Refining Heterogeneities near the Core–Mantle Boundary Beneath East Pacific Regions: Enhanced Differential Travel-Time Analysis Using USArray
Abstract
:1. Introduction
2. Data Measurements and Uncertainties
2.1. Source-Side Ambiguity
2.2. Azimuthal Variations
3. Results
3.1. Receiver-Side Upper-Mantle Structures
3.2. Lower-Mantle Structures After the Corrections
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.D.; Romanowicz, B. Global mantle shear velocity model developed using nonlinear asymptotic coupling theory. J. Geophys. Res. Solid Earth 1996, 101, 22245–22272. [Google Scholar] [CrossRef]
- Garnero, E.J.; McNamara, A.K. Structure and dynamics of Earth’s lower mantle. Science 2008, 320, 626–628. [Google Scholar] [CrossRef]
- Ritsema, J.; Deuss, A.; Van Heijst, H.J.; Woodhouse, J.H. S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 2011, 184, 1223–1236. [Google Scholar] [CrossRef]
- French, S.W.; Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 2015, 525, 95–99. [Google Scholar] [CrossRef]
- Hosseini, K.; Sigloch, K.; Tsekhmistrenko, M.; Zaheri, A.; Nissen-Meyer, T.; Igel, H. Global mantle structure from multifrequency tomography using P, PP and P-diffracted waves. Geophys. J. Int. 2020, 220, 96–141. [Google Scholar] [CrossRef]
- Lekic, V.; Cottaar, S.; Dziewonski, A.; Romanowicz, B. Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 2012, 357, 68–77. [Google Scholar] [CrossRef]
- Schmandt, B.; Lin, F.-C. P and S wave tomography of the mantle beneath the United States. Geophys. Res. Lett. 2014, 41, 6342–6349. [Google Scholar] [CrossRef]
- Zietlow, D.W.; Molnar, P.H.; Sheehan, A.F. Teleseismic P wave tomography of South Island, New Zealand upper mantle: Evidence of subduction of Pacific lithosphere since 45 Ma. J. Geophys. Res. Solid Earth 2016, 121, 4427–4445. [Google Scholar] [CrossRef]
- Ko, J.Y.T.; Hung, S.H.; Kuo, B.Y.; Zhao, L. Seismic evidence for the depression of the D″ discontinuity beneath the Caribbean: Implication for slab heating from the Earth’s core. Earth Planet. Sci. Lett. 2017, 467, 128–137. [Google Scholar] [CrossRef]
- Shi, H.; Li, T.; Zhang, R.; Zhang, G.; Yang, H. Imaging of the Upper Mantle Beneath Southeast Asia: Constrained by Teleseismic P-Wave Tomography. Remote Sens. 2020, 12, 2975. [Google Scholar] [CrossRef]
- Thorne, M.S.; Garnero, E.J. Inferences on ultralow-velocity zone structure from a global analysis of SPdKS waves. J. Geophys. Res. 2004, 109, B08301. [Google Scholar] [CrossRef]
- Garnero, E.J.; McNamara, A.K.; Shim, S.H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 2016, 9, 481–489. [Google Scholar] [CrossRef]
- Grand, S.P. Mantle shear–wave tomography and the fate of subducted slabs. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2002, 360, 2475–2491. [Google Scholar] [CrossRef] [PubMed]
- Schuberth, B.S.A.; Bunge, H.-P.; Ritsema, J. Tomographic filtering of high-resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone? Geochem. Geophys. Geosyst. 2009, 10, Q05W03. [Google Scholar] [CrossRef]
- Schubert, G.; Masters, G.; Olson, P.; Tackley, P. Superplumes or plume clusters? Phys. Earth Planet. Inter. 2004, 146, 147–162. [Google Scholar] [CrossRef]
- Davaille, A. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 1999, 402, 756–760. [Google Scholar] [CrossRef]
