively explore the socioeconomic elements that could potentially impact decisions about land use and SWC methods. Integrating the socioeconomic factors and human interventions that contribute to soil erosion would provide a more comprehensive knowledge of the determinants of soil erosion. This could involve surveying farmers, analyzing land use policies, and exploring the socio-economic dynamics of the region.
- Lastly, it is essential to recall that this study only addressed rill and inter-rill erosion given that, based on the information provided, the RUSLE model applied to estimate soil loss has limitations in considering all forms of erosion, such as gullies. Therefore, future studies should pay more attention to gully erosion, which contributes to land degradation in the landscape studied by causing loss of nutrients and sediment accumulation in downstream areas.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land Use and Climate Change Impacts on Global Soil Erosion by Water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef] [PubMed]
- Eekhout, J.P.C.; Vente, J. De Global Impact of Climate Change on Soil Erosion and Potential for Adaptation through Soil Conservation. Earth-Sci. Rev. 2022, 226, 103921. [Google Scholar] [CrossRef]
- Kumar, M.; Sahu, A.P.; Sahoo, N.; Dash, S.S.; Raul, S.K.; Panigrahi, B. Global-Scale Application of the RUSLE Model: A Comprehensive Review. Hydrol. Sci. J. 2022, 67, 806–830. [Google Scholar] [CrossRef]
- Woldemariam, G.W.; Harka, A.E. Effect of Land Use and Land Cover Change on Soil Erosion in Erer Sub-Basin, Northeast Wabi Shebelle Basin, Ethiopia. Land 2020, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Xiong, M.; Sun, R.; Chen, L. A Global Comparison of Soil Erosion Associated with Land Use and Climate Type. Geoderma 2019, 343, 31–39. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R. Impact of Land Use/Cover Changes on Soil Erosion in Western Kenya. Sustainability 2020, 12, 9740. [Google Scholar] [CrossRef]
- Gil, E.; Kijowska-Strugała, M.; Demczuk, P. Soil Erosion Dynamics on a Cultivated Slope in the Western Polish Carpathians Based on over 30 Years of Plot Studies. Catena 2021, 207, 105682. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Ghosh, B.N.; Dogra, P.; Mishra, P.K.; Santra, P.; Kumar, S.; Fullen, M.A.; Mandal, U.K.; Anil, K.S.; Lalitha, M. Soil Conservation Issues in India. Sustainability 2016, 8, 565. [Google Scholar] [CrossRef] [Green Version]
- Petito, M.; Cantalamessa, S.; Pagnani, G.; Degiorgio, F.; Parisse, B.; Pisante, M. Impact of Conservation Agriculture on Soil Erosion in the Annual Cropland of the Apulia Region (Southern Italy) Based on the RUSLE-GIS-GEE Framework. Agronomy 2022, 12, 281. [Google Scholar] [CrossRef]
- Polovina, S.; Radi, B.; Risti, R.; Jovan, K.; Milcanovi, V.; Živanovic, N. Soil Erosion Assessment and Prediction in Urban Landscapes: A New G2 Model Approach. Appl. Sci. 2021, 11, 4154. [Google Scholar] [CrossRef]
- Watene, G.; Yu, L.; Nie, Y.; Zhu, J.; Ngigi, T.; Nambajimana, J.D.D.; Kenduiywo, B. Water Erosion Risk Assessment in the Kenya Great Rift Valley Region. Sustainability 2021, 13, 844. [Google Scholar] [CrossRef]
- Karamage, F.; Shao, H.; Chen, X.; Ndayisaba, F.; Nahayo, L.; Kayiranga, A.; Omifolaji, J.K.; Liu, T.; Zhang, C. Deforestation Effects on Soil Erosion in the Lake Kivu Basin, D.R. Congo-Rwanda. Forests 2016, 7, 281. [Google Scholar] [CrossRef] [Green Version]
- Wagari, M.; Tamiru, H. RUSLE Model Based Annual Soil Loss Quantification for Soil Erosion Protection: A Case of Fincha Catchment, Ethiopia. Air Soil Water Res. 2021, 14, 11786221211046234. [Google Scholar] [CrossRef]
- Hurni, H. Land Degradation, Famine, and Land Resource Scenarios in Ethiopia. In World Soil Erosion and Conservation; Pimentel, D., Ed.; Cambridge University Press: Cambridge, UK, 1993; pp. 27–62. [Google Scholar]
- Nambajimana, J.D.D.; He, X.; Zhou, J.; Justine, M.F.; Li, J.; Khurram, D.; Mind, R.; Nsabimana, G. Land Use Change Impacts on Water Erosion in Rwanda. Sustainability 2020, 12, 50. [Google Scholar] [CrossRef] [Green Version]
- Kumar, T.; Jhariya, D.C.; Pandey, H.K. Comparative Study of Different Models for Soil Erosion and Sediment Yield in Pairi Watershed, Chhattisgarh, India. Geocarto Int. 2019, 35, 1245–1266. [Google Scholar] [CrossRef]
- Tessema, Y.M.; Jasińska, J.; Yadeta, L.T.; Świtoniak, M.; Puchałka, R.; Gebregeorgis, E.G. Soil Loss Estimation for Conservation Planning in the Welmel Watershed of the Genale Dawa. Agronomy 2020, 10, 777. [Google Scholar] [CrossRef]
- Woldemariam, G.W.; Iguala, A.D.; Tekalign, S.; Reddy, R.U. Spatial Modeling of Soil Erosion Risk and Its Implication for Conservation Planning: The Case of the Gobele Watershed, East Hararghe Zone, Ethiopia. Land 2018, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Simmonds, J.S.; Suarez-Castro, A.F.; Reside, A.E.; Watson, J.E.M.; Allan, J.R.; Atkinson, S.C.; Borrelli, P.; Dudley, N.; Edwards, S.; Fuller, R.A.; et al. Retaining Natural Vegetation to Safeguard Biodiversity and Humanity. Conserv. Biol. 2022, 37, e14040. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An Assessment of the Global Impact of 21st Century Land Use Change on Soil Erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Bezak, N.; Biddoccu, M.; Cerdà, A.; Chalise, D.; et al. Soil Erosion Modelling: A Global Review and Statistical Analysis. Sci. Total. Environ. 2021, 780, 146494. [Google Scholar] [CrossRef]
- Karamage, F.; Zhang, C.; Liu, T.; Maganda, A.; Isabwe, A. Soil Erosion Risk Assessment in Uganda. Forests 2017, 8, 52. [Google Scholar] [CrossRef]
- Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Yasuda, H.; Kawai, T.; Ebabu, K.; Berihun, M.L.; Belay, A.S.; Sultan, D. Agroecology-Based Soil Erosion Assessment for Better Conservation Planning in Ethiopian River Basins. Environ. Res. 2021, 195, 110786. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization (FAO). The Future of Food and Agriculture Trends and Challenges; FAO: Rome, Italy, 2017. [Google Scholar]
- Tully, K.; Sullivan, C.; Weil, R.; Sanchez, P. The State of Soil Degradation in Sub-Saharan Africa: Baselines, Trajectories, and Solutions. Sustainability 2015, 7, 6523–6552. [Google Scholar] [CrossRef] [Green Version]
- Dibaba, W.T.; Demissie, T.A.; Miegel, K. Evaluation of Best Management Practices in Highland Ethiopia, Finchaa Catchment. Land 2021, 10, 650. [Google Scholar] [CrossRef]
- Ebabu, K.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Sultan, D.; Sultan, D.; et al. Effects of Land Use and Sustainable Land Management Practices on Runoff and Soil Loss in the Upper Blue Nile Basin, Ethiopia. Sci. Total Environ. 2019, 648, 1462–1475. [Google Scholar] [CrossRef]
- Haile, G.W.; Fetene, M. Assessment of Soil Erosion Hazard in Kilie Catchment, East Shoa, Ethiopia. Land Degrad. Dev. 2012, 23, 293–306. [Google Scholar] [CrossRef]
- Yang, D.; Kanae, S.; Oki, T.; Koike, T.; Musiake, K.; Yang, D.W.; Shinjiro, K.; Taikan, O.; Toshio, K.; Katumi, M. Global Potential Soil Erosion with Reference to Land Use and Climate Changes. Hydrol. Process. 2003, 17, 2913–2928. [Google Scholar] [CrossRef]
- Haile, M.; Herweg, K.; Stillhardt, B. Sustainable Land Management: A New Approach to Soil and Water Conservation in Ethiopia; Mekelle University: Mekelle, Ethiopia; Centre for Development and Environment (CDE) and NCCR North-South, University of Bern: Bern, Switzerland, 2006; ISBN 3906151921. [Google Scholar]
- Karamage, F.; Zhang, C.; Kayiranga, A.; Shao, H.; Fang, X.; Ndayisaba, F.; Nahayo, L.; Mupenzi, C.; Tian, G. USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda. Int. J. Environ. Res. Public Health 2016, 13, 835. [Google Scholar] [CrossRef] [Green Version]
- Ligonja, P.J.; Shrestha, R.P. Soil Erosion Assessment in Kondoa Eroded Area in Tanzania Using Universal Soil Loss Equation, Geographic Information Systems and Socioeconomic Approach. Land Degrad. Dev. 2015, 26, 367–379. [Google Scholar] [CrossRef]
- Eniyew, S.; Teshome, M.; Sisay, E.; Bezabih, T. Integrating RUSLE Model with Remote Sensing and GIS for Evaluation Soil Erosion in Telkwonz Watershed, Northwestern Ethiopia. Remote Sens. Appl. Soc. Environ. 2021, 24, 100623. [Google Scholar] [CrossRef]
- Endalamaw, N.T.; Moges, M.A.; Kebede, Y.S.; Alehegn, B.M.; Sinshaw, B.G. Potential Soil Loss Estimation for Conservation Planning, Upper Blue Nile Basin, Ethiopia. Environ. Chall. 2021, 5, 100224. [Google Scholar] [CrossRef]
- Nijimbere, G.; Lizana, C.R. Assessment of Soil Erosion of Burundi Using Remote Sensing and GIS by RUSLE Model. Rudn. J. Ecol. Life Saf. 2019, 27, 17–28. [Google Scholar] [CrossRef]
- Tsegaye, L.; Bharti, R. Soil Erosion and Sediment Yield Assessment Using RUSLE and GIS-Based Approach in Anjeb Watershed, Northwest Ethiopia. SN Appl. Sci. 2021, 3, 582. [Google Scholar] [CrossRef]
- Sinshaw, B.G.; Belete, A.M.; Mekeonen, B.M.; Wubetu, T.G.; Lakew, T.; Dessie, W.; Atinkut, H.B.; Adugna, A.; Bilkew, T.; Tefera, A.K.; et al. Watershed-Based Soil Erosion and Sediment Yield Modeling in the Rib Watershed of the Upper Blue Nile Basin, Ethiopia. Energy Nexus 2021, 3, 100023. [Google Scholar] [CrossRef]
- Girma, R.; Gebre, E. Spatial Modeling of Erosion Hotspots Using GIS-RUSLE Interface in Omo-Gibe River Basin, Southern Ethiopia: Implication for Soil and Water Conservation Planning. Environ. Syst. Res. 2020, 9, 19. [Google Scholar] [CrossRef]
- Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Poesen, J.; Tsubo, M.; Borrelli, P.; Panagos, P.; Vanmaercke, M.; Broeckx, J.; Yasuda, H.; et al. Land Susceptibility to Water and Wind Erosion Risks in the East Africa Region. Sci. Total Environ. 2020, 703, 135016. [Google Scholar] [CrossRef]
- Shumete, Y. Federal Democratic Republic of Ethiopia Ethiopia (FDRE)-Land Degradation Neutrality National Report (ELDNR), United Nations Convention to Combat Desertification. France. 2015. Available online: https://policycommons.net/artifacts/1996031/federal-democratic-republic-of-ethiopia-ethiopia/2747796/fragments/ (accessed on 16 June 2023). CID: 20.500.12592/4njvkg.
- Moges, D.M.; Bhat, H.G. Integration of Geospatial Technologies with RUSLE for Analysis of Land Use / Cover Change Impact on Soil Erosion: Case Study in Rib Watershed, North-Western Highland Ethiopia. Environ. Earth Sci. 2017, 76, 765. [Google Scholar] [CrossRef]
- Nyssen, J.; Frankl, A.; Zenebe, A.; Deckers, J.; Poesen, J. Land Management in the Northern Ethiopian Highlands: Local and Global Perspectives; Past, Present and Future. Land Degrad. Dev. 2015, 764, 759–764. [Google Scholar] [CrossRef]
- Tesfaye, B.; Lengoiboni, M.; Zevenbergen, J.; Simane, B. Mapping Land Use Land Cover Changes and Their Determinants in the Context of a Massive Free Labour Mobilisation Campaign: Evidence from South Wollo, Ethiopia. Remote. Sens. 2021, 13, 5078. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Tsunekawa, A.; Poesen, J.; Tsubo, M.; Meshesha, D.T.; Fenta, A.A.; Nyssen, J.; Adgo, E. Comprehensive Assessment of Soil Erosion Risk for Better Land Use Planning in River Basins: Case Study of the Upper Blue Nile River. Sci. Total Environ. 2017, 574, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Xu, X.; Meng, X. Risk Assessment of Soil Erosion in Different Rainfall Scenarios by RUSLE Model Coupled with Information Diffusion Model: A Case Study of Bohai Rim, China. Catena 2012, 100, 74–82. [Google Scholar] [CrossRef]
- Tanyaş, H.; Kolat, Ç.; Süzen, M.L. A New Approach to Estimate Cover-Management Factor of RUSLE and Validation of RUSLE Model in the Watershed of Kartalkaya Dam. J. Hydrol. 2015, 528, 584–598. [Google Scholar] [CrossRef]
- Ustaoglu, E.; Collier, M.J. Farmland Abandonment in Europe: An Overview of Drivers, Consequences, and Assessment of the Sustainability Implications. Environ. Rev. 2018, 26, 396–416. [Google Scholar] [CrossRef]
- Jiu, J.; Wu, H.; Li, S. The Implication of Land-Use / Land-Cover Change for the Declining Soil Erosion Risk in the Three Gorges Reservoir Region, China. Int. J. Environ. Res. Public Health 2019, 16, 1856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renard, K.; Foster, G.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Agriculture Handbook; USDA: Washington, DC, USA, 1997. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; Agriculture Handbook No. 537; US Department of Agriculture Science and Education Administration: Washington, DC, USA, 1978. [Google Scholar]
- Nearing, M.A. Environmental Modelling: Finding Simplicity in Complexity; Wainwright, J., Mulligan, M., Eds.; Wiley: New York, NY, USA, 2013. [Google Scholar]
- Hurni, H. An Ecosystem Approach to Soil Conservation. In Soil Erosion and Conservation; Swaify, E.L., Samir, A., Moldenhauer, W.C., Eds.; Soil Conservation Society of America: Ankeny, IA, USA, 1985; Volume 73, pp. 759–771. [Google Scholar]
- Stefanidis, S.; Alexandridis, V.; Mallinis, G. A Cloud-Based Mapping Approach for Assessing Spatiotemporal Changes in Erosion Dynamics Due to Biotic and Abiotic Disturbances in a Mediterranean Peri-Urban Forest. Catena 2022, 218, 106564. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Ghosal, K. Assessment of Water-Induced Soil Erosion as a Threat to Natura 2000 Protected Areas in Crete Island, Greece. Sustainability 2022, 14, 2738. [Google Scholar] [CrossRef]
- Jilo, N.B.; Gebremariam, B.; Harka, A.E.; Woldemariam, G.W.; Behulu, F. Evaluation of the Impacts of Climate Change on Sediment Yield from the Logiya Watershed, Lower Awash Basin, Ethiopia. Hydrology 2019, 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- FAO. Ethiopian Highland Reclamation Study (EHRS); Final Report; FAO: Rome, Italy, 1986. [Google Scholar]
- Moges, D.M.; Kmoch, A.; Bhat, H.G.; Uuemaa, E. Future Soil Loss in Highland Ethiopia under Changing Climate and Land Use. Reg. Environ. Chang. 2020, 20, 32. [Google Scholar] [CrossRef]
- Moisa, M.B.; Negash, D.A.; Merga, B.B.; Gemeda, D.O. Impact of Land-Use and Land-Cover Change on Soil Erosion Using the RUSLE Model and the Geographic Information System: A Case of Temeji Watershed, Western Ethiopia. J. Water Clim. Chang. 2021, 12, 3404–3420. [Google Scholar] [CrossRef]
- Akale, T.; Dagnew, D.; Belete, M.; Tilahun, S.; Mekuria, W.; Steenhuis, T. Impact of Soil Depth and Topography on the Effectiveness of Conservation Practices on Discharge and Soil Loss in the Ethiopian Highlands. Land 2017, 6, 78. [Google Scholar] [CrossRef] [Green Version]
- Belayneh, M.; Yirgu, T.; Tsegaye, D. Potential Soil Erosion Estimation and Area Prioritization for Better Conservation Planning in Gumara Watershed Using RUSLE and GIS Techniques’. Environ. Syst. Res. 2019, 8, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Daba, S. An Investigation of the Physical and Socioeconomic Determinants of Soil Erosion in the Hararghe Highlands, Eastern Ethiopia. Land Degrad. Dev. 2003, 14, 69–81. [Google Scholar] [CrossRef]
- Samuel, L.M. Prediction of Runoff and Sediment Yield Using AnnAGNPS Model: Case of Erer-Guda Catchment, East Hararghe, Ethiopia. ARPN J. Sci. Technol. 2014, 4, 575–595. [Google Scholar]
- Muleta, S.; Yohannes, F.; Rashid, S.M. Soil Erosion Assessment of Lake Alemaya Catchment, Ethiopia. Land Degrad. Dev. 2006, 17, 333–341. [Google Scholar] [CrossRef]
- Setegn, S.G.; Yohannes, F.; Quraishi, S.; Chowdary, V.M.; Mal, B.C. Impact of Land Use/Land Cover Transformations on Alemaya Lake, Ethiopia. J. Indian Water Resour. Soc. 2009, 29, 40–45. [Google Scholar]
- Senti, E.T.; Tufa, B.W.; Gebrehiwot, K.A. Soil Erosion, Sediment Yield and Conservation Practices Assessment on Lake Haramaya Catchment. World J. Agric. Sci. 2014, 2, 186–193. [Google Scholar]
- NASA POWER | Data Access Viewer. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 15 January 2022).
- Central Statistical Agency (CSA). Agricultural Sample Survey 2014–2015 (2007 E.C). Available online: https://catalog.ihsn.org/index.php/catalog/7376 (accessed on 20 June 2022).
- Nurgi, N.; Tana, T.; Dechassa, N.; Alemayehu, Y.; Tesso, B. On-Farm Diversity of Faba Bean (Vicia Faba L.) Farmers’ Varieties in Eastern Hararghe Zone, Ethiopia. Genet. Resour. Crop. Evol. 2022, 70, 549–570. [Google Scholar] [CrossRef]
- LandsatLook. Available online: https://landsatlook.usgs.gov/ (accessed on 24 February 2023).
- Food and Agriculture Organization (FAO)-Educational, Scientific, and Cultural Organization (UNESCO) Soil Classification. Available online: https://storage.googleapis.com/fao-maps-catalog-data/uuid/446ed430-8383-11db-b9b2-000d939bc5d8/resources/DSMW.zip (accessed on 3 March 2020).
- Earth Resources Observation and Science (EROS) Center USGS EROS Archive—Digital Elevation—Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global | U.S. Geological Survey. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1?qt-science_center_objects=0#qt-science_center_objects (accessed on 4 June 2023).
- Climate Hazard Center UC Santa Barbara CHIRPS: Rainfall Estimates from Rain Gauge and Satellite Observations | Climate Hazards Center—UC Santa Barbara. Available online: https://www.chc.ucsb.edu/data/chirps (accessed on 4 June 2023).
- Woldemariam, G.W.; Iguala, A.D. Assessing Land Use/Land Cover Changes and Spatio Temporal Expansion Process of Assela Town, Arsi Zone, Ethiopia. Int. J. Sci. Res. 2015, 4, 2319–7064. [Google Scholar]
- Woldemariam, G.W.; Tibebe, D.; Mengesha, T.E.; Gelete, T.B. Machine-Learning Algorithms for Land Use Dynamics in Lake Haramaya Watershed, Ethiopia. Model. Earth Syst. Environ. 2021, 8, 3719–3736. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2020 Report Ethiopia; FAO: Rome, Italy, 2020. [Google Scholar]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. Land Use and Land Cover Classification System for Use with Remote Sensor Data; Professional Paper; US Government Printing Office: Washington, DC, USA, 1976; p. 28. [Google Scholar]
- Thomlinson, J.R.; Bolstad, P.V.; Cohen, W.B. Coordinating Methodologies for Scaling Landcover Classifications from Site-Specific to Global: Steps toward Validating Global Map Products. Remote. Sens. Environ. 1999, 70, 16–28. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 3rd ed.; Taylor & Francis Group, LLC: London, UK, 2008; ISBN 9781420055139. [Google Scholar]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9781498776660. [Google Scholar]
- Sim, J.; Wright, C.C. The Kappa Statistic in Reliability Studies: Use, Interpretation, and Sample Size Requirements. Phys. Ther. 2005, 85, 257–268. [Google Scholar] [CrossRef] [Green Version]
- Seyam, M.M.H.; Haque, M.R.; Rahman, M.M. Identifying the Land Use Land Cover (LULC) Changes Using Remote Sensing and GIS Approach: A Case Study at Bhaluka in Mymensingh, Bangladesh. Case Stud. Chem. Environ. Eng. 2023, 7, 100293. [Google Scholar] [CrossRef]
- Jenks, G.F. The Data Model Concept in Statistical Mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Smith, M.J.; Michael, G.; Longley, A.P. Geospatial Analysis, A Comprehensive Guide to Principles Techniques and Software Tools, 6th ed.; Drumlin Security: London, UK, 2018. [Google Scholar]
- Tsegaye, K.; Addis, H.K.; Hassen, E.E. Soil Erosion Impact Assessment Using USLE/GIS Approaches to Identify High Erosion Risk Areas in the Lowland Agricultural Watershed of Blue Nile Basin, Ethiopia. Int. Ann. Sci. 2020, 8, 120–129. [Google Scholar]
- Lo, A.; El-Swaify, S.A.; Dangler, E.W.; Shinshiro, L. Effectiveness of El30 as an Erosivity Index in Hawaii; E1-Swaify, S.A., Dangler, E.W., Shinshiro, L., Lo, A., Eds.; Soil Conservation Society of America: Ankeny, IA, USA, 1985. [Google Scholar]
- Williams, J.R. The EPIC Model. In Computer Models of Watershed Hydrology; Water Resources Publications: Highlands Ranch, CO, USA, 1995. [Google Scholar]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Modeling the Impacts of Land Use—Land Cover Changes on Soil Erosion and Sediment Yield in the Andassa Watershed, Upper Blue Nile Basin. Environ. Earth Sci. 2019, 78, 679. [Google Scholar] [CrossRef]
- McCool, D.K.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised Slope Length Factor for the Universal Soil Loss Equation. Trans. Am. Soc. Agric. Eng. 1989, 32, 1571–1576. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M. Erosion Risk Assessment for Prioritization of Conservation Measures in Geleda Watershed, Blue Nile Basin, Ethiopia. Environ. Syst. Res. 2017, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Foster, G.R.; Wischmeier, W. Evaluating Irregular Slopes for Soil Loss Prediction. Trans. Am. Soc. Agric. Eng. 1974, 17, 305–309. [Google Scholar] [CrossRef]
- Bewket, W.; Teferi, E. Assessment of Soil Erosion Hazard and Prioritization for Treatment at the Watershed Level: Case Study in the Chemoga Watershed, Blue Nile Basin, Ethiopia. Land Degrad. Dev. 2009, 20, 609–622. [Google Scholar] [CrossRef]
- Gelagay, H.S.; Minale, A.S. Soil Loss Estimation Using GIS and Remote Sensing Techniques: A Case of Koga Watershed, Northwestern Ethiopia. Int. Soil Water Conserv. Res. 2016, 4, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Hurni, H. Erosion Productivity Conservation Systems in Ethiopia. In Proceedings of the 4th International Conference on Soil Conservation, Maracacy, Venezuela, 3–9 November 1985. [Google Scholar]
- Gashaw, T. Soil Erosion in Ethiopia: Extent, Conservation Efforts and Issues of Sustainability. Palgo J. Agric. 2015, 2, 38–48. [Google Scholar]
- Fournier, F. Research on Soil Erosion and Soil Conservation in Africa. Afr. Soils 1967, 12, 53–96. [Google Scholar]
- Giandon, P. Soil Conservation. In Environmental Indicators; Fresenius Environmental Bulletin: Germany, 2015; Volume 42, pp. 293–305. ISBN 9789401794992. [Google Scholar]
- Panagos, P.; Borrelli, P.; Meusburger, K.; van der Zanden, E.H.; Poesen, J.; Alewell, C. Modelling the Effect of Support Practices (P-Factor) on the Reduction of Soil Erosion by Water at European Scale. Environ. Sci. Policy 2015, 51, 23–34. [Google Scholar] [CrossRef]
- Maniraho, A.P.; Mind’je, R.; Liu, W.; Nzabarinda, V.; Kayumba, P.M.; Nahayo, L.; Umugwaneza, A.; Uwamahoro, S.; Li, L. Application of the Adapted Approach for Crop Management Factor to Assess Soil Erosion Risk in an Agricultural Area of Rwanda. Land 2021, 10, 1056. [Google Scholar] [CrossRef]
- Zerihun, M.; Mohammedyasin, M.S.; Sewnet, D.; Adem, A.A.; Lakew, L. Assessment of Soil Erosion Using RUSLE, GIS and Remote Sensing in NW Ethiopia. Geoderma Reg. 2018, 12, 83–90. [Google Scholar] [CrossRef]
- Yesuph, A.Y.; Dagnew, A.B. Soil Erosion Mapping and Severity Analysis Based on RUSLE Model and Local Perception in the Beshillo Catchment of the Blue Nile Basin, Ethiopia. Environ. Syst. Res. 2019, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Hurni, K.; Zeleke, G.; Kassie, M.; Tegegne, B.; Kassawmar, T.; Teferi, E.; Moges, A.; Tadesse, D.; Ahmed, M.; Degu, Y.; et al. The Economics of Land Degradation. Ethiopia Case Study. Soil Degradation and Sustainable Land Management in the Rainfed Agricultural Areas of Ethiopia: An Assessment of the Economic Implications; ELD: Bonn, Germany, 2015. [Google Scholar]
- Tadesse, A.; Abebe, M. GIS Based Soil Loss Estimation Using RUSLE Model: The Case of Jabi Tehinan Woreda, ANRS. Ethiopia. Nat. Resour. 2014, 5, 616–626. [Google Scholar]
- Chala, H.M.; Dadi, B.J. A Geographic Information System Based Soil Erosion Assessment for Conservation Planning at West Hararghe, Eastern Ethiopia. Civ. Environ. Lr. 2019, 11, 8–26. [Google Scholar] [CrossRef]
- Olorunfemi, I.E.; Komolafe, A.A.; Fasinmirin, J.T.; Olufayo, A.A.; Akande, S.O. A GIS-Based Assessment of the Potential Soil Erosion and Fl Ood Hazard Zones in Ekiti State, Southwestern Nigeria Using Integrated RUSLE and HAND Models. Catena 2020, 194, 104725. [Google Scholar] [CrossRef]
- Tadesse, L.; Suryabhagavan, K.V.; Sridhar, G.; Legesse, G. Land Use and Land Cover Changes and Soil Erosion in Yezat Watershed, North Western Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Albaladejo, J.; Díaz-Pereira, E.; de Vente, J. Eco-Holistic Soil Conservation to Support Land Degradation Neutrality and the Sustainable Development Goals. Catena 2021, 196, 104823. [Google Scholar] [CrossRef]
- Guzman, C.D.; Zimale, F.A.; Tebebu, T.Y.; Bayabil, H.K.; Tilahun, S.A.; Yitaferu, B.; Rientjes, T.H.M.; Steenhuis, T.S. Modeling Discharge and Sediment Concentrations after Landscape Interventions in a Humid Monsoon Climate: The Anjeni Watershed in the Highlands of Ethiopia. Hydrol. Process. 2017, 31, 1239–1257. [Google Scholar] [CrossRef]
- Shojaei, S.; Kalantari, Z.; Rodrigo-Comino, J. Prediction of Factors Affecting Activation of Soil Erosion by Mathematical Modeling at Pedon Scale under Laboratory Conditions. Sci. Rep. 2020, 10, 20163. [Google Scholar] [CrossRef]
- Mohammed, S.; Alsafadi, K.; Talukdar, S.; Kiwan, S.; Hennawi, S.; Alshihabi, O.; Sharaf, M.; Harsanyie, E. Estimation of Soil Erosion Risk in Southern Part of Syria by Using RUSLE Integrating Geo Informatics Approach. Remote Sens. Appl. Soc. Environ. 2020, 20, 100375. [Google Scholar] [CrossRef]
- RODRIGO-COMINO, J.; MARTÍNEZ-HERNÁNDEZ, C.; ISERLOH, T.; CERDÀ, A. Contrasted Impact of Land Abandonment on Soil Erosion in Mediterranean Agriculture Fields. Pedosphere 2018, 28, 617–631. [Google Scholar] [CrossRef] [Green Version]
- Raiesi, F.; Beheshti, A. Evaluating Forest Soil Quality after Deforestation and Loss of Ecosystem Services Using Network Analysis and Factor Analysis Techniques. Catena 2022, 208, 105778. [Google Scholar] [CrossRef]
- Liu, Y.F.; Huang, Z.; Meng, L.C.; Li, S.Y.; Wang, Y.B.; Liu, Y.; López-Vicente, M.; Wu, G.L. Understory Shading Exacerbated Grassland Soil Erosion by Changing Community Composition. Catena 2022, 208, 105771. [Google Scholar] [CrossRef]
- Abera, T.A.; Heiskanen, J.; Maeda, E.E.; Hailu, B.T.; Pellikka, P.K.E. Improved Detection of Abrupt Change in Vegetation Reveals Dominant Fractional Woody Cover Decline in Eastern Africa. Remote Sens. Environ. 2022, 271, 112897. [Google Scholar] [CrossRef]
- Gadisa, N. Soil and Water Conservation Measures in Ethiopia: Importance and Adoption Challenges. World J. Agric. Soil Sci. 2021, 6, 1–7. [Google Scholar] [CrossRef]
- Natural Resources Conservation Service. Available online: https://www.nrcs.usda.gov/ (accessed on 4 June 2023).
- Deng, Y.; Jia, L.; Guo, Y.; Li, H.; Yao, S.; Chu, L.; Lu, W.; Hou, M.; Mo, B.; Wang, Y.; et al. Evaluation of the Ecological Effects of Ecological Restoration Programs: A Case Study of the Sloping Land Conversion Program on the Loess Plateau, China. Int. J. Environ. Res. Public Health 2022, 19, 7841. [Google Scholar] [CrossRef]
- Nyberg, Y.; Musee, C.; Wachiye, E.; Jonsson, M.; Wetterlind, J.; Öborn, I. Effects of Agroforestry and Other Sustainable Practices in the Kenya Agricultural Carbon Project (KACP). Land 2020, 9, 389. [Google Scholar] [CrossRef]
- Mukherji, A.; Facon, T.; Burke, J.; De Fraiture, C.; Faures, J.M.; Fuleki, B.; Giordano, M.; Molden, D.; Shah, T. Revitalizing Asia’s Irrigation: To Sustainably Meet Tomorrow’s Food Needs. In Books Reports, IWMIColombo Srilanka; FAO: Rome, Italy, 2009; pp. 5–8. [Google Scholar]
Year | Erosion Risk Class | Area (km2) | % of the Area Covered | Mean Soil Loss (t ha−1 yr−1) | % of Total Soil Loss | Mean Rainfall (mm yr−1) |
---|---|---|---|---|---|---|
1990 | Very low | 19,769 | 78.9 | 0.1 | 0.3 | 691 |
Low | 581 | 2.3 | 7 | 0.5 | 656 | |
Low Medium | 1067 | 4.3 | 15 | 1.9 | 635 | |
Medium | 1179 | 4.7 | 29 | 4.1 | 648 | |
High medium | 621 | 2.5 | 49 | 3.7 | 668 | |
High | 381 | 1.5 | 69 | 3.2 | 685 | |
Very high | 408 | 1.6 | 97 | 4.8 | 703 | |
Extremely high | 1034 | 4.2 | 650 | 81.5 | 727 | |
Total | 25,040 | 100 | 916 | 100 | 687 | |
2000 | Very low | 19,253 | 76.9 | 0.2 | - | 615 |
Low | 361 | 1.4 | 4 | 0.1 | 566 | |
Low Medium | 496 | 2 | 7 | 0.3 | 564 | |
Medium | 1049 | 4.2 | 15 | 1.2 | 543 | |
High medium | 1094 | 4.4 | 29 | 2.5 | 559 | |
High | 899 | 3.6 | 57 | 4.1 | 588 | |
Very high | 408 | 1.6 | 98 | 3.2 | 618 | |
Extremely high | 1480 | 5.9 | 757 | 88.6 | 665 | |
Total | 25,040 | 100 | 966 | 100 | 610 | |
2010 | Very low | 19,106 | 76.3 | 0.1 | - | 679 |
Low | 313 | 1.3 | 4 | 0.1 | 640 | |
Low Medium | 528 | 2.1 | 7 | 0.4 | 630 | |
Medium | 1104 | 4.4 | 15 | 1.5 | 608 | |
High medium | 1204 | 4.8 | 29 | 3.1 | 627 | |
High | 997 | 4 | 57 | 5.2 | 655 | |
Very high | 438 | 1.7 | 98 | 3.9 | 677 | |
Extremely high | 1350 | 5.4 | 698 | 85.8 | 702 | |
Total | 25,040 | 100 | 907 | 100 | 672 | |
2020 | Very low | 19,381 | 77.4 | 0.3 | 0.1 | 689 |
Low | 553 | 2.2 | 3 | 0.2 | 642 | |
Low Medium | 606 | 2.4 | 7 | 0.5 | 647 | |
Medium | 1019 | 4 | 15 | 1.5 | 622 | |
High medium | 1072 | 4.3 | 29 | 3.2 | 635 | |
High | 871 | 3.5 | 57 | 5.1 | 660 | |
Very high | 371 | 1.5 | 98 | 3.7 | 686 | |
Extremely high | 1167 | 4.7 | 718 | 85.7 | 739 | |
Total | 25,040 | 100 | 926 | 100 | 683 |
Erosion Risk Class | 1990–2000 | 2000–2010 | 2010–2020 | 1990–2020 | ||||
---|---|---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | km2 | % | |
Very low | −516 | −3 | −147 | −0.8 | 275 | 1 | −388 | −2 |
Low | −220 | −38 | −48 | −13 | 240 | 77 | −28 | −5 |
Low Medium | −571 | −54 | 32 | 7 | 78 | 15 | −461 | −43 |
Medium | −130 | −11 | 55 | 5 | −85 | −8 | −160 | −14 |
High medium | 473 | 76 | 110 | 10 | −132 | −11 | 451 | 73 |
High | 518 | 136 | 98 | 11 | −126 | −13 | 490 | 129 |
Very high | - | - | 30 | 7 | −67 | −15 | −37 | −9 |
Extremely high | 446 | 43 | −130 | −9 | −183 | −14 | 133 | 13 |
Year | Slope Class | Mean Soil Loss (t ha−1 yr−1) | % of Annual Soil Loss | % of Cropland in the Class | Cropland Soil Loss (t ha−1 yr−1) | Mean Rainfall (mm y−1) |
---|---|---|---|---|---|---|
1990 | I | 11 | 15 | 62 | 15 | 635 |
II | 22 | 9 | 12 | 40 | 685 | |
III | 31 | 12 | 9 | 67 | 714 | |
IV | 43 | 16 | 8 | 110 | 736 | |
V | 86 | 49 | 10 | 259 | 764 | |
Total | 17 | 100 | 100 | 5 | 687 | |
2000 | I | 30 | 8 | 13 | 40 | 612 |
II | 49 | 12 | 12 | 67 | 644 | |
III | 75 | 18 | 11 | 110 | 667 | |
IV | 140 | 52 | 15 | 236 | 693 | |
V | 333 | 100 | 100 | 7 | 610 | |
Total | 12 | 10 | 49 | 15 | 549 | |
2010 | I | 28 | 8 | 12 | 42 | 677 |
II | 42 | 12 | 11 | 70 | 709 | |
III | 62 | 17 | 9 | 113 | 733 | |
IV | 118 | 50 | 12 | 243 | 759 | |
V | 25 | 100 | 100 | 6 | 672 | |
Total | 13 | 13 | 55 | 15 | 608 | |
2020 | I | 24 | 8 | 12 | 43 | 686 |
II | 38 | 12 | 11 | 76 | 718 | |
III | 59 | 18 | 10 | 126 | 741 | |
IV | 106 | 50 | 12 | 258 | 767 | |
V | 23 | 100 | 100 | 66 | 660 | |
Total | 10 | 12 | 55 | 15 | 623 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woldemariam, G.W.; Yasin, K.H.; Iguala, A.D. Water Erosion Risk Assessment for Conservation Planning in the East Hararghe Zone, Ethiopia. Geosciences 2023, 13, 184. https://doi.org/10.3390/geosciences13060184
Woldemariam GW, Yasin KH, Iguala AD. Water Erosion Risk Assessment for Conservation Planning in the East Hararghe Zone, Ethiopia. Geosciences. 2023; 13(6):184. https://doi.org/10.3390/geosciences13060184
Chicago/Turabian StyleWoldemariam, Gezahegn Weldu, Kalid Hassen Yasin, and Anteneh Derribew Iguala. 2023. "Water Erosion Risk Assessment for Conservation Planning in the East Hararghe Zone, Ethiopia" Geosciences 13, no. 6: 184. https://doi.org/10.3390/geosciences13060184
APA StyleWoldemariam, G. W., Yasin, K. H., & Iguala, A. D. (2023). Water Erosion Risk Assessment for Conservation Planning in the East Hararghe Zone, Ethiopia. Geosciences, 13(6), 184. https://doi.org/10.3390/geosciences13060184