Earthquake Precursors: The Physics, Identification, and Application
Abstract
:1. Introduction
2. Physics of the Earthquake Precursors in the Ionosphere
2.1. Air Ionization
2.2. Ion-Induced Nucleation (IIN)
2.3. Additional Source of GEC Modification
2.4. Problems of Modeling
2.5. Effects in the E-Region of the Ionosphere
2.6. Summary of the Electromagnetic Branch of the LAIC Model
- Ions created by radon ionization and consequent ion’s hydration locally modify the GEC parameters, which leads to the generation of atmospheric electric field (positive and negative depending on atmospheric conditions) and air conductivity (increasing or decreasing with time due to ion’s hydration);
- These processes change the conditions for the subionospheric propagation of VLF waves mainly by increasing the electron concentration in the D-layer of the ionosphere, which is detected by variations in amplitude and phase of VLF signal, mainly during night-time and sunrise-sunset conditions;
- Seismogenic electric field penetrating in the E-layer of the ionosphere creates additional sporadic layers of metallic ions at altitude ~120 km and provides turbulization of the ionosphere detected by the semi-transparency coefficient ΔfbEs;
- By modification of atmospheric electric field and air conductivity, the large-scale irregularities of electron concentration (positive and negative) are formed in the F-layer of the ionosphere through changes in the IP over the earthquake preparation zone;
- Large-scale irregularities modify the geomagnetic tube loaned on this area. The stretched irregularities of electron concentration are formed along the tube where the VLF emissions are scattered and due to the increased level of VLF emission, they more effectively interact through the cyclotron resonance with energetic particles of radiation belts, which causes the stimulated particle precipitation;
- In the present moment, two approaches are used to model the F-layer effects: seismogenic electric field penetration (for high and mi-latitude ionosphere) and IP variations due to air conductivity changes for low latitudes. The model waits for future improvements;
- The model of near-ground ion kinetics still waiting for its development.
3. Physics of the Pre-Seismic Thermal Anomalies
3.1. Air Ionization Latent Heat Release and Atmosphere Reaction
- Increase in the air temperature;
- Drop of relative humidity;
- Drop of air pressure due to drop of partial pressure of the water vapor.
3.2. Atmosphere Chemical Potential (ACP) as an Integrated Diagnostic Parameter
- It can be used as a proxy of radon activity [56];
- It has a high correlation with the shear traction, i.e., can indicate the level of tectonic activity [66];
- Instead of traditional point measurements of radon activity, we can now track its spatial distribution and estimate the size of the earthquake preparation zone.
3.3. Effects of Ionization from Other Sources (Chernobyl NPP and Fukushima NPP Emergencies)
3.4. Summary of the Thermal Branch of the LAIC Model
4. Precursor’s Identification
4.1. Absolute Precursory Signatures
4.2. Precursors’ Identification
5. Practical Applications and Problems of the Earthquake Forecast
5.1. Determination of the Earthquake Parameters
- 4.
- The large size of the earthquake preparation zone and the fact that the precursor may appear at any point in this zone. If taking into account that for the M7 earthquake the Dobrovolsky radius is 1000 km, the error can be quite significant;
- 5.
- The equatorward shift of ionospheric precursors for the low and middle-low latitude events where the geomagnetic field lines inclination should be considered;
- 6.
- The low spatial resolution of satellite techniques of monitoring. It is a very rare occasion that the low-orbiting satellite passes exactly over the earthquake epicenter. For OLR measurements, the anomaly location is determined within the circle of 2.5°, which is too much for the desired accuracy of 50 km.