- Davies, D.R.; Goes, S.; Schuberth, B.S.A.; Bunge, H.P.; Ritsema, J. Reconciling dynamic and seismic models of Earth’s lower mantle: The dominant role of thermal heterogeneity. Earth Planet. Sci. Lett. 2012, 353, 253–269. [Google Scholar] [CrossRef]
- Wysession, M.E. Large-scale structure at the core–mantle boundary from diffracted waves. Nature 1996, 382, 244–248. [Google Scholar] [CrossRef]
- Li, C.; van der Hilst, R.D.; Engdahl, E.R.; Burdick, S. A new global model for P wave speed variations in Earth’s mantle. Geochem. Geophys. Geosyst. 2008, 9, Q05018. [Google Scholar] [CrossRef]
- He, Y.; Wen, L. Geographic boundary of the “Pacific Anomaly” and its geometry and transitional structure in the north. J. Geophys. Res. Solid Earth 2012, 117, B09308. [Google Scholar] [CrossRef]
- Kuo, B.Y.; Garnero, E.J.; Lay, T. Tomographic inversion of S–SKS times for shear velocity heterogeneity in D″: Degree 12 and hybrid models. J. Geophys. Res. Solid Earth 2000, 105, 28139–28157. [Google Scholar] [CrossRef]
- Thorne, M.S.; Pachhai, S.; Leng, K.; Wicks, J.K.; Nissen-Meyer, T. New candidate ultralow-velocity zone locations from highly anomalous SPdKS waveforms. Minerals 2020, 10, 211. [Google Scholar] [CrossRef]
- Lai, V.H.; Helmberger, D.; Dobrosavljevic, V.; Wu, W.; Sun, D.; Jackson, J.M.; Gurnis, M. Strong ULVZ and slab interaction at the northeastern edge of the Pacific LLSVP favors plume generation. Geochem. Geophys. Geosyst. 2022, 23, e2021GC010020. [Google Scholar] [CrossRef]
- Wu, W.; Irving, J.C.E. Array-based iterative measurements of SmKS travel times and their constraints on outermost core structure. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018162. [Google Scholar] [CrossRef]
- Nissen-Meyer, T.; van Driel, M.; Stähler, S.C.; Hosseini, K.; Hempel, S.; Auer, L.; Colombi, A.; Fournier, A. AxiSEM: Broadband 3-D seismic wavefields in axisymmetric media. Solid Earth 2014, 5, 425–445. [Google Scholar] [CrossRef]
- Dziewonski, A.M.; Anderson, D.L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 1981, 25, 297–356. [Google Scholar] [CrossRef]
- Hosseini, K.; Sigloch, K. Multifrequency measurements of core-diffracted P waves (Pdiff) for global waveform tomography. Geophys. J. Int. 2015, 203, 506–521. [Google Scholar] [CrossRef]
- Humphreys, E.D. Post-Laramide removal of the Farallon slab, western United States. Geology 1995, 23, 987–990. [Google Scholar] [CrossRef]
- Humphreys, E.; Hessler, E.; Dueker, K.; Farmer, G.L.; Erslev, E.; Atwater, T. How Laramide-age hydration of North American lithosphere by the Farallon slab controlled subsequent activity in the western United States. Int. Geol. Rev. 2003, 45, 575–595. [Google Scholar] [CrossRef]
- Slattery, J.S.; Cobban, W.A.; McKinney, K.C.; Harries, P.J.; Sandness, A.L. Early Cretaceous to Paleocene paleogeography of the Western Interior Seaway: The interaction of eustasy and tectonism. In Wyoming Geological Association Guidebook; Bingle-Davis, M.J., Ed.; Wyoming Geological Association: Casper, WY, USA, 2015; pp. 22–60. [Google Scholar]
- Mazza, S.E.; Gazel, E.; Johnson, E.A.; Kunk, M.J.; McAleer, R.; Spotila, J.A.; Bizimis, M.; Coleman, D.S. Volcanoes of the passive margin: The youngest magmatic event in eastern North America. Geology 2014, 42, 483–486. [Google Scholar] [CrossRef]
