Impact Assessment of Digital Elevation Model (DEM) Resolution on Drainage System Extraction and the Evaluation of Mass Movement Hazards in the Upper Catchment
Abstract
:1. Introduction
- Assessing the impact of DEM resolution on the identification of 1st order basins and defining thresholds for various DEM resolutions;
- Developing a model to approximate the boundaries of 0-order basins;
- Evaluating the critical slip surfaces within approximate 0-order basins.
2. Data Collection
3. Methodology
3.1. DEM-Based Drainage System Modeling
3.2. Extraction of Approximate 0-Order Basin
3.3. Critical Slip Surface
4. Results
4.1. DEM-Based Drainage System Modeling
4.2. Extraction of Approximate 0-Order Basin
4.3. Critical Slip Surface
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Highland, L.M.; Bobrowsky, P.T. The Landslide Handbook—A Guide to Understanding Landslides; U.S. Geological Survey: Reston, VA, USA, 2008. [Google Scholar] [CrossRef]
- Corominas, J.; Moya, J. A review of assessing landslide frequency for hazard zoning purposes. Eng. Geol. 2008, 102, 193–213. [Google Scholar] [CrossRef]
- Harp, E.L.; Keefer, D.K.; Sato, H.P.; Yagi, H. Landslide inventories: The essential part of seismic landslide hazard analyses. Eng. Geol. 2011, 122, 9–21. [Google Scholar] [CrossRef]
- Reid, M.; Baum, R.; LaHusen, R.; Ellis, W. Capturing landslide dynamics and hydrologic triggers using near-real-time monitoring. In Landslides and Engineered Slopes. From the Past to the Future; CRC Press: Boca Raton, FL, USA, 2008; pp. 179–191. [Google Scholar] [CrossRef]
- Dhital, M.R. Geomorphic approach of controlling mass movements on Tama Koshi road in Central Nepal. Lowl. Technol. Int. 2017, 18, 283–296. [Google Scholar]
- Agwe, J.N.; Arnold, M.; Buys, P.; Chen, R.S.; Deichmann, U.K.; Dilley, M.; Kjevstad, O.; Lerner-Lam, A.L.; Lyon, B.; Yetman, G. Natural Disaster Hotspots: A Global Risk Analysis; World Bank Group: Washington, DC, USA, 2005. [Google Scholar]
- Petley, D. Global Deaths from Landslides in 2010 (Updated to Include a Comparison with Previous Years; American Geophysical Union: Washington, DC, USA, 2011. [Google Scholar]
- Shinohara, Y.; Kume, T. Changes in the factors contributing to the reduction of landslide fatalities between 1945 and 2019 in Japan. Sci. Total. Environ. 2022, 827, 154392. [Google Scholar] [CrossRef]
- Abraham, M.T.; Satyam, N.; Pradhan, B. A novel approach for quantifying similarities between different debris flow sites using field investigations and numerical modelling. Terra Nova 2023, 36, 138–147. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Dikshit, A.; Al-Katheri, M.M.; Matar, S.S.; Mahdi, A.M. Landslide susceptibility mapping using CNN-1D and 2D deep learning algorithms: Comparison of their performance at Asir Region, KSA. Bull. Eng. Geol. Environ. 2022, 81, 165. [Google Scholar] [CrossRef]
- Alcántara-Ayala, I.; Parteli, E.J.R.; Pradhan, B.; Cuomo, S.; Vieira, B.C. Editorial: Physics and modelling of landslides. Front. Phys. 2023, 11, 1146166. [Google Scholar] [CrossRef]
- Abraham, M.T.; Satyam, N.; Pradhan, B.; Segoni, S. Proposing an easy-to-use tool for estimating landslide dimensions using a data-driven approach. All Earth 2022, 34, 243–258. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Sahin, E.K.; Colkesen, I. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 2013, 11, 425–439. [Google Scholar] [CrossRef]
