Seismotectonic Setting of the Andes along the Nazca Ridge Subduction Transect: New Insights from Thermal and Finite Element Modelling
Abstract
:1. Introduction
2. Geological Setting
3. Methods
3.1. Thermal Model
Equation Parameters | Model Data | |
---|---|---|
(m) | Ground Elevation (Negative) or Sea Depth (Positive) related to m.s.l. | |
(m) | Sedimentary cover (Cenozoic–Mesozoic) thickness | |
(m) | Sedimentary cover (Paleozoic) thickness | |
(m) | Upper basement thickness | |
(m) | Lower basement thickness | |
RHP * of sedimentary cover (Cenozoic–Mesozoic) [56] | ||
RHP * of sedimentary cover (Paleozoic) [56] | ||
RHP * of basement thickness [56] | ||
Thermal conductivity of sedimentary cover (Cenozoic–Mesozoic) [57] | ||
Thermal conductivity of sedimentary cover (Paleozoic) [57] | ||
Thermal conductivity of the basement [57] | ||
Thermal diffusivity [58] | ||
Coefficient of static friction [58] | ||
Density of sedimentary cover (Cenozoic–Mesozoic) [58] | ||
Density of sedimentary cover (Paleozoic) [59] | ||
Density of the upper basement [59] | ||
Density of the lower basement [59] | ||
Horizontal coordinate for points on the megathrust fault | ||
Vertical coordinate for points on the megathrust fault | ||
Dip angle of the megathrust fault | ||
Pore fluid factor [60] | ||
Relative plate velocity [60] | ||
Frictional heat flow density | ||
Oceanic heat flow density from the mantle [61] | ||
Continental heat flow density from the mantle [61] | ||
) | Surface heat flow density | |
Surface temperature |
3.2. Finite-Element Modelling
4. Results
4.1. Thermal Model
4.2. Finite-Element Model
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C.; Clark, A.L. Tectonic Effects of the Subducting Nazca Ridge on the Southern Peru Continental Margin. Mar. Pet. Geol. 1994, 11, 575–586. [Google Scholar]
- Hagen, R.A.; Moberly, R. Tectonic Effects of a Subducting Aseismic Ridge: The Subduction of the Nazca Ridge at the Peru Trench. Mar. Geophys. Res. 1994, 16, 145–161. [Google Scholar] [CrossRef]
- Gutscher, M.A. Andean Subduction Styles and Their Effect on Thermal Structure and Interplate Coupling. J. South Am. Earth Sci. 2002, 15, 3–10. [Google Scholar] [CrossRef]
- Hampel, A.; Kukowski, N.; Bialas, J.; Huebscher, C.; Heinbockel, R. Ridge subduction at an erosive margin: The collision zone of the Nazca Ridge in southern Peru. J. Geophys. Res. Solid Earth 2004, 109, B02101. [Google Scholar] [CrossRef]
- Antonijevic, S.K.; Wagner, L.S.; Kumar, A.; Beck, S.L.; Long, M.D.; Zandt, G.; Tavera, H.; Condori, C. The role of ridges in the formation and longevity of flat slabs. Nature 2015, 524, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Flórez-Rodríguez, A.G.; Schellart, W.P.; Strak, V. Impact of aseismic ridges on subduction systems: Insights from analog modeling. J. Geophys. Res. Solid Earth 2019, 124, 5951–5969. [Google Scholar] [CrossRef]
- Woods, M.T.; Okal, E.A. The structure of the Nazca ridge and Sala y Gomez seamount chain from the dispersion of Rayleigh waves. Geophys. J. Int. 1994, 117, 205–222. [Google Scholar] [CrossRef]
- Pilger, R.H., Jr. Plate Reconstructions, Aseismic Ridges, and Low-Angle Subduction beneath the Andes. Geol. Soc. Am. Bull. 1981, 92, 448–456. [Google Scholar] [CrossRef]