5.2. Data Purification from Other Types of Variations in Atmosphere and Ionosphere to Reveal the Earthquake Precursors
- Even a very strong earthquake is still a local event, so ionospheric effects will be observed only within the earthquake preparation zone, while the ionospheric effects of the geomagnetic storm are global;
- A geomagnetic storm, as a compelling force, increases the correlation between the remote areas of the ionosphere while pre-seismic effects increase the small-scale variability of the ionosphere;
- Strong variations in F10.7 can be filtered and the precursory variations may be identified due to their locality;
- Pre-earthquake variations in the ionosphere strongly depend on the local time (precursor mask) and are shorter than the ionospheric effects of the geomagnetic storm;
- The formation of sporadic layers at an altitude of 120 km in the E-region of the ionosphere is characteristic only to pre-earthquake effects;
- Multiparameter monitoring strongly helps to reveal precursors. Geomagnetic storms do not create thermal anomalies or variations in the relative humidity.
5.3. Cognitive Recognition and Automation of the Precursors’ Identification and Forecast
- Analysis of ΔTEC (or ΔfoF2) data sets with the pattern–recognition method for the correspondence of the ionospheric precursor mask to changes in the ionosphere current over the seismically active region [37];
- Correlation analysis of arrays of the daily TEC values (or critical frequency foF2) between a pair of adjacent GPS/GLONASS receivers (or ground stations for vertical sounding of the ionosphere) [61];
- Calculation of the coefficient of regional variability of the ionosphere in the presence of a dense local network of stationary GPS/GLONASS receivers [61];
- Calculation and construction of differential maps of the global TEC ΔTECGIM to determine the position of the epicenter of the future earthquake and its magnitude [64]. If there is a dense local network of stationary GPS/GLONASS receivers, differential maps can be calculated with local data rather than GPS GIMs;
- Comparison of variations in the global TEC with the local TEC with reference to the solar activity index F10.7 [61];
- Calculation of the correction of the chemical potential of water vapor (ACP) according to the local temperature and relative humidity data to determine the time of the seismic event [20];
- Construction of maps of the distribution of the correction of the chemical potential according to the data of local temperature and relative humidity to determine the position of the epicenter of the future earthquake and to estimate its magnitude [61];
- Multiparameter analysis using operational data on other physical precursors, if there are any (radon activity, crustal conductivity, OLR, and anomalous cloud structures) [82].
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Main, I. Statistical physics, seismogenesis, and seismic hazard. Rev. Geophys. 1996, 34, 433–462. [Google Scholar] [CrossRef]
- Scholz, C.H.; Sykes, L.R.; Aggarwal, Y.P. Earthquake Prediction: A Physical Basis. Science 1973, 181, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Geller, R.J.; Jackson, D.D.; Kagan, Y.Y.; Mulargia, F. Earthquakes Cannot Be Predicted. Science 1997, 275, 1616–1617. [Google Scholar] [CrossRef]
- Larkina, V.I.; Migulin, V.V.; Molchanov, O.A.; Khar’kov, I.P.; Inchin, A.S.; Schvetcova, V.B. Some statistical results on very low frequency radiowave emissions in the upper ionosphere over earthquake zones. Phys. Earth Planet. Inter. 1989, 57, 100–109. [Google Scholar] [CrossRef]
- Akhmamedov, K. Interferometric measurements of the temperature of the F2 region of the ionosphere during the period of the Iranian Earthquake of June 20, 1990. Geomagn. Aeron. 1993, 33, 135–137. [Google Scholar]
- Davies, K.; Baker, D.M. Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964. J. Geophys. Res. 1965, 70, 2251–2253. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Hayakawa, M. VLF Monitoring of atmosphere-ionosphere boundary as a tool to study planetary waves evolution and seismic influence. Phys. Chem. Earth 2001, 26, 453–458. [Google Scholar]
- Pulinets, S.A.; Legen’ka, A.D.; Gaivoronskaya, T.V.; Depuev, V.K. Main phenomenological features of ionospheric precursors of strong earthquakes. J. Atmos. Sol. Terr. Phys. 2003, 65, 1337–1347. [Google Scholar] [CrossRef]
- Le, H.; Liu, J.-Y.; Liu, L. A statistical analysis of ionospheric anomalies before 736 M6.0+ earthquakes during 2002–2010. J. Geophys. Res. Space Phys. 2011, 116, A02303. [Google Scholar] [CrossRef]
- Hattori, K. ULF Geomagnetic Changes Associated with Large Earthquakes. Terr. Atmos. Ocean. Sci. 2004, 15, 329–360. [Google Scholar] [CrossRef]
- Smirnov, S. Association of the negative anomalies of the quasistatic electric field in atmosphere with Kamchatka seismicity. Nat. Hazards Earth Syst. Sci. 2008, 8, 745–749. [Google Scholar] [CrossRef]
- Hayakawa, M.; Kasahara, Y.; Nakamura, T.; Muto, F.; Horie, T.; Maekawa, S.; Hobara, Y.; Rozhnoi, A.A.; Solovieva, M.; Molchanov, O.A. A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes. J. Geophys. Res. 2010, 115, A09305. [Google Scholar] [CrossRef]
- Genzano, N.; Aliano, C.; Filizzola, C.; Pergola, N.; Tramutoli, V. Robust satellite technique for monitoring seismically active areas: The case of Bhuj-Gujarat earthquake. Tectonophysics 2007, 431, 197–210. [Google Scholar] [CrossRef]
- Ouzounov, D.; Liu, D.; Kang, C.; Cervone, G.; Kafatos, M.; Taylor, P. Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics 2007, 431, 211–220. [Google Scholar] [CrossRef]
- Parrot, M.; Berthelier, J.J.; Lebreton, J.-P.; Sauvaud, J.A.; Santolík, O.; Blęcki, J. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions. Phys. Chem. Earth 2006, 31, 486–495. [Google Scholar] [CrossRef]
- Němec, F.; Santolík, O.; Parrot, M. Decrease of intensity of ELF/VLF waves observed in the upper ionosphere close to earthquakes: A statistical study. J. Geophys. Res. 2009, 114, A04303. [Google Scholar] [CrossRef]
- Anagnostopoulos, G.C.; Vassiliadis, E.; Pulinets, S. Characteristics of flux-time profiles, temporal evolution, and spatial distribution of radiation-belt electron precipitation bursts in the upper ionosphere before great and giant earthquakes. Ann. Geophys. 2012, 55, 21–36. [Google Scholar]
- Parrot, M. DEMETER Satellite and Detection of Earthquake Signals. In Natural Hazards, 1st ed.; Singh, R., Bartlett, D., Eds.; Taylor & Francis Group: Boca Raton, FL, USA, 2018; pp. 115–138. [Google Scholar]
- Pulinets, S.; Ouzounov, D. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model—An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D.P.; Karelin, A.V.; Davidenko, D.V. Physical Bases of the Generation of Short-Term Earthquake Precursors: A Complex Model of Ionization-Induced Geophysical Processes in the Lithosphere–Atmosphere–Ionosphere–Magnetosphere System. Geomagn. Aeron. 2015, 55, 540–558. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D.; Karelin, A.; Davidenko, D. Lithosphere–Atmosphere–Ionosphere–Magnetosphere Coupling—A Concept for Pre-Earthquake Signals Generation. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 77–98. [Google Scholar]
- Zhima, Z.; Yan, R.; Lin, J.; Wang, Q.; Yang, Y.; Lv, F.; Huang, J.; Cui, J.; Liu, Q.; Zhao, S.; et al. The Possible Seismo-Ionospheric Perturbations Recorded by the China-Seismo-Electromagnetic Satellite. Remote Sens. 2022, 14, 905. [Google Scholar] [CrossRef]
- Molchan, G.M. Earthquake prediction as a decision-making problem. Pure Appl. Geophys. 1997, 147, 233–247. [Google Scholar] [CrossRef]
- Junge, M.R.; Dettori, J.R. ROC Solid: Receiver Operator Characteristic (ROC) Curves as a Foundation for Better Diagnostic Tests. Glob. Spine J. 2018, 8, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Ouzounov, D.; Pulinets, S.; Liu, J.-Y.; Hattori, K.; Han, P. Multiparameter Assessment of Pre-Earthquake Atmospheric Signals. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 339–359. [Google Scholar] [CrossRef]
- Akhoondzadeh, M. Genetic algorithm for TEC seismo-ionospheric anomalies detection around the time of the Solomon (Mw = 8.0) earthquake of 06 February 2013. Adv. Space Res. 2013, 52, 581–590. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Davidenko, D.V.; Budnikov, P.A. Method for Cognitive Identification of Ionospheric Precursors of Earthquakes. Geomagn. Aeron. 2021, 61, 14–24. [Google Scholar] [CrossRef]
- Knyazeva, E.N.; Kurdiumov, S.P. Peculiar properties of nonequilibrium processes in open dissipative media. In The Problems of XXI Century Geophysics, 1st ed.; Nikolaev, A.A., Ed.; Nauka Publ.: Moscow, Russia, 2003; pp. 37–65. [Google Scholar]
- Mironova, I.A.; Aplin, K.L.; Arnold, F.; Bazilevskaya, G.A.; Harrison, R.G.; Krivolutsky, A.A.; Nicoll, K.A.; Rozanov, E.V.; Turunen, E.; Usoskin, I.G. Energetic Particle Influence on the Earth’s Atmosphere. Space Sci. Rev. 2015, 194, 1–96. [Google Scholar] [CrossRef]
- Hoppel, W.A.; Anderson, R.V.; Willet, J.C. Atmospheric electricity in the planetary boundary layer. In The Earth’s Electrical Environment; National Academic Press: Cambridge, MA, USA, 1986; pp. 149–165. [Google Scholar]
- Tölgyessy, M.; Harangozó. RADIOCHEMICAL METHODS|Natural and Artificial Radioactivity. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 8–15. [Google Scholar]
- Williams, E.R.; Mareev, E. Recent progress on the global electrical circuit. Atmos. Res. 2014, 135–136, 208–227. [Google Scholar] [CrossRef]
- Slyunyaev, N.N.; Mareev, E.A.; Zhidkov, A.A. On the variation of the ionospheric potential due to large-scale radioactivity enhancement and solar activity. J. Geophys. Res. Space Phys. 2015, 120, 7060–7082. [Google Scholar] [CrossRef]
- Fux, I.M.; Shubova, R.S. VLF signal anomalies as response on the processes within near-earth atmosphere. Geomagn. Aeronom. 1995, 34, 130–135. [Google Scholar]
- Rozhnoi, A.; Solovieva, M.; Molchanov, O.; Schwingenschuh, K.; Boudjada, M.; Biagi, P.F.; Maggipinto, T.; Castellana, L.; Ermini, A.; Hayakawa, M. Anomalies in VLF radio signals prior the Abruzzo earthquake (M = 6.3) on 6 April 2009. Nat. Hazards Earth Syst. Sci. 2009, 9, 1727–1732. [Google Scholar] [CrossRef]
- Martynenko, S.I.; Fuks, I.M.; Shubova, R.S. Ionospheric electric-field influence on the parameters of VLF signals connected with nuclear accidents and earthquakes. J. Atmos. Electr. 1996, 16, 259–269. [Google Scholar]
- Pulinets, S.A.; Davidenko, D.V. The Nocturnal Positive Ionospheric Anomaly of Electron Density as a Short-Term Earthquake Precursor and the Possible Physical Mechanism of its Formation. Geomagn. Aeron. 2018, 58, 559–570. [Google Scholar] [CrossRef]
- Tramutoli, V.; Marchese, F.; Falconieri, A.; Filizzola, C.; Genzano, N.; Hattori, K.; Lisi, M.; Liu, J.-Y.; Ouzounov, D.; Parrot, M.; et al. Tropospheric and Ionospheric Anomalies Induced by Volcanic and Saharan Dust Events as Part of Geosphere Interaction Phenomena. Geosciences 2019, 9, 177. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Davidenko, D.V.; Pulinets, M.S. Atmosphere-ionosphere coupling induced by volcanoes eruption and dust storms and role of GEC as the agent of geospheres interaction. Adv. Space Res. 2022, 69, 4319–4334. [Google Scholar] [CrossRef]
- Pulinets, S. Low-Latitude Atmosphere-Ionosphere Effects Initiated by Strong Earthquakes Preparation Process. Int. J. Geophys. 2012, 2012, 131842. [Google Scholar] [CrossRef]
- Denisenko, V.V.; Rozanov, E.V.; Belyuchenko, K.V.; Bessarab, F.S.; Golubenko, K.S.; Klimenko, M.V. The Ionospheric Electric Field Perturbation with an Increase in Radon Emanation. Russ. J. Phys. Chem. B Focus. Phys. 2024, 18, 837–843. [Google Scholar] [CrossRef]
- Bliokh, P. Variations of Electric Fields and Currents in the Lower Ionosphere Produced by Conductivity Growth of the Air above the Future Earthquake Center. In Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes; Hayakawa, M., Ed.; TERRAPUB: Tokyo, Japan, 1999; pp. 829–838. [Google Scholar]
- Kathmann, S.M.; Schenter, G.K.; Garrett, B.C. Ion-induced nucleation: The importance of chemistry. Phys. Rev. Lett. 2005, 94, 116104. [Google Scholar] [CrossRef] [PubMed]
- Svensmark, H.; Enghoff, M.B.; Shaviv, N.J.; Svensmark, J. Increased ionization supports growth of aerosols into cloud condensation nuclei. Nat. Commun. 2017, 8, 2199. [Google Scholar] [CrossRef] [PubMed]
- Pulinets, S.A.; Boyarchuk, K.A. Ionospheric Precursors of Earthquakes, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 315. [Google Scholar] [CrossRef]
- Timofeev, V.E.; Grigoryev, V.G.; Morozova, E.I.; Skryabin, N.G.; Samsonov, S.N. Action of cosmic rays on the latent energy of the atmosphere. Geomag. Aeron. 2003, 43, 636–640. [Google Scholar]
- Hõrrak, U. Air Ion Mobility Spectrum at A Rural Area. Ph.D. Thesis, Tartu Ülikooli Kirjastuse, Trükikoda, Tartu City, Estonia, 2001. [Google Scholar]
- Gavrilov, V.A.; Panteleev, I.A.; Deshcherevskii, A.V.; Lander, A.V.; Morozova, Y.V.; Buss, Y.Y.; Vlasov, Y.A. Stress–Strain State Monitoring of the Geological Medium Based on The Multi-instrumental Measurements in Boreholes: Experience of Research at the Petropavlovsk-Kamchatskii Geodynamic Testing Site (Kamchatka, Russia). Pure Appl. Geophys. 2020, 177, 397–419. [Google Scholar] [CrossRef]
- Bogdanov, V.; Gavrilov, V.; Pulinets, S.; Ouzounov, D. Responses to the preparation of strong Kamchatka earthquakes in the lithosphere–atmosphere–ionosphere system, based on new data from integrated ground and ionospheric monitoring. E3S Web Conf. 2020, 196, 03005. [Google Scholar] [CrossRef]
- Smirnov, S. Negative Anomalies of the Earth’s Electric Field as Earthquake Precursors. Geosciences 2020, 10, 10. [Google Scholar] [CrossRef]
- Han, R.; Cai, M.; Chen, T.; Yang, T.; Xu, L.; Xia, Q.; Jia, X.; Han, J. Preliminary Study on the Generating Mechanism of the Atmospheric Vertical Electric Field before Earthquakes. Appl. Sci. 2022, 12, 6896. [Google Scholar] [CrossRef]
- Holzer, R.E. Atmospheric electrical effects of nuclear explosions. J. Geophys. Res. 1972, 77, 5845–5855. [Google Scholar] [CrossRef]
- Khegai, V.V. Analytical model of a seismogenic electric field according to data of measurements in the surface layer of the midlatitude atmosphere and calculation of its magnitude at the ionospheric level. Geomagn. Aeron. 2020, 60, 507–520. [Google Scholar] [CrossRef]
- Sorokin, V.; Novikov, V. A model of TEC perturbations possibly related to seismic activity. Ann. Geophys. 2023, 66, SE642. [Google Scholar] [CrossRef]
- Kuo, C.L.; Lee, L.C.; Huba, J.D. An improved coupling model for the lithosphere-atmosphere-ionosphere system. J. Geophys. Res. Space Phys. 2014, 119, 3189–3205. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D.; Karelin, A.; Boyarchuk, K. Earthquake Precursors in the Atmosphere and Ionosphere; Springer Nature: Dordrecht, The Netherlands, 2022; Available online: https://link.springer.com/book/10.1007/978-94-024-2172-9 (accessed on 30 July 2024).
- Hegai, V.; Zeren, Z.; Pulinets, S. Seismogenic Field in the Ionosphere before Two Powerful Earthquakes: Possible Magnitude and Observed Ionospheric Effects (Case Study). Atmosphere 2023, 14, 819. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Chao, C.-K. An observing system simulation experiment for 1 FORMOSAT-5/AIP detecting seismoionospheric precursors. Terr. Atmos. Ocean. Sci. 2017, 28, 117–127. [Google Scholar] [CrossRef]
- Morozov, V.N. Mathematical Modeling of Atmospheric-Electrical Processes Taking into Account the Influence of Aerosol Particles and Radioactive Substances; Russian State Hydrometeorological University Publishing: Saint-Petersburg, Russia, 2011. [Google Scholar]
- Pulinets, S.; Krankowski, A.; Hernandez-Pajares, M.; Marra, S.; Cherniak, I.; Zakharenkova, I.; Rothkaehl, H.; Kotulak, K.; Davidenko, D.; Blaszkiewicz, L.; et al. Ionosphere Sounding for Pre-seismic Anomalies Identification (INSPIRE): Results of the Project and Perspectives for the Short-Term Earthquake Forecast. Front. Earth Sci. 2021, 9, 610193. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. The Possibility of Earthquake Forecasting: Learning from Nature; IOP Publishing: Bristol, UK, 2018; Available online: https://iopscience.iop.org/book/978-0-7503-1248-6 (accessed on 30 July 2024).
- Liperovskaya, E.V.; Pokhotelov, O.A.; Hobara, Y.; Parrot, M. Variability of sporadic E-layer semi transparency (foEs − fbEs) with magnitude and distance from earthquake epicenters to vertical sounding stations. Nat. Hazards Earth Syst. Sci. 2003, 3, 279–284. [Google Scholar] [CrossRef]
- Kim, V.P.; Khegai, V.V.; Illich-Svitych, P.V. Probability of formation of a metallic ion layer in the nighttime midlatitude ionospheric E-region before strong earthquakes. Geomagn. Aeron. 1993, 33, 114–119. [Google Scholar]
- Xu, T.; Hu, Y.; Deng, Z.; Zhang, Y.; Wu, J. Revisit to sporadic E layer response to presumably seismogenic electrostatic fields at middle latitudes by model simulation. J. Geophys. Res. Space Phys. 2020, 125, e2019JA026843. [Google Scholar] [CrossRef]
- Surkov, V.V.; Pilipenko, V.A.; Silina, A.S. Can Radioactive Emanations in a Seismically Active Region Affect Atmospheric Electricity and the Ionosphere? Izv. Phys. Solid Earth 2022, 58, 297–305. [Google Scholar] [CrossRef]
- Pulinets, S.; Budnikov, P.; Karelin, A.; Žalohar, J. Thermodynamic instability of the atmospheric boundary layer stimulated by tectonic and seismic activity. J. Atmos. Sol. Terr. Phys. 2023, 246, 106050. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Tavousi, T.; Khosravi, M. Atmospheric blocking anomalies as the synoptic precursors prior to the induced earthquakes: A new climatic conceptual model. Int. J. Environ. Sci. Technol. 2015, 12, 1705–1718. [Google Scholar] [CrossRef]
- Dobrovolsky, I.R.; Zubkov, S.I.; Myachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Boyarchuk, K.A.; Karelin, A.V.; Shirokov, R.V. Bazovaya model’ kinetiki ionizirovannoi atmosfery. In The Reference Model of Ionized Atmospheric Kinetics; VNIIEM Publ.: Moscow, Russia, 2006. [Google Scholar]
- Tsuruda, T. Nuclear power plant explosions at Fukushima-Daiichi. Procedia Eng. 2013, 62, 71–77. [Google Scholar] [CrossRef]
- Pulinets, S.; Budnikov, P. Atmosphere Critical Processes Sensing with ACP. Atmosphere 2022, 13, 1920. [Google Scholar] [CrossRef]
- Expansion of Radioactive Cloud after Chernobyl Disaster. Available online: https://www.youtube.com/watch?v=mqu_l29WioM (accessed on 6 June 2024).
- Bolt, B.A. Earthquakes: A Primer; W.H. Freeman: San Francisco, CA, USA, 1978; p. 241. [Google Scholar]
- Toutain, J.-P.; Baubron, J.-C. Gas geochemistry and seismotectonics: A review. Tectonophysics 1998, 304, 1–27. [Google Scholar] [CrossRef]
- Fleischer, R.L. Dislocation model for radon response to distant earthquakes. Geophys. Res. Lett. 1981, 8, 477–480. [Google Scholar] [CrossRef]
- Aki, K.; Richards, P.G. Quantitative Seismology. Theory and Methods; Freeman: New York, NY, USA, 1980. [Google Scholar]
- Ryu, K.; Parrot, M.; Kim, S.G.; Jeong, K.S.; Chae, J.S.; Pulinets, S.; Oyama, K.-I. Suspected seismo-ionospheric coupling observed by satellite measurements and GPS TEC related to the M7.9 Wenchuan earthquake of 12 May 2008. J. Geophys. Res. Space Phys. 2014, 119, 305–323. [Google Scholar] [CrossRef]
- Pulinets, S.; Tsidilina, M.; Ouzounov, D.; Davidenko, D. From Hector Mine M7.1 to Ridgecrest M7.1 Earthquake. A Look from a 20-Year Perspective. Atmosphere 2021, 12, 262. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Chuo, Y.J.; Chen, C.S. A statistical investigation of preearthquake ionospheric anomaly. J. Geophys. Res. 2006, 111, A05304. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Hattori, K.; Chen, Y.-I. Application of Total Electron Content Derived from the Global Navigation Satellite System for Detecting Earthquake Precursors. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; John Wiley & Sons, Inc.: Washington DC, USA, 2018; pp. 305–317. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Chen, C.H.; Liu, C.Y.; Chen, C.Y.; Nishihashi, M.; Li, J.Z.; Xia, Y.Q.; Oyama, K.I.; Hattori, K.; et al. Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake. J. Geophys. Res. 2009, 114, A04320. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Hattori, K.; Kafatos, M.; Taylor, P. Atmospheric signals associated with major earthquakes. A multi-sensor approach. In The Frontier of Earthquake Prediction Studies; Hayakawa, M., Ed.; Nihon-Senmontosho-Shuppan: Tokyo, Japan, 2012; pp. 510–531. [Google Scholar]
- Ouzounov, D.; Pulinets, S.; Davidenko, D.; Rozhnoi, A.; Solovieva, M.; Fedun, V.; Dwivedi, B.N.; Rybin, A.; Kafatos, M.; Taylor, P. Transient Effects in Atmosphere and Ionosphere Preceding the 2015 M7.8 and M7.3 Gorkha–Nepal Earthquakes. Front. Earth Sci. 2021, 9, 757358. [Google Scholar] [CrossRef]
- Li, M.; Parrot, M. Statistical analysis of an ionospheric parameter as a base for earthquake prediction. J. Geophys. Res. 2013, 3731–3739. [Google Scholar] [CrossRef]
- He, Y.; Yang, D.; Qian, J.; Parrot, M. Response of the Ionospheric Electron Density to Different Types of Seismic Events. Nat. Hazards Earth Syst. Sci. 2011, 11, 2173–2180. [Google Scholar] [CrossRef]
- Yan, R.; Parrot, M.; Pinçon, J.-L. Statistical study on variations of the ionospheric ion density observed by DEMETER and related to seismic activities. J. Geophys. Res. 2017, 122, 12,421–12,429. [Google Scholar] [CrossRef]
- Shen, X. From CSES to IMCP. In Proceedings of the IMCP International Workshop, NSSC-Huairou Campus, Beijing, China, 14–17 September 2023. [Google Scholar]
Ana-Lyzer | Fraction | Mobility cm2 V−1 s−1 | Diameter nm |
---|---|---|---|
IS1 | N1/P1 | Small Cluster Ions 2.51–3.14 | 0.36–0.45 |
IS1 | N2/P2 | 2.01–2.51 | 0.45–0.56 |
IS1 | N3/P3 | 1.60–2.01 | 0.56–0.70 |
IS1 | N4/P4 | 1.28–1.60 | 0.70–0.85 |
IS1 | N5/P5 | Big Cluster Ions 1.02–1.28 | 0.85–1.03 |
IS1 | N6/P6 | 0.79–1.02 | 1.03–1.24 |
IS1 | N7/P7 | 0.63–0.79 | 1.24–1.42 |
IS1 | N8/P8 | 0.50–0.63 | 1.42–1.60 |
IS1 | N9/P9 | Intermediate Ions 0.40–0.50 | 1.6–1.8 |
IS1 | N10/P10 | 0.32–0.40 | 1.8–2.0 |
IS1 | N11/P11 | 0.25–0.32 | 2.0–2.3 |
IS2 | N12/P12 | 0.150–0.293 | 2.1–3.2 |
IS2 | N13/P13 | 0.074–0.150 | 3.2–4.8 |
IS2 | N14/P14 | 0.034–0.074 | 4.8–7.4 |
IS2 | ayp15 | Light Large Ions 0.016–0.034 | 7.4–11.0 |
IS3 | NJPu | 0.0091–0.0205 | 9.7–14.8 |
IS3 | M l/P 17 | 0.0042–0.0091 | 15–22 |
IS3 | M8 IP 18 | Heavy Cluster ions 0.00192–0.00420 | 22–34 |
IS3 | Nl9/P 19 | 0.00087–0.00192 | 34–52 |
IS3 | Mo/P20 | 0.00041–0.00087 | 52–79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulinets, S.; Herrera, V.M.V. Earthquake Precursors: The Physics, Identification, and Application. Geosciences 2024, 14, 209. https://doi.org/10.3390/geosciences14080209
Pulinets S, Herrera VMV. Earthquake Precursors: The Physics, Identification, and Application. Geosciences. 2024; 14(8):209. https://doi.org/10.3390/geosciences14080209
Chicago/Turabian StylePulinets, Sergey, and Victor Manuel Velasco Herrera. 2024. "Earthquake Precursors: The Physics, Identification, and Application" Geosciences 14, no. 8: 209. https://doi.org/10.3390/geosciences14080209
APA StylePulinets, S., & Herrera, V. M. V. (2024). Earthquake Precursors: The Physics, Identification, and Application. Geosciences, 14(8), 209. https://doi.org/10.3390/geosciences14080209