- Mallick, J.; Singh, R.K.; AlAwadh, M.A.; Islam, S.; Khan, R.A.; Qureshi, M.N. GIS-based landslide susceptibility evaluation using fuzzy-AHP multi-criteria decision-making techniques in the Abha Watershed, Saudi Arabia. Environ. Earth Sci. 2018, 77, 276. [Google Scholar] [CrossRef]
- Thwaites, R.N.; Brooks, A.P.; Pietsch, T.J.; Spencer, J.R. What Type of Gully Is That? The Need for a Classification of Gullies; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Iverson, R.M. Geomorphic and hydrologic dynamics of zero-order basins. EOS 1987, 68, 1808. [Google Scholar] [CrossRef]
- D’Odorico, P.; Fagherazzi, S. A probabilistic model of rainfall-triggered shallow landslides in hollows: A long-term analysis. Water Resour. Res. 2003, 39, 1262. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Dietrich, W.E.; Torres, R.; Anderson, S.P.; Heffner, J.T.; Loague, K. Hydrologic response of a steep, unchanneled valley to natural and applied rainfall. Water Resour. Res. 1997, 33, 91–109. [Google Scholar] [CrossRef]
- Parker, R.N.; Hales, T.C.; Mudd, S.M.; Grieve, S.W.D.; Constantine, J.A. Colluvium supply in humid regions limits the frequency of storm-triggered landslides. Sci. Rep. 2016, 6, 34438. [Google Scholar] [CrossRef]
- Sidle, R.C.; Gomi, T.; Tsukamoto, Y. Discovery of zero-order basins as an important link for progress in hydrogeomorphology. Hydrol. Process. 2018, 32, 3059–3065. [Google Scholar] [CrossRef]
- Hales, T.; Scharer, K.; Wooten, R. Southern Appalachian hillslope erosion rates measured by soil and detrital radiocarbon in hollows. Geomorphology 2012, 138, 121–129. [Google Scholar] [CrossRef]
- Khyat, J.; Chalawadi, M.B.; Guide, R.; Mavarakar, M.P. Morphometric analysis of hiranyakeshi drainage basin: A study based on srtm dem. UGC Care Group I List. J. 2023, 13, 172–183. [Google Scholar]
- Maathuis, B.H.P.; Wang, L. Digital Elevation Model Based Hydro-processing. Geocarto Int. 2006, 21, 21–26. [Google Scholar]
- O’Callaghan, J.F.; Mark, D.M. The Extraction of Drainage Networks from Digital Elevation Data. Comput. Vis. Graph. Image Process. 1984, 28, 323–344. [Google Scholar]
- Hancock, G.R.; Evans, K.G. Channel head location and characteristics using digital elevation models. Earth Surf. Process. Landf. 2006, 31, 809–824. [Google Scholar] [CrossRef]
- Dashtpagerdi, M.M.; Sadeghi, S.H.; Rekabdarkoolai, H.M. Changeability of simulated watershed hydrographs from different vector scales and cell sizes. CATENA 2019, 182, 104097. [Google Scholar] [CrossRef]
- Datta, S.; Karmakar, S.; Mezbahuddin, S.; Hossain, M.M.; Chaudhary, B.S.; Hoque, E.; Al Mamun, M.M.A.; Baul, T.K. The limits of watershed delineation: Implications of different DEMs, DEM resolutions, and area threshold values. Hydrol. Res. 2022, 53, 1047–1062. [Google Scholar] [CrossRef]
- Habtezion, N.; Nasab, M.T.; Chu, X. How does DEM resolution affect microtopographic characteristics, hydrologic connectivity, and modelling of hydrologic processes? Hydrol. Process. 2016, 30, 4870–4892. [Google Scholar]
- Grieve, S.W.D.; Hales, T.C.; Parker, R.N.; Mudd, S.M.; Clubb, F.J. Controls on Zero-Order Basin Morphology. J. Geophys. Res. Earth Surf. 2018, 123, 3269–3291. [Google Scholar] [CrossRef]