- Hampel, A. The Migration History of the Nazca Ridge along the Peruvian Active Margin: A Re-Evaluation. Earth Planet. Sci. Lett. 2002, 203, 665–679. [Google Scholar] [CrossRef]
- Macharé, J.; Ortlieb, L. Plio-Quaternary vertical motions and the subduction of the Nazca Ridge, central coast of Peru. Tectonophysics 1992, 205, 97–108. [Google Scholar] [CrossRef]
- Zeumann, S.; Hampel, A. Deformation of erosive and accretive forearcs during subduction of migrating and non-migrating aseismic ridges: Results from 3-D finite element models and application to the Central American, Peruvian, and Ryukyu margins. Tectonics 2015, 34, 1769–1791. [Google Scholar] [CrossRef]
- Bishop, B.T.; Beck, S.L.; Zandt, G.; Wagner, L.; Long, M.; Antonijevic, S.K.; Kumar, A.; Tavera, H. Causes and Consequences of Flat-Slab Subduction in Southern Peru. Geosphere 2017, 13, 1392–1407. [Google Scholar] [CrossRef]
- Scire, A.; Zandt, G.; Beck, S.; Long, M.; Wagner, L.; Minaya, E.; Tavera, H. Imaging the transition from flat to normal subduction: Variations in the structure of the Nazca slab and upper mantle under southern Peru and northwestern Bolivia. Geophys. J. Int. 2016, 204, 457–479. [Google Scholar] [CrossRef]
- Scire, A.; Zandt, G.; Beck, S.; Long, M.; Wagner, L. The deforming Nazca slab in the mantle transition zone and lower mantle: Constraints from teleseismic tomography on the deeply subducted slab between 6 S and 32 S. Geosphere 2017, 13, 665–680. [Google Scholar] [CrossRef]
- Hayes, G.P.; Moore, G.L.; Portner, D.E.; Hearne, M.; Flamme, H.; Furtney, M.; Smoczyk, G.M. Slab2, a comprehensive subduction zone geometry model. Science 2018, 362, 58–61. [Google Scholar] [CrossRef]
- Gutscher, M.A.; Spakman, W.; Bijwaard, H.; Engdahl, E.R. Geodynamics of Flat Subduction: Seismicity and Tomographic Constraints from the Andean Margin. Tectonics 2000, 19, 814–833. [Google Scholar] [CrossRef]
- Kumar, A.; Wagner, L.S.; Beck, S.L.; Long, M.D.; Zandt, G.; Young, B.; Tavera, H.; Minaya, E. Seismicity and State of Stress in the Central and Southern Peruvian Flat Slab. Earth Planet. Sci. Lett. 2016, 441, 71–80. [Google Scholar] [CrossRef]
- Ramos, V.A. Seismic Ridge Subduction and Topography: Foreland Deformation in the Patagonian Andes. Tectonophysics 2005, 399, 73–86. [Google Scholar] [CrossRef]
- Bishop, B.T.; Beck, S.L.; Zandt, G.; Wagner, L.S.; Long, M.D.; Tavera, H. Foreland Uplift during Flat Subduction: Insights from the Peruvian Andes and Fitzcarrald Arch. Tectonophysics 2018, 731, 73–84. [Google Scholar] [CrossRef]
- McQuarrie, N. The Kinematic History of the Central Andean Fold-Thrust Belt, Bolivia: Implications for Building a High Plateau. Geol. Soc. Am. Bull. 2002, 114, 950–963. [Google Scholar] [CrossRef]
- Gautheron, C.; Espurt, N.; Barbarand, J.; Roddaz, M.; Baby, P.; Brusset, S.; Douville, E. Direct Dating of Thick-and Thin-skin Thrusts in the Peruvian Subandean Zone through Apatite (U–Th)/He and Fission Track Thermochronometry. Basin Res. 2013, 25, 419–435. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS) Catalog. Available online: https://earthquake.usgs.gov/earthquakes/search/ (accessed on 23 May 2024).