- Simmons, N.A.; Forte, A.M.; Boschi, L.; Grand, S.P. GyPSuM: A joint tomographic model of mantle density and seismic wave speeds. J. Geophys. Res. 2010, 115, B12310. [Google Scholar] [CrossRef]
- Lei, W.; Ruan, Y.; Bozdağ, E.; Peter, D.; Lefebvre, M.; Komatitsch, D.; Tromp, J.; Hill, J.; Podhorszki, N.; Pugmire, D. Global adjoint tomography—Model GLAD-M25. Geophys. J. Int. 2020, 223, 1–21. [Google Scholar] [CrossRef]
- Suzuki, Y.; Kawai, K.; Geller, R.J.; Tanaka, S.; Siripunvaraporn, W.; Boonchaisuk, S.; Noisagool, S.; Ishihara, Y.; Kim, T. High-resolution 3-D S-velocity structure in the D″ region at the western margin of the Pacific LLSVP: Evidence for small-scale plumes and paleoslabs. Phys. Earth Planet. Int. 2020, 307, 106544. [Google Scholar] [CrossRef]
- Avants, M.; Lay, T.; Garnero, E.J. A new probe of ULVZ S-wave velocity structure: Array stacking of ScS waveforms. Geophys. Res. Lett. 2006, 33, L07314. [Google Scholar] [CrossRef]
- Frost, D.A.; Rost, S. The P-wave boundary of the large-low shear velocity province beneath the Pacific. Earth Planet. Sci. Lett. 2014, 403, 380–392. [Google Scholar] [CrossRef]
- Hutko, A.R.; Lay, T.; Revenaugh, J. Localized double-array stacking analysis of PcP: D″ and ULVZ structure beneath the Cocos plate, Mexico, central Pacific, and north Pacific. Phys. Earth Planet. Inter. 2009, 173, 60–74. [Google Scholar] [CrossRef]
- Zhao, C.P.; Garnero, E.J.; Li, M.M.; McNamara, A.; Yu, S.L. Intermittent and lateral varying ULVZ structure at the northeastern margin of the Pacific LLSVP. J. Geophys. Res. Solid Earth 2017, 122, 1198–1220. [Google Scholar] [CrossRef]
- Sun, D.; Helmberger, D.; Lai, V.H.; Gurnis, M.; Jackson, J.M.; Yang, H.Y. Slab control on the northeastern edge of the mid-Pacific LLSVP near Hawaii. Geophys. Res. Lett. 2019, 46, 3142–3152. [Google Scholar] [CrossRef]
- Jenkins, J.; Mousavi, S.; Li, Z.; Cottaar, S. A high-resolution map of Hawaiian ULVZ morphology from ScS phases. Earth Planet. Sci. Lett. 2021, 563, 116885. [Google Scholar] [CrossRef]
- Heyn, B.H.; Conrad, C.-P.; Trønnes, R.G. Core-mantle boundary topography and its relation to the viscosity structure of the lowermost mantle. Earth Planet. Sci. Lett. 2020, 543, 116358. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, Y.; Hu, K.-J. Refining Heterogeneities near the Core–Mantle Boundary Beneath East Pacific Regions: Enhanced Differential Travel-Time Analysis Using USArray. Geosciences 2024, 14, 309. https://doi.org/10.3390/geosciences14110309
Ko Y, Hu K-J. Refining Heterogeneities near the Core–Mantle Boundary Beneath East Pacific Regions: Enhanced Differential Travel-Time Analysis Using USArray. Geosciences. 2024; 14(11):309. https://doi.org/10.3390/geosciences14110309
Chicago/Turabian StyleKo, Yenting (Justin), and Kai-Jie Hu. 2024. "Refining Heterogeneities near the Core–Mantle Boundary Beneath East Pacific Regions: Enhanced Differential Travel-Time Analysis Using USArray" Geosciences 14, no. 11: 309. https://doi.org/10.3390/geosciences14110309
APA StyleKo, Y., & Hu, K. -J. (2024). Refining Heterogeneities near the Core–Mantle Boundary Beneath East Pacific Regions: Enhanced Differential Travel-Time Analysis Using USArray. Geosciences, 14(11), 309. https://doi.org/10.3390/geosciences14110309