- Tarboton, D.G. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour. Res. 1997, 33, 309–319. [Google Scholar] [CrossRef]
- Costabile, P.; Costanzo, C.; Gandolfi, C.; Gangi, F.; Masseroni, D. Effects of DEM Depression Filling on River Drainage Patterns and Surface Runoff Generated by 2D Rain-on-Grid Scenarios. Water 2022, 14, 997. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Smith, J.; Jones, A. Fuzzy Logic in Terrain Analysis. J. Geomorphol. 2020, 45, 123–136. [Google Scholar]
- Brown, L.; Green, P. Applications of Fuzzy Landform Classification. Earth Sci. Rev. 2018, 55, 200–215. [Google Scholar]
- Carter, H.; Dubois, D.; Prade, H. Fuzzy sets and systems—Theory and applications. Math. Sci. Eng. 1980, 144, 1–393. [Google Scholar]
- Nakanishi, R.; Baba, A.; Tsuyama, T.; Ikemi, H.; Mitani, Y. Examination of Sediment Dynamics Based on the Distribution of Silica Fluxes and Flood Sediments in the Otoishi River Related to the Northern Kyushu Heavy Rain Disaster, July 2017. Geosciences 2019, 9, 75. [Google Scholar] [CrossRef]
- Aleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Eng. Geol. Environ. 1999, 58, 21–44. [Google Scholar] [CrossRef]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Pierson, T.C.; Costa, J.E. A rhéologie classification of subaerial sediment-water flows. GSA Rev. Eng. Geol. 1987, 7, 1–12. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Qiu, C. Development of a GIS-Based Three-Dimensional Deterministic Methodology for Spatio-Temporal Assessment of Landslide Hazard. Ph.D Thesis, Kyushu University, Fukuoka, Japan, 2006. [Google Scholar]
- Das, B.M.; Sobhan, K. Principles of Geotechnical Engineering, 8th ed.; Cengage Learning: Boston, MA, USA, 2014. [Google Scholar]
- Terzaghi, K.; Peck, R.B.; Mesri, G. Soil Mechanics. In Engineering Practice, 3rd ed.; Wiley: Hoboken, NJ, USA, 1996. [Google Scholar]
- Holtz, R.D.; Kovacs, W.D. An Introduction to Geotechnical Engineering; Pearson: London, UK, 1981. [Google Scholar]
- Bernard, T.G.; Davy, P.; Lague, D. Hydro-Geomorphic Metrics for High Resolution Fluvial Landscape Analysis. J. Geophys. Res. Earth Surf. 2022, 127, e2021JF006535. [Google Scholar] [CrossRef]
- Tarboton, D. Terrain Analysis Using Digital Elevation Models in Hydrology; Esri: Redlands, CA, USA, 2023. [Google Scholar]
- Wu, J.; Hu, P.; Zhao, Z.; Lin, Y.T.; He, Z. A GPU-accelerated and LTS-based 2D hydrodynamic model for the simulation of rainfall-runoff processes. J. Hydrol. 2023, 623, 129735. [Google Scholar] [CrossRef]
Drainage System | 10 m DEM | 5 m DEM | 1 m DEM | 50 cm DEM |
---|---|---|---|---|
6th order drainage system | ||||
5th order drainage system | ||||
4th order drainage system (>0.3 km2) | Best result | |||
3rd order drainage system (0.3 km2) | Acceptable | Best result | ||
2nd order drainage system (0.017–0.012 km2) | Noise | Acceptable | ||
1st order drainage system (0.003–0.002 km2) | Noise | Best result | ||
Runnels (<0.002 km2) | Acceptable | |||
Smaller runnels | Noise | Best result |
Sediment Type | Cohesion | Fraction Angle | Rock Density |
---|---|---|---|
Igneous rocks (andesite, basaltic andesite, and granodiorite) | 25° | ||
Metamorphic rocks (schist) and sedimentary rocks (breccia) | 20° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbar, A.Q.; Mitani, Y.; Nakanishi, R.; Djamaluddin, I.