- Megna, A.; Barba, S.; Santini, S.; Dragoni, M. Effects of Geological Complexities on Coseismic Displacement: Hints from 2D Numerical Modelling. Terra Nova 2008, 20, 173–179. [Google Scholar] [CrossRef]
- Vigny, C.; Rudloff, A.; Ruegg, J.C.; Madariaga, R.; Campos, J.; Alvarez, M. Upper Plate Deformation Measured by GPS in the Coquimbo Gap, Chile. Phys. Earth Planet. Inter. 2009, 175, 86–95. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, P. FEM Simulation of Interseismic and Coseismic Deformation Associated with the 2008 Wenchuan Earthquake. Tectonophysics 2013, 584, 64–80. [Google Scholar] [CrossRef]
- Candela, S.; Mazzoli, S.; Megna, A.; Santini, S. Finite Element Modelling of Stress Field Perturbations and Interseismic Crustal Deformation in the Val d’Agri Region, Southern Apennines, Italy. Tectonophysics 2015, 657, 245–259. [Google Scholar] [CrossRef]
- Basilici, M.; Ascione, A.; Megna, A.; Santini, S.; Tavani, S.; Valente, E.; Mazzoli, S. Active Deformation and Relief Evolution in the Western Lurestan Region of the Zagros Mountain Belt: New Insights from Tectonic Geomorphology Analysis and Finite Element Modeling. Tectonics 2020, 39, e2020TC006402. [Google Scholar] [CrossRef]
- Savage, J.C. A Dislocation Model of Strain Accumulation and Release at a Subduction Zone. J. Geophys. Res. Solid Earth 1983, 88, 4984–4996. [Google Scholar] [CrossRef]
- Jaupart, C.; Mareschal, J.C. The thermal structure and thickness of continental roots. Lithos 1999, 48, 93–114. [Google Scholar] [CrossRef]
- Cheng, L.Z.; Mareschal, J.C.; Jaupart, C.; Rolandone, F.; Gariépy, C.; Radigon, M. Simultaneous inversion of gravity and heat flow data: Constraints on thermal regime, rheology and evolution of the Canadian Shield crust. J. Geodyn. 2002, 34, 11–30. [Google Scholar] [CrossRef]
- McKenzie, D.; Jackson, J.; Priestley, K. Thermal structure of oceanic and continental lithosphere. Earth Planet. Sci. Lett. 2005, 233, 337–349. [Google Scholar] [CrossRef]
- Chen, W. Rheology of the continental lithosphere: Progress and new perspectives. Gondwana Res. 2012, 21, 4–18. [Google Scholar] [CrossRef]
- Moeck, I.S. Catalog of geothermal play types based on geologic controls. Renew. Sustain. Energy Rev. 2014, 37, 867–882. [Google Scholar] [CrossRef]
- Ciattoni, S.; Mazzoli, S.; Megna, A.; Basilici, M.; Santini, S. Two-Dimensional Geothermal Model of the Peruvian Andes above the Nazca Ridge Subduction. Energies 2023, 16, 7697. [Google Scholar] [CrossRef]
- Ramos, V.A.; Aleman, A. Tectonic evolution of the Andes. In Tectonic Evolution of South America, Proceedings of the 31st International Geological Congress, Rio de Janeiro, Brazil, 6–17 August 2000; Cordani, U.G., Milani, E.J., Thomaz Filho, A., Campos, D.A., Eds.; Geological Society: London, UK, 2000; pp. 635–685. [Google Scholar]
- Mégard, F.; Schaer, J.; Rodgers, J. Structure and evolution of the Peruvian Andes. In The Anatomy of Mountain Ranges; Schaer, J.-P., Rodgers, J., Eds.; Princeton University Press: Princeton, NJ, USA, 1987; pp. 179–210. [Google Scholar]
- Sempere, T.; Folguera, A.; Gerbault, M. New Insights into Andean Evolution: An Introduction to Contributions from the 6th ISAG Symposium (Barcelona, 2005). Tectonophysics 2008, 459, 1–13. [Google Scholar] [CrossRef]
- Krabbenhöft, A.; Bialas, J.; Kopp, H.; Kukowski, N.; Hübscher, C. Crustal Structure of the Peruvian Continental Margin from Wide-Angle Seismic Studies. Geophys. J. Int. 2004, 159, 749–764. [Google Scholar] [CrossRef]
- Wipf, M.; Zeilinger, G.; Seward, D.; Schlunegger, F. Focused Subaerial Erosion during Ridge Subduction: Impact on the Geomorphology in South-central Peru. Terra Nova 2008, 20, 1–10. [Google Scholar] [CrossRef]
- Di Celma, C.; Pierantoni, P.P.; Volatili, T.; Molli, G.; Mazzoli, S.; Sarti, G.; Ciattoni, S.; Bosio, G.; Malinverno, E.; Collareta, A.; et al. Towards Deciphering the Cenozoic Evolution of the East Pisco Basin (Southern Peru). J. Maps 2022, 18, 397–412. [Google Scholar] [CrossRef]
- Espurt, N.; Baby, P.; Brusset, S.; Roddaz, M.; Hermoza, W.; Barbarand, J. The Nazca Ridge and Uplift of the Fitzcarrald Arch: Implications for Regional Geology in Northern South America. In Amazonia: Landscape and Species Evolution: A Look into the Past; Wiley-Blackwell: Hoboken, NJ, USA, 2010; pp. 89–100. [Google Scholar]
- MSC Software Corporation, Home Page (2012). MSC-Marc Software. Available online: http://www.mscsoftware.com/ (accessed on 25 June 2024).
- Ciattoni, S.; Cella, F.; Mazzoli, S.; Zambrano, M.; Megna, A.; Santini, S.; Butler, R.; Pierantoni, P.P.; Di Celma, C. Ciattoni_2024.Zip. Figshare. 2024. Available online: https://figshare.com/articles/dataset/Ciattoni_2024_zip/26029138/1?file=47029078 (accessed on 18 June 2024).
- Basilici, M.; Mazzoli, S.; Megna, A.; Santini, S.; Tavani, S. 3-D Geothermal Model of the Lurestan Sector of the Zagros Thrust Belt, Iran. Energies 2020, 13, 2140. [Google Scholar] [CrossRef]
- Santini, S.; Basilici, M.; Invernizzi, C.; Jablonska, D.; Mazzoli, S.; Megna, A.; Pierantoni, P.P. Controls of Radiogenic Heat and Moho Geometry on the Thermal Setting of the Marche Region (Central Italy): An Analytical 3D Geothermal Model. Energies 2021, 14, 6511. [Google Scholar] [CrossRef]
- DeVries, T.J.; Urbina, M.; Jud, N.A. The Eocene-Oligocene Otuma Depositional Sequence (East Pisco Basin, Peru): Paleogeographic and Paleoceanographic Implications of New Data. Boletín Soc. Geológica Perú 2017, 112, 14–38. [Google Scholar]
- Di Celma, C.; Malinverno, E.; Bosio, G.; Collareta, A.; Gariboldi, K.; Gioncada, A.; Molli, G.; Basso, D.; Malca, V.; Varas-Malca, R.M.; et al. Sequence Stratigraphy and Paleontology of the Upper Miocene Pisco Formation along the Western Side of the Lower Ica Valley (Ica Desert, Peru). Riv. Ital. Paleontol. Stratigr. 2017, 123, 255–273. [Google Scholar]
- Di Celma, C.; Malinverno, E.; Bosio, G.; Gariboldi, K.; Collareta, A.; Gioncada, A.; Landini, W.; Pierantoni, P.P.; Bianucci, G. Intraformational Unconformities as a Record of Late Miocene Eustatic Falls of Sea Level in the Pisco Formation (Southern Peru). J. Maps 2018, 14, 607–619. [Google Scholar] [CrossRef]
- Pfiffner, O.A.; Gonzalez, L. Mesozoic–Cenozoic Evolution of the Western Margin of SouthAmerica: Case Study of the Peruvian Andes. Geosciences 2013, 3, 262–310. [Google Scholar] [CrossRef]
- Molnar, P.; England, P. Temperatures, heat flux, and frictional stress near major thrust faults. J. Geophys. Res. Solid Earth 1990, 95, 4833–4856. [Google Scholar] [CrossRef]
- Santini, S.; Basilici, M.; Invernizzi, C.; Mazzoli, S.; Megna, A.; Pierantoni, P.P.; Spina, V.; Teloni, S. Thermal Structure of the Northern Outer Albanides and Adjacent Adriatic Crustal Sector, and Implications for Geothermal Energy Systems. Energies 2020, 13, 6028. [Google Scholar] [CrossRef]
- Valdenegro, P.; Muñoz, M.; Yáñez, G.; Parada, M.A.; Morata, D. A model for thermal gradient and heat flow in central Chile: The role of thermal properties. J. South Am. Earth Sci. 2019, 91, 88–101. [Google Scholar] [CrossRef]
- Luo, T.; Leng, W. Thermal structure of continental subduction zone: High temperature caused by the removal of the preceding oceanic slab. Earth Planet. Phys. 2021, 5, 290–295. [Google Scholar] [CrossRef]
- Dragoni, M.; Doglioni, C.; Mongelli, F.; Zito, G. Evaluation of Stresses in Two Geodynamically Different Areas: Stable Foreland and Extensional Backarc. Pure Appl. Geophys. 1996, 146, 319–341. [Google Scholar] [CrossRef]
- Molnar, P.; Chen, W.P.; Padovani, E. Calculated temperatures in overthrust terrains and possible combinations of heat sources responsible for the tertiary granites in the greater Himalaya. J. Geophys. Res. 1983, 88, 6415–6429. [Google Scholar]
- Megna, A.; Candela, S.; Mazzoli, S.; Santini, S. An analytical model for the geotherm in the Basilicata oil fields area (southern Italy). Ital. J. Geosci. 2014, 133, 204–213. [Google Scholar] [CrossRef]
- Vilà, M.; Fernández, M.; Jiménez-Munt, I. Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics 2010, 490, 152–164. [Google Scholar] [CrossRef]
- Cermak, V.; Rybach, L. Thermal Conductivity and Specific Heat of Mineral and Rocks. In Landolt–Bornstein: Numerical Data and Functional Relationships in Science and Technology, Physical Properties of Rocks; Angenheister, G., Ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1982; Volume 1, pp. 305–343. [Google Scholar]
- Dragoni, M.; Santini, S. Contribution of the 2010 Maule Megathrust Earthquake to the Heat Flow at the Peru-Chile Trench. Energies 2022, 15, 2253. [Google Scholar] [CrossRef]
- Rodriguez Piceda, C.; Scheck Wenderoth, M.; Gomez Dacal, M.L.; Bott, J.; Prezzi, C.B.; Strecker, M.R. Lithospheric density structure of the southern Central Andes constrained by 3D data-integrative gravity modeling. Int. J. Earth Sci. 2021, 110, 2333–2359. [Google Scholar] [CrossRef]
- Seno, T. Determination of the pore fluid pressure ratio at seismogenic megathrusts in subduction zones: Implications for strength of asperities and Andean-type Mountain building. J. Geophys. Res. 2009, 114, B05405. [Google Scholar] [CrossRef]
- Kirby, S.H. Rheology of the Lithosphere. Rev. Geophys. 1983, 21, 1458–1487. [Google Scholar] [CrossRef]
- Ranalli, G.; Murphy, D.C. Rheological Stratification of the Lithosphere. Tectonophysics 1987, 132, 281–295. [Google Scholar] [CrossRef]
- Ranalli, G. Rheology of the Earth; Chapman & Hall: London, UK, 1995. [Google Scholar]
- Miller, S.L.M.; Stewart, R.R. The Relationship between Elastic-Wave Velocities and Density in Sedimentary Rocks: A Proposal. CREWES Res. Rep. 1991, 3, 14. [Google Scholar]
- Kirby, S.H.; Kronenberg, A.K. Rheology of the Lithosphere: Selected Topics. Rev. Geophys. 1987, 25, 1219–1244. [Google Scholar] [CrossRef]
- Parsons, T. Post-1906 Stress Recovery of the San Andreas Fault System Calculated from Three-dimensional Finite Element Analysis. J. Geophys. Res. Solid Earth 2002, 107, ESE 3-1–ESE 3-13. [Google Scholar] [CrossRef]
- Williams, C.A.; Richardson, R.M. A Rheologically Layered Three-dimensional Model of the San Andreas Fault in Central and Southern California. J. Geophys. Res. Solid Earth 1991, 96, 16597–16623. [Google Scholar] [CrossRef]
- Zhuang, Z.; Liu, Z.; Cui, Y. Equivalent Stress and Equivalent Strain. In Dislocation Mechanism-Based Crystal Plasticity; Academic Press: Cambridge, MA, USA, 2019; pp. 67–69. [Google Scholar]
- Dorbath, L.; Cisternas, A.; Dorbath, C. Assessment of the Size of Large and Great Historical Earthquakes in Peru. Bull. Seismol. Soc. Am. 1990, 80, 551–576. [Google Scholar]
- International Seismological Centre (20XX), On-Line Bulletin. Available online: http://www.isc.ac.uk/iscbulletin/search/ (accessed on 18 July 2024).
- Liu, X.; Wagner, L.S.; Currie, C.A.; Caddick, M.J. Implications of flat-slab subduction on hydration, slab seismicity, and arc volcanism in the Pampean region of Chile and Argentina. Geochem. Geophys. Geosystems 2024, 25, e2023GC011317. [Google Scholar] [CrossRef]
- Hayes, G.P. The finite, kinematic rupture properties of great-sized earthquakes since 1990. Earth Planet. Sci. Lett. 2017, 468, 94–100. [Google Scholar] [CrossRef]
- Govers, R.; Furlong, K.P.; Van de Wiel, L.; Herman, M.W.; Broerse, T. The Geodetic Signature of the Earthquake Cycle at Subduction Zones: Model Constraints on the Deep Processes. Rev. Geophys. 2018, 56, 6–49. [Google Scholar] [CrossRef]
- Saillard, M.; Hall, S.R.; Audin, L.; Farber, D.L.; Regard, V.; Hérail, G. Andean Coastal Uplift and Active Tectonics in Southern Peru: 10Be Surface Exposure Dating of Differentially Uplifted Marine Terrace Sequences (San Juan de Marcona, ~15.4 S). Geomorphology 2011, 128, 178–190. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciattoni, S.; Mazzoli, S.; Megna, A.; Santini, S. Seismotectonic Setting of the Andes along the Nazca Ridge Subduction Transect: New Insights from Thermal and Finite Element Modelling. Geosciences 2024, 14, 257. https://doi.org/10.3390/geosciences14100257
Ciattoni S, Mazzoli S, Megna A, Santini S. Seismotectonic Setting of the Andes along the Nazca Ridge Subduction Transect: New Insights from Thermal and Finite Element Modelling. Geosciences. 2024; 14(10):257. https://doi.org/10.3390/geosciences14100257
Chicago/Turabian StyleCiattoni, Sara, Stefano Mazzoli, Antonella Megna, and Stefano Santini. 2024. "Seismotectonic Setting of the Andes along the Nazca Ridge Subduction Transect: New Insights from Thermal and Finite Element Modelling" Geosciences 14, no. 10: 257. https://doi.org/10.3390/geosciences14100257
APA StyleCiattoni, S., Mazzoli, S., Megna, A., & Santini, S. (2024). Seismotectonic Setting of the Andes along the Nazca Ridge Subduction Transect: New Insights from Thermal and Finite Element Modelling. Geosciences, 14(10), 257. https://doi.org/10.3390/geosciences14100257