Tetrad Effect of Rare Earth Element Fractionation in Zircon from the Pegmatite of the Adui Massif, Middle Urals
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Zircon Characterization
4.2. The Zircon Rare Element Composition
4.3. Distribution of REEs
4.4. Zircon Tetrad Effect
4.5. Zircon Oxygen Isotopic Composition
5. Discussion
5.1. Conditions of Different Zircon Zones Formation
5.2. Inter-Element Relationships
5.3. The Causes of Extraordinary Ce- and Eu Anomalies
5.4. The Cause of the Tetrad Effect
5.5. Influence of Fluid on Oxygen Isotope Composition
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masuda, A.; Ikeuchi, Y. Lanthanide tetrad effect observed in marine environment. Geochem. J. 1979, 13, 19–22. [Google Scholar] [CrossRef]
- Kawabe, I.; Masuda, A. The original examples of lanthanide tetrad effect in solvent extraction: A new interpretation compatible with recent progress in REE geochemistry. Geochem. J. 2001, 35, 215–224. [Google Scholar] [CrossRef]
- Bau, M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol. 1996, 123, 323–333. [Google Scholar] [CrossRef]
- Irber, W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosmochim. Acta 1999, 63, 489–508. [Google Scholar] [CrossRef]
- Tang, H.F.; Liu, C.Q. Trace element geochemistry during metamorphic dehydration: A case study from the Xingzi Group of Lushan, southeast China. Geochem. J. 2002, 36, 545–561. [Google Scholar] [CrossRef]
- Peretyazhko, I.S.; Savina, E.A. Tetrad effects in the rare earth element patterns of granitoid rocks as an indicator of fluoride-silicate liquid immiscibility in magmatic systems. Petrology 2010, 18, 514–543. [Google Scholar] [CrossRef]
- Veksler, I.V.; Dorfman, A.M.; Kamenetsky, M.; Dulski, P.; Dingwell, D.B. Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochim. Cosmochim. Acta 2005, 69, 2847–2860. [Google Scholar] [CrossRef]
- Nardi, L.V.; Formoso, M.L.; Jarvis, K.; Oliveira, L.; Neto, A.C.B.; Fontana, E. REE, Y, Nb, U, and Th contents and tetrad effect in zircon from a magmatic-hydrothermal F-rich system of Sn-rare metal-cryolite mineralized granites from the Pitinga Mine, Amazonia, Brazil. J. S. Am. Earth Sci. 2012, 33, 34–42. [Google Scholar] [CrossRef]
- Gusev, A.I. Composition of magmatic and hydrothermal zircon in the Elinovskii massif, Gorny Altai. Geol. Ore Depos. 2018, 60, 708–716. [Google Scholar] [CrossRef]
- Monecke, T.; Kempe, U.; Trinkler, M.; Thomas, R.; Dulski, P.; Wagner, T. Unusual rare earth element fractionation in a tin-bearing magmatic-hydrothermal system. Geology 2011, 39, 295–298. [Google Scholar] [CrossRef]
- Bau, M. The lanthanide tetrad effect in highly evolved felsic igneous rocks—A reply to the comment by Y. Pan. Contrib. Mineral. Petrol. 1997, 128, 409–412. [Google Scholar] [CrossRef]
- Wu, C.Z.; Liu, S.H.; Gu, L.X.; Zhang, Z.Z.; Lei, R.X. Formation mechanism of the lanthanide tetrad effect for a topaz-and amazonite-bearing leucogranite pluton in eastern Xinjiang, NW China. J. Asian Earth Sci. 2011, 42, 903–916. [Google Scholar] [CrossRef]
- Liu, C.Q.; Zhang, H. The lanthanide tetrad effect in apatite from the Altay No. 3 pegmatite, Xingjiang, China: An intrinsic feature of the pegmatite magma. Chem. Geol. 2005, 214, 61–77. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, H. Lanthanide tetrads in normalized rare element patterns of zircon from the Koktokay No. 3 granitic pegmatite, Altay, NW China. Am. Mineral. 2015, 100, 2630–2636. [Google Scholar] [CrossRef]
- Lv, Z.H.; Zhang, H.; Tang, Y. Lanthanide tetrads with implications for liquid immiscibility in an evolving magmatic-hydrothermal system: Evidence from rare earth elements in zircon from the No. 112 pegmatite, Kelumute, Chinese Altai. J. Asian Earth Sci. 2018, 164, 9–22. [Google Scholar] [CrossRef]
- Popova, V.I.; Gubin, V.A. Mineralogy of the granitic ceramic pegmatites in the Aduy, Sokolovsky, and Senkovsky massifs from Middle Ural. Ural. Mineral. Collect. 2008, 15, 61–74. (In Russian) [Google Scholar]
- Popov, M.P. Geological and Mineralogical Features of Rare-Metal Mineralization in the Eastern Exocontact of the Adui Massif within the Ural Emerald-Bearing Band; UGGU: Ekaterinburg, Russia, 2014; p. 136. (In Russian) [Google Scholar]
- Smirnov, V.N.; Ivanov, K.S.; Krasnobaev, A.A.; Bushlyakov, I.N.; Kaleganov, B.A. Results of K-Ar dating of the Adui granite massif (eastern slope of the Middle Urals). Lithosphere 2006, 2, 148–156. (In Russian) [Google Scholar]
- Popov, V.S.; Bogatov, V.I.; Petrova, A.Y.; Belyatsky, B.V. Age and possible sources of granites of the Murzinka-Adui block, Middle Urals: Rb-Sr and Sm-Nd isotope data. Lithosphere 2003, 4, 3–18. (In Russian) [Google Scholar]
- Borodina, N.S.; Zamyatina, M.D.; Fershtater, G.B. New data on petrology and geochemistry of granitoids of the root zone of the Adui massif. Tr. Zavaritsky Inst. Geol. Geochem. 2016, 163, 80–85. (In Russian) [Google Scholar]
- Fershtater, G.B.; Krasnobaev, A.A.; Bea, F.; Montero, P. Geochemistry of zircon from igneous and metamorphic rocks of the Urals. Lithosphere 2012, 4, 13–29. (In Russian) [Google Scholar]
- Zamyatin, D.A.; Shchapova, Y.V.; Votyakov, S.L.; Nasdala, L.; Lenz, C. Alteration and chemical U-Th-total Pb dating of heterogeneous high-uranium zircon from a pegmatite from the Aduiskii massif, middle Urals, Russia. Mineral. Petrol. 2017, 111, 475–497. [Google Scholar] [CrossRef]
- Hinton, R.W.; Upton, B.G.J. The chemistry of zircon: Variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim. Cosmochim. Acta 1991, 55, 3287–3302. [Google Scholar] [CrossRef]
- Fedotova, A.A.; Bibikova, E.V.; Simakin, S.G. Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies. Geochem. Int. 2008, 46, 912–927. [Google Scholar] [CrossRef]
- Jochum, K.P.; Dingwell, D.B.; Rocholl, A.; Stoll, B.; Hofmann, A.W.; Becker, S.; Besmehn, A.; Bessette, D.; Dietze, H.-J.; Dulski, P.; et al. The preparation and preliminary characterisation of eight geological MPI-DING reference glasses for in-situ microanalysis. Geost. Newslett. 2000, 24, 87–133. [Google Scholar] [CrossRef]
- Jochum, K.P.; Stoll, B.; Herwig, K.; Willbold, M.; Hofmiann, A.W.; Amini, M.; Aarburg, S.; Abouchami, W.; Hellebrand, E.; Mocek, B.; et al. ; Stoll, B.; Herwig, K.; Willbold, M.; Hofmiann, A.W.; Amini, M.; Aarburg, S.; Abouchami, W.; Hellebrand, E.; Mocek, B.; et al. MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochem. Geophys. Geosyst. 2006, 7, 44. [Google Scholar] [CrossRef]
- Rocholl, A.B.E.; Simon, K.; Jochum, K.P.; Bruhn, F.; Gehann, R.; Kramar, U.; Luecke, W.; Molzahn, M.; Pernicka, E.; Seufert, M.; et al. Chemical characterisation of NIST silicate glass certified reference material SRM 610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE. Geostand. Newsl. 1997, 21, 101–114. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.-s. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 2006, 151, 413–433. [Google Scholar] [CrossRef]
- Portnyagin, M.V.; Simakin, S.G.; Sobolev, A.V. Fluorine in primitive magmas of the Troodos Ophiolite complex, Cyprus: Analytical methods and main results. Geochem. Int. 2002, 40, 625–632. [Google Scholar]
- Kudryashov, N.M.; Skublov, S.G.; Galankina, O.L.; Udoratina, O.V.; Voloshin, A.V. Abnormally high-hafnium zircon from rare-metal pegmatites of the Vasin-Mylk deposit (the northeastern part of the Kola Peninsula). Geochemistry 2020, 80, 125489. [Google Scholar] [CrossRef]
- Li, X.H.; Long, W.G.; Li, Q.L.; Liu, Y.; Zheng, Y.F.; Yang, Y.H.; Chamberlain, K.R.; Wan, D.F.; Guo, C.H.; Wang, X.C.; et al. Penglai zircon megacrysts: A potential new working reference material for microbeam determination of Hf–O isotopes and U–Pb age. Geostand. Geoanalytical Res. 2010, 34, 117–134. [Google Scholar] [CrossRef]
- Tang, G.Q.; Li, X.H.; Li, Q.L.; Liu, Y.; Ling, X.X.; Yin, Q.Z. Deciphering the physical mechanism of the topography effect for oxygen isotope measurements using a Cameca IMS-1280 SIMS. J. Anal. At. Spectrom. 2015, 30, 950–956. [Google Scholar] [CrossRef]
- Tang, G.Q.; Liu, Y.; Li, Q.L.; Feng, L.J.; Wei, G.J.; Su, W.; Li, Y.; Ren, G.H.; Li, X.H. New natural and fused quartz reference materials for oxygen isotope microanalysis. At. Spectrosc. 2020, 41, 188–193. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.; Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Nasdala, L.; Kronz, A.; Hanchar, J.M.; Tichomirowa, M.; Davis, D.W.; Hofmeister, W. Effects of natural radiation damage on backscattered electron images of single crystals of minerals. Am. Mineral. 2006, 91, 1739–1746. [Google Scholar] [CrossRef]
- Geisler, T.; Schaltegger, U.; Tomaschek, F. Re-equilibration of zircon in aqueous fluids and melts. Elements 2007, 3, 43–50. [Google Scholar] [CrossRef]
- Möller, A.; O’Brien, P.J.; Kennedy, A.; Kröner, A. The use and abuse of Th-U ratios in the interpretation of zircon; abstract id. 12113. In Proceedings of the EGS-AGU-EUG Joint Assembly, Nice, France, 6–11 April 2003. [Google Scholar]
- Kirkland, L.; Smithies, R.H.; Taylor, R.J.M.; Evans, N.; McDonald, B. Zircon Th/U ratios in magmatic environs. Lithos 2015, 212, 397–414. [Google Scholar] [CrossRef]
- Yakymchuk, A.; Kirkland, C.L.; Clark, C. Th/U ratios in metamorphic zircon. J. Metamorph. Geol. 2018, 36, 715–737. [Google Scholar] [CrossRef]
- Monecke, T.; Kempe, U.; Monecke, J.; Sala, M.; Wolf, D. Tetrad effect in rare earth element distribution patterns: A method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim. Cosmochim. Acta 2002, 66, 1185–1196. [Google Scholar] [CrossRef]
- Nasdala, L.; Wenzel, M.; Vavra, G.; Irmer, G.; Wenzel, T.; Kober, B. Metamictization of natural zircon: Accumulation versus thermal annealing of radioactivity-induced damage. Contrib. Mineral. Petrol. 2001, 141, 125–144. [Google Scholar] [CrossRef]
- De Hoog, J.C.M.; Lissenberg, C.J.; Brooker, R.A.; Hinton, R.; Trail, D.; Hellebrand, E. Hydrogen incorporation and charge balance in natural zircon. Geochim. Cosmochim. Acta 2014, 141, 472–486. [Google Scholar] [CrossRef]
- Valley, J.W.; Kinney, P.D.; Schulze, D.J.; Spicuzza, M.J. Zircon megacrysts from kimberlite: Oxygen isotope variability among mantle melts. Contrib. Mineral. Petrol. 1998, 133, 1–11. [Google Scholar] [CrossRef]
- Xiang, W.; Griffin, W.L.; Jie, C.; Pinyun, H.; Xiang, L.I. U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks: Improved zircon-melt distribution coefficients. Acta Geol. Sinica 2011, 85, 164–174. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.L. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Breiter, K.; Förster, H.J.; Škoda, R. Extreme P-, Bi-, Nb-, Sc-, U- and F-rich zircon from fractionated perphosphorous granites: The peraluminous Podlesí granite system, Czech Republic. Lithos 2006, 88, 15–34. [Google Scholar] [CrossRef]
- Anderson, Ε.B.; Burakov, Β.E.; Pazukhin, Ε.M. High-Uranium zircon from “Chernobyl Lavas”. Radiochim. Acta 1993, 60, 149–152. [Google Scholar] [CrossRef]
- Geisler, T.; Burakov, B.E.; Zirlin, V.; Nikolaeva, L.; Pöml, P.A. Raman spectroscopic study of high-uranium zircon from the Chernobyl. Eur. J. Miner. 2005, 17, 883–894. [Google Scholar] [CrossRef]
- Harley, S.L.; Kelly, N.M. Zircon tiny but timely. Elements 2007, 3, 13–18. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Min. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Caruba, R.; Baumer, A.; Ganteaume, M.; Iacconi, P. An experimental study of hydroxyl groups and water in synthetic and natural zircons: A model of metamict state. Am. Mineral. 1985, 70, 1224–1231. [Google Scholar]
- Hoskin, P.W.O.; Kinny, P.D.; Wyborn, D. Chemistry of hydrothermal zircon: Investigating timing and nature of water-rock interaction. In Water Rock Interaction, WRI-9; Arehart, G.B., Hulston, J.R., Eds.; A.A. Balkema: Rotterdam, The Netherlands, 1998; pp. 545–548. [Google Scholar]
- Hoskin, P.W. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta 2005, 69, 637–648. [Google Scholar] [CrossRef]
- Bouvier, A.S.; Ushikubo, T.; Kita, N.T.; Cavosie, A.J.; Kozdon, R.; Valley, J.W. Li isotopes and trace elements as a petrogenetic tracer in zircon: Insights from Archean TTGs and sanukitoids. Contrib. Mineral. Petrol. 2012, 163, 745–768. [Google Scholar] [CrossRef]
- Levashova, E.V.; Mamykina, M.E.; Skublov, S.G.; Galankina, O.L.; Li, Q.L.; Li, X.H. Geochemistry (TE, REE, Oxygen) of zircon from leucogranites of the Belokurikhinsky Massif, Gorny Altai, as indicator of formation conditions. Geochem. Int. 2023, 1–17. [Google Scholar] [CrossRef]
- Schulz, B.; Klemd, R.; Brätz, H. Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement. Geochim. Cosmochim. Acta 2006, 70, 697–710. [Google Scholar] [CrossRef]
- Loader, M.A.; Nathwani, C.L.; Wilkinson, J.J.; Armstrong, R.N. Controls on the magnitude of Ce anomalies in zircon. Geochim. Cosmochim. Acta 2022, 328, 242–257. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, W.; Leng, C.; Shan, Q.; Niu, H.; Li, N. Exotic REE behaviors of zircon in the Koktokay No. 3 granitic pegmatite, Xinjiang, northwest China. Ore Geol. Rev. 2023, 154, 105329. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chem. Geol. 2002, 184, 123–138. [Google Scholar] [CrossRef]
- Pelleter, E.; Cheilletz, A.; Gasquet, D.; Mouttaqi, A.; Annich, M.; El Hakour, A.; Deloule, E.; Féraud, G. Hydrothermal zircons: A tool for ion microprobe U-Pb dating of gold mineralization (Tamlalt–Menhouhou gold deposit—Morocco). Chem. Geol. 2007, 245, 135–161. [Google Scholar] [CrossRef]
- Muecke, G.K.; Clarke, D.B. Geochemical evolution of the South Mountain batholith Nova Scotia: Rare-earth element evidence. Can. Mineral. 1981, 19, 133–145. [Google Scholar]
- Candela, P.A. Theoretical constraints on the chemistry of the magmatic aqueous phase. In Ore-bearing Granite Systems: Petrogenesis and Mineralizing Processes; The Geological Society of American, Inc.: Boulder, CO, USA, 1990; pp. 11–20. [Google Scholar]
- Flynn, R.T.; Burnham, W. An experimental determination of rare earth partition coefficients between a chloride containing vapour phase and silicate melts. Geochim. Cosmochim. Acta 1978, 42, 685–701. [Google Scholar] [CrossRef]
- Hanchar, J.M.; Van Westrenen, W. Rare earth element behavior in zircon-melt systems. Elements 2007, 3, 37–42. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiong, X.; Han, X.; Wang, Y.; Wang, Q.; Bao, Z.; Borming, J. Controls on the REE tetrad effect in granites: Evidence from the Qianlishan and Baerzhe Granites, China. Geochem. J. 2002, 36, 527–543. [Google Scholar] [CrossRef]
- Minuzzi, O.R.; Bastos Neto, A.C.; Formoso, M.L.; Andrade, S.; Janasi, V.A.; Flores, J.A. Rare earth element and yttrium geochemistry applied to the genetic study of cryolite ore at the Pitinga Mine (Amazon, Brazil). An. Da Acad. Bras. De Ciências 2008, 80, 719–733. [Google Scholar] [CrossRef]
- Sastri, V.S.; Bünzli, J.C.; Perumareddi, J.R.; Rao, V.R.; Rayudu, G.V.S. Modern Aspects of Rare Earths and Their Complexes; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Bao, Z.W.; Qiao, Y.L. A peculiar composite M-and W-type REE tetrad effect: Evidence from the Shuiquangou alkaline syenite complex, Hebei Province, China. Chi. Sci. Bull. 2010, 55, 2684–2696. [Google Scholar] [CrossRef]
- London, D. The application of experimental petrology to the genesis and crystallization of granitic pegmatites. Can. Mineral. 1992, 30, 499–540. [Google Scholar]
- Veksler, I.V. Liquid immiscibility and its role at the magmatic–hydrothermal transition: A summary of experimental studies. Chem. Geol. 2004, 210, 7–31. [Google Scholar] [CrossRef]
- Touret, J.L.R.; Smirnov, S.Z.; Peretyazhko, I.S.; Zagorsky, V.Y.; Thomas, V.G. Magmatic-hydrothermal transition in tourmaline-bearing miarolitic pegmatites: Hydrosaline Fluids or Silica Gels? In Proceedings of the Granitic Pegmatites: The State of the Art—International Symposium, Porto, Portugal, 6–12 May 2007; pp. 92–93. [Google Scholar]
- London, D. A petrologic assessment of internal zonation in granitic pegmatites. Lithos 2014, 184, 74–104. [Google Scholar] [CrossRef]
- Valley, J.W.; Lackey, J.S.; Cavosie, A.J.; Clechenko, C.C.; Spicuzza, M.J.; Basei, M.A.S.; Bindeman, I.N.; Ferreira, V.P.; Sial, A.N.; King, E.M.; et al. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 2005, 150, 561–580. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry, 6th ed.; Springer: Berlin, Germany, 2009; p. 437. [Google Scholar]
- Watson, E.B.; Cherniak, D.J. Oxygen diffusion in zircon. Earth Planet. Sci. Lett. 1997, 148, 527–544. [Google Scholar] [CrossRef]
Element/ Spot | 16 | 20 | 22 | 30 | 31 | 34 | 3 | 4 | 5 | 7 | 8 | 9 | 12 | 13 | |
The Light-Grey (Unaltered) Zones (Zone Ie) 1 | The Dark-Grey (Altered) Zones (Zone IIb) 1 | ||||||||||||||
La | 0.17 | 0.23 | 0.10 | 9.17 | 6.90 | 108 | 20.6 | 70.9 | 97.1 | 73.6 | 50.1 | 31.3 | 15.6 | 35.0 | |
Ce | 68.9 | 66.7 | 61.0 | 93.1 | 83.4 | 113 | 54.9 | 213 | 111 | 183 | 87.8 | 54.0 | 123 | 259 | |
Pr | 7.33 | 6.33 | 5.19 | 7.72 | 12.6 | 25.9 | 6.20 | 17.3 | 21.8 | 23.9 | 13.1 | 8.85 | 4.58 | 11.1 | |
Nd | 182 | 156 | 128 | 169 | 278 | 368 | 82.1 | 228 | 292 | 266 | 156 | 123 | 48.8 | 129 | |
Sm | 2049 | 1678 | 1425 | 1983 | 2843 | 3718 | 1007 | 2040 | 2628 | 2227 | 1539 | 1232 | 573 | 1571 | |
Eu | 3.65 | 0.07 | 5.86 | 8.82 | 8.17 | 3.36 | 4.55 | 2.29 | 8.99 | 3.57 | 0.61 | 4.53 | 8.01 | 1.77 | |
Gd | 1661 | 1344 | 1216 | 1631 | 2221 | 3024 | 901 | 1715 | 2024 | 1689 | 1195 | 1073 | 541 | 1287 | |
Dy | 255 | 225 | 181 | 221 | 305 | 379 | 111 | 198 | 241 | 289 | 171 | 149 | 79.7 | 203 | |
Er | 14.8 | 14.6 | 10.8 | 18.8 | 16.7 | 27.8 | 10.3 | 17.0 | 19.4 | 41.0 | 15.8 | 13.4 | 7.91 | 17.3 | |
Yb | 224 | 227 | 164 | 141 | 189 | 213 | 81.9 | 87.7 | 107 | 196 | 121 | 121 | 63.2 | 172 | |
Lu | 27.2 | 26.1 | 21.1 | 21.5 | 28.6 | 37.9 | 15.5 | 23.7 | 27.2 | 33.3 | 20.4 | 20.0 | 12.1 | 25.8 | |
Li | 24.7 | 40.5 | 58.0 | 32.3 | 27.1 | 4.01 | 1.80 | 0.16 | 0.04 | 4.82 | 0.30 | 0.26 | 0.71 | 0.28 | |
P | 365 | 263 | 338 | 672 | 449 | 634 | 82.9 | 69.7 | 149 | 1403 | 111 | 66.9 | 152 | 156 | |
Ca | 1123 | 994 | 549 | 1602 | 2103 | 3294 | 1851 | 8851 | 14,004 | 1187 | 3331 | 1925 | 2133 | 2526 | |
Ti | 3.58 | 19.3 | 2.53 | 2.85 | 3.75 | 7.07 | 11.6 | 14.7 | 29.8 | 11.6 | 15.9 | 13.7 | 17.2 | 26.0 | |
Sr | 38.0 | 27.5 | 30.1 | 126 | 102 | 309 | 185 | 716 | 909 | 58.0 | 364 | 247 | 237 | 140 | |
Y | 240 | 195 | 189 | 265 | 321 | 473 | 151 | 240 | 234 | 754 | 170 | 173 | 109 | 196 | |
Nb | 172 | 159 | 157 | 159 | 185 | 223 | 136 | 174 | 269 | 182 | 294 | 266 | 265 | 360 | |
Ba | 13.4 | 12.3 | 10.3 | 485 | 396 | 794 | 845 | 380 | 572 | 417 | 852 | 1409 | 898 | 274 | |
Hf | 65,257 | 65,202 | 61,468 | 73,120 | 75,182 | 87,098 | 61,778 | 70,341 | 69,001 | 62,752 | 61,187 | 63,609 | 59,982 | 58,494 | |
Th | 13,198 | 13,880 | 12,942 | 13,749 | 14,475 | 15,526 | 14,011 | 13,537 | 12,833 | 14,088 | 12,820 | 11,101 | 14,007 | 15,253 | |
U | 109,212 | 118,706 | 104,439 | 117,871 | 130,423 | 107,725 | 21,020 | 29,605 | 55,975 | 18,396 | 32,603 | 41,323 | 33,305 | 42,980 | |
B | 294 | 81.8 | 104 | 48.0 | 184 | 151 | 25.3 | 209 | 364 | 22.2 | 58.7 | 29.2 | 21.9 | 31.5 | |
Be | 174 | 60.2 | 3.12 | 17.5 | 53.2 | 51.6 | 76.9 | 150 | 219 | 69.4 | 104 | 94.9 | 60.3 | 59.2 | |
H2O | 5090 | 25,108 | 15,203 | 30,189 | 47,662 | 47,659 | 58,764 | 57,374 | 50,517 | 34,964 | 58,308 | 63,797 | 52,146 | 60,032 | |
F | 1754 | 714 | 1828 | 738 | 1347 | 1612 | 754 | 562 | 995 | 867 | 908 | 850 | 870 | 745 | |
Cl | 27.5 | 127 | 51.6 | 414 | 299 | 770 | 78.5 | 22.4 | 14.2 | 193 | 167 | 130 | 419 | 100 | |
Th/U | 0.12 | 0.12 | 0.12 | 0.12 | 0.11 | 0.14 | 0.67 | 0.46 | 0.23 | 0.77 | 0.39 | 0.27 | 0.42 | 0.35 | |
Eu/Eu* 2 | 0.01 | 0.0001 | 0.01 | 0.01 | 0.01 | 0.003 | 0.01 | 0.004 | 0.01 | 0.01 | 0.001 | 0.01 | 0.04 | 0.004 | |
Ce/Ce* 3 | 15.0 | 13.5 | 20.7 | 2.68 | 2.16 | 0.51 | 1.17 | 1.47 | 0.59 | 1.06 | 0.83 | 0.79 | 3.53 | 3.18 | |
REE | 4494 | 3744 | 3218 | 4305 | 5992 | 8018 | 2296 | 4613 | 5577 | 5025 | 3369 | 2829 | 1477 | 3713 | |
ΣLREE | 259 | 229 | 194 | 279 | 381 | 615 | 164 | 529 | 522 | 546 | 307 | 217 | 192 | 435 | |
ΣHREE | 2182 | 1837 | 1593 | 2033 | 2760 | 3681 | 1120 | 2042 | 2418 | 2248 | 1523 | 1376 | 703 | 1705 | |
LuN/LaN | 1565 | 1116 | 2082 | 22.6 | 40.0 | 3.37 | 7.28 | 3.22 | 2.70 | 4.37 | 3.91 | 6.16 | 7.47 | 7.10 | |
LuN/GdN | 0.13 | 0.16 | 0.14 | 0.11 | 0.10 | 0.10 | 0.14 | 0.11 | 0.11 | 0.16 | 0.14 | 0.15 | 0.18 | 0.16 | |
SmN/LaN | 19,570 | 11,918 | 23,339 | 347 | 660 | 54.9 | 78.4 | 46.1 | 43.3 | 48.5 | 49.1 | 63.1 | 58.7 | 71.8 | |
T(Ti), °C | 660 | 805 | 635 | 643 | 663 | 713 | 756 | 778 | 850 | 757 | 786 | 771 | 793 | 835 | |
δ18O, ‰ | 13.39 | 5.86 | 10.62 | 9.01 | 10.48 | 9.74 | 11.10 | 8.88 | 10.44 | 9.35 | 8.62 | 9.31 | 8.86 | 10.08 | |
±, ‰ | 0.26 | 0.37 | 0.29 | 0.24 | 0.33 | 0.22 | 0.26 | 0.20 | 0.29 | 0.52 | 0.36 | 0.26 | 0.31 | 0.20 | |
T1 4 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.63 | 0.40 | 0.39 | 0.60 | 0.36 | 0.47 | 0.51 | n.d. | n.d. | |
t1 5 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.37 | 0.62 | 0.66 | 0.40 | 0.65 | 0.53 | 0.49 | n.d. | n.d. | |
Element/ Spot | 14 | 18 | 21 | 24 | 25 | 26 | 27 | 28 | 35 | 38 | 39 | 1 | 2 | 36 | 37 |
The Dark-Grey (Altered) Zones (Zone IIb) 1 | The Fracture-Filling Grey Zones (Zone IIIc) 1 | ||||||||||||||
La | 31.2 | 36.1 | 10.1 | 12.2 | 16.0 | 83.2 | 665 | 34.6 | 13.8 | 130 | 27.3 | 6.58 | 33.6 | 31.9 | 43.4 |
Ce | 238 | 92.1 | 59.8 | 72.8 | 63.3 | 150 | 1365 | 99.3 | 45.2 | 379 | 83.7 | 29.8 | 48.5 | 160 | 257 |
Pr | 11.2 | 12.6 | 3.45 | 4.08 | 4.13 | 13.9 | 193 | 10.7 | 3.97 | 42.1 | 7.45 | 2.30 | 7.19 | 10.1 | 14.4 |
Nd | 158 | 186 | 43.9 | 57.2 | 61.2 | 159 | 1525 | 132 | 58.9 | 354 | 100 | 24.0 | 59.8 | 87.6 | 113 |
Sm | 1835 | 1788 | 620 | 823 | 837 | 1603 | 4720 | 1351 | 744 | 2914 | 1036 | 276 | 476 | 734 | 1180 |
Eu | bdl | 3.35 | 1.63 | 1.20 | 2.66 | 2.59 | 26.3 | 28.5 | 1.50 | 15.2 | 4.08 | 3.17 | 2.82 | 6.04 | 29.7 |
Gd | 1524 | 1471 | 723 | 990 | 976 | 1595 | 4973 | 1377 | 804 | 2853 | 1013 | 349 | 447 | 1003 | 1362 |
Dy | 235 | 217 | 92.2 | 112 | 96.9 | 205 | 1996 | 195 | 95.4 | 692 | 144 | 48.8 | 77.9 | 247 | 302 |
Er | 20.7 | 15.8 | 9.42 | 9.8 | 7.12 | 29.9 | 1192 | 19.1 | 9.8 | 333 | 24.1 | 16.0 | 20.5 | 116 | 127 |
Yb | 175 | 181 | 77.2 | 77.8 | 44.7 | 116 | 1073 | 159 | 63.4 | 497 | 93.5 | 57.4 | 61.1 | 145 | 182 |
Lu | 29.3 | 24.0 | 15.2 | 17.1 | 12.9 | 24.3 | 175.1 | 25.4 | 12.7 | 78.5 | 17.7 | 13.9 | 15.7 | 28.7 | 34.6 |
Li | 0.08 | 0.37 | 0.07 | 0.08 | 0.06 | 0.03 | 0.10 | 0.03 | 0.12 | 0.47 | 0.25 | 9.26 | 9.6 | 3.72 | 3.61 |
P | 124 | 412 | 542 | 228 | 158 | 230 | 1327 | 179 | 584 | 4755 | 1088 | 213 | 1169 | 1913 | 1970 |
Ca | 2236 | 4351 | 1863 | 1586 | 2140 | 8790 | 3570 | 1589 | 1963 | 2924 | 3064 | 304 | 829 | 423 | 405 |
Ti | 38.3 | 33.3 | 27.4 | 25.0 | 26.2 | 27.1 | 28.1 | 6.85 | 17.1 | 20.5 | 14.7 | 4.60 | 13.8 | 14.5 | 7.60 |
Sr | 100 | 214 | 92.9 | 69.5 | 127 | 802 | 166 | 126 | 146 | 258 | 366 | 14.9 | 42.3 | 8.70 | 10.4 |
Y | 225 | 213 | 161 | 190 | 166 | 676 | 23,916 | 419 | 182 | 4242 | 358 | 217 | 307 | 1796 | 1942 |
Nb | 534 | 209 | 361 | 260 | 316 | 334 | 846 | 184 | 191 | 394 | 225 | 346 | 233 | 156 | 207 |
Ba | 59.5 | 79.0 | 109 | 103 | 94.7 | 399 | 1367 | 1428 | 2209 | 1433 | 1025 | 21.4 | 187 | 54.8 | 63.5 |
Hf | 58,491 | 58,180 | 62,518 | 66,598 | 67,165 | 67,759 | 66,088 | 66,069 | 66,931 | 63,319 | 66,083 | 77,384 | 78,416 | 90,753 | 88,188 |
Th | 15,652 | 11,074 | 12,250 | 12,591 | 9310 | 15,260 | 24,510 | 12,259 | 11,549 | 10,721 | 8675 | 625 | 7931 | 1833 | 3576 |
U | 58,884 | 87,289 | 51,403 | 49,972 | 57,844 | 29,818 | 7442 | 47,135 | 51,392 | 29,737 | 49,396 | 3406 | 4629 | 5630 | 6533 |
B | 50.5 | 234 | 47.2 | 36.0 | 56.8 | 134 | 35.2 | 27.0 | 42.2 | 69.7 | 95.0 | 4.82 | 13.7 | 20.3 | 33.4 |
Be | 120 | 415 | 147 | 80.6 | 153 | 176 | 291 | 101 | 127 | 97.4 | 209 | 6.09 | 23.8 | 23.4 | 36.6 |
H2O | 67,275 | 8537 | 68,494 | 62,726 | 65,883 | 59,653 | 52,168 | 50,592 | 68,821 | 57,194 | 50,241 | 3612 | 9431 | 9575 | 13,127 |
F | 1099 | 3203 | 1046 | 1060 | 936 | 1052 | 2172 | 1147 | 873 | 1476 | 1057 | 81.3 | 391 | 499 | 863 |
Cl | 34.1 | 197 | 300 | 470 | 133 | 156 | 147 | 291 | 255 | 739 | 935 | 53.8 | 408 | 297 | 625 |
Th/U | 0.27 | 0.13 | 0.24 | 0.25 | 0.16 | 0.51 | 3.29 | 0.26 | 0.22 | 0.36 | 0.18 | 0.18 | 1.71 | 0.33 | 0.55 |
Eu/Eu* 2 | n.d. | 0.01 | 0.01 | 0.004 | 0.01 | 0.005 | 0.02 | 0.06 | 0.01 | 0.02 | 0.01 | 0.03 | 0.02 | 0.02 | 0.07 |
Ce/Ce* 3 | 3.08 | 1.05 | 2.44 | 2.50 | 1.89 | 1.07 | 0.92 | 1.25 | 1.48 | 1.24 | 1.42 | 1.85 | 0.75 | 2.15 | 2.49 |
REE | 4257 | 4027 | 1656 | 2178 | 2122 | 3981 | 17,904 | 3431 | 1853 | 8288 | 2551 | 827 | 1250 | 2569 | 3645 |
ΣLREE | 438 | 327 | 117 | 146 | 145 | 406 | 3747 | 277 | 122 | 905 | 218 | 62.6 | 149 | 289 | 427 |
ΣHREE | 1984 | 1909 | 917 | 1207 | 1138 | 1970 | 9410 | 1775 | 985 | 4454 | 1292 | 485 | 622 | 1540 | 2008 |
LuN/LaN | 9.04 | 6.40 | 14.5 | 13.5 | 7.79 | 2.82 | 2.54 | 7.07 | 8.87 | 5.84 | 6.25 | 20.3 | 4.49 | 8.65 | 7.69 |
LuN/GdN | 0.16 | 0.13 | 0.17 | 0.14 | 0.11 | 0.12 | 0.28 | 0.15 | 0.13 | 0.22 | 0.14 | 0.32 | 0.28 | 0.23 | 0.21 |
SmN/LaN | 94.0 | 79.3 | 98.0 | 108 | 84.0 | 30.9 | 11.4 | 62.5 | 86.2 | 36.0 | 60.8 | 67.1 | 22.7 | 36.8 | 43.6 |
T(Ti), °C | 877 | 861 | 841 | 831 | 836 | 839 | 843 | 711 | 792 | 811 | 778 | 679 | 772 | 777 | 719 |
δ18O, ‰ | 5.83 | 10.85 | 9.66 | 10.53 | 10.82 | 12.52 | 10.68 | 9.99 | 10.67 | 10.61 | 8.91 | 9.22 | 10.23 | 10.06 | 9.62 |
±, ‰ | 0.60 | 0.30 | 0.18 | 0.19 | 0.28 | 0.18 | 0.29 | 0.18 | 0.35 | 0.20 | 0.40 | 0.20 | 0.39 | 0.26 | 0.45 |
T1 4 | n.d. | 0.43 | n.d. | n.d. | 0.44 | 0.46 | 0.30 | 0.36 | 0.40 | 0.24 | 0.39 | 0.42 | 0.43 | n.d. | n.d. |
t1 5 | n.d. | 0.57 | n.d. | n.d. | 0.71 | 0.55 | 0.70 | 0.66 | 0.65 | 0.81 | 0.66 | 0.91 | 0.57 | n.d. | n.d. |
Element/Spot | 6 | 10 | 11 | 15 | 17 | 19 | 23 | 29 | 32 | 33 | 40 | ||||
The Grey (Intermediate) Zones (Zone IIa) 1 | |||||||||||||||
La | 3.47 | 0.96 | 4.49 | 1.04 | 0.10 | 9.20 | 0.68 | 183 | 18.2 | 7.26 | 6.11 | ||||
Ce | 61.6 | 53.3 | 68.1 | 61.4 | 63.4 | 79.7 | 55.0 | 605 | 137 | 67.7 | 51.9 | ||||
Pr | 5.45 | 4.80 | 5.57 | 5.97 | 7.07 | 5.52 | 4.23 | 90.3 | 8.98 | 9.51 | 5.32 | ||||
Nd | 117 | 107 | 113 | 150 | 183 | 103 | 106 | 775 | 155 | 218 | 114 | ||||
Sm | 1249 | 1120 | 1353 | 1583 | 1996 | 1268 | 1109 | 6234 | 2034 | 2539 | 1131 | ||||
Eu | 3.34 | 4.15 | 6.49 | bdl | 1.08 | 0.70 | 34.0 | 44.3 | 0.69 | 4.46 | 3.83 | ||||
Gd | 1058 | 928 | 1124 | 1301 | 1658 | 1218 | 942 | 4666 | 2006 | 2116 | 1041 | ||||
Dy | 156 | 137 | 172 | 217 | 241 | 167 | 131 | 827 | 185 | 289 | 151 | ||||
Er | 13.7 | 11.7 | 13.4 | 15.7 | 14.0 | 15.6 | 9.42 | 205 | 14.7 | 19.3 | 10.0 | ||||
Yb | 141 | 115 | 131 | 208 | 190 | 160 | 119 | 510 | 17.2 | 191 | 108 | ||||
Lu | 20.7 | 18.0 | 22.5 | 24.7 | 25.8 | 24.3 | 14.8 | 79.7 | 19.9 | 30.5 | 17.4 | ||||
Li | 0.06 | 0.10 | 0.10 | 0.31 | 32.4 | 10.0 | 8.64 | 0.25 | 0.05 | 0.07 | 0.27 | ||||
P | 343 | 241 | 171 | 278 | 317 | 297 | 214 | 1940 | 109 | 265 | 277 | ||||
Ca | 6268 | 6716 | 7962 | 4519 | 77.9 | 3103 | 3882 | 2716 | 4940 | 4643 | 9734 | ||||
Ti | 13.7 | 5.91 | 13.5 | 6.50 | 2.32 | 27.5 | 3.31 | 4.59 | 10.28 | 8.98 | 66.6 | ||||
Sr | 268 | 331 | 723 | 189 | 5.33 | 153 | 85.6 | 80.3 | 523 | 468 | 892 | ||||
Y | 177 | 150 | 174 | 200 | 227 | 197 | 140 | 2716 | 293 | 316 | 174 | ||||
Nb | 197 | 168 | 179 | 178 | 145 | 368 | 117 | 200 | 262 | 178 | 199 | ||||
Ba | 105 | 58.2 | 202 | 49.8 | 2.02 | 107 | 30.9 | 640 | 599 | 1123 | 145 | ||||
Hf | 59,888 | 60,656 | 61,059 | 54,628 | 60,495 | 63,158 | 59,177 | 80,431 | 77,757 | 67,305 | 52,221 | ||||
Th | 12,969 | 12,762 | 13,040 | 10,472 | 12,129 | 15,021 | 13,107 | 16,956 | 15,142 | 10,874 | 10,443 | ||||
U | 104,221 | 108,631 | 93,831 | 90,016 | 100,317 | 71,794 | 106,381 | 147,243 | 69,269 | 89,215 | 79,979 | ||||
B | 196 | 177 | 212 | 284 | 16.9 | 163 | 103 | 78.0 | 186 | 94.1 | 317 | ||||
Be | 209 | 63.3 | 286 | 213 | 9.05 | 366 | 34.3 | 62.6 | 161 | 67.7 | 432 | ||||
H2O | 63,628 | 53,735 | 62,610 | 13,027 | 1391 | 40,943 | 32,877 | 38,918 | 66,463 | 56,589 | 46,171 | ||||
F | 1159 | 1416 | 1779 | 2915 | 167 | 1977 | 911 | 2135 | 647 | 967 | 447 | ||||
Cl | 198 | 183 | 109 | 157 | 17.0 | 279 | 76.7 | 380 | 38.5 | 141 | 17.5 | ||||
Th/U | 0.12 | 0.12 | 0.14 | 0.12 | 0.12 | 0.21 | 0.12 | 0.12 | 0.22 | 0.12 | 0.13 | ||||
Eu/Eu* 2 | 0.01 | 0.01 | 0.02 | n.d. | 0.002 | 0.002 | 0.10 | 0.03 | 0.001 | 0.01 | 0.01 | ||||
Ce/Ce* 3 | 3.42 | 6.02 | 3.30 | 5.97 | 18.5 | 2.70 | 7.82 | 1.14 | 2.59 | 1.97 | 2.20 | ||||
REE | 2829 | 2500 | 3013 | 3567 | 4379 | 3051 | 2526 | 14,219 | 4596 | 5491 | 2638 | ||||
ΣLREE | 188 | 167 | 191 | 218 | 254 | 197 | 165 | 1653 | 318 | 303 | 177 | ||||
ΣHREE | 1389 | 1210 | 1462 | 1766 | 2129 | 1585 | 1217 | 6287 | 2243 | 2645 | 1326 | ||||
LuN/LaN | 57.4 | 181 | 48.4 | 229 | 2543 | 25.4 | 208 | 4.19 | 10.5 | 40.5 | 27.4 | ||||
LuN/GdN | 0.16 | 0.16 | 0.16 | 0.15 | 0.13 | 0.16 | 0.13 | 0.14 | 0.08 | 0.12 | 0.14 | ||||
SmN/LaN | 577 | 1875 | 483 | 2446 | 32,758 | 221 | 2597 | 54.5 | 179 | 560 | 296 | ||||
T(Ti), °C | 771 | 699 | 770 | 706 | 629 | 841 | 654 | 679 | 745 | 734 | 943 | ||||
δ18O, ‰ | 7.48 | 7.61 | 9.89 | 8.28 | 9.93 | 11.18 | 9.75 | 9.97 | 9.95 | 10.74 | 9.24 | ||||
±, ‰ | 0.37 | 0.28 | 0.27 | 0.29 | 0.26 | 0.23 | 0.31 | 0.35 | 0.34 | 0.30 | 0.37 | ||||
T1 4 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.18 | n.d. | n.d. | n.d. | ||||
t1 5 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.86 | n.d. | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levashova, E.V.; Skublov, S.G.; Zamyatin, D.A.; Li, Q.; Levashov, D.S.; Li, X. Tetrad Effect of Rare Earth Element Fractionation in Zircon from the Pegmatite of the Adui Massif, Middle Urals. Geosciences 2024, 14, 7. https://doi.org/10.3390/geosciences14010007
Levashova EV, Skublov SG, Zamyatin DA, Li Q, Levashov DS, Li X. Tetrad Effect of Rare Earth Element Fractionation in Zircon from the Pegmatite of the Adui Massif, Middle Urals. Geosciences. 2024; 14(1):7. https://doi.org/10.3390/geosciences14010007
Chicago/Turabian StyleLevashova, Ekaterina V., Sergey G. Skublov, Dmitry A. Zamyatin, Qiuli Li, Dmitry S. Levashov, and Xianhua Li. 2024. "Tetrad Effect of Rare Earth Element Fractionation in Zircon from the Pegmatite of the Adui Massif, Middle Urals" Geosciences 14, no. 1: 7. https://doi.org/10.3390/geosciences14010007
APA StyleLevashova, E. V., Skublov, S. G., Zamyatin, D. A., Li, Q., Levashov, D. S., & Li, X. (2024). Tetrad Effect of Rare Earth Element Fractionation in Zircon from the Pegmatite of the Adui Massif, Middle Urals. Geosciences, 14(1), 7. https://doi.org/10.3390/geosciences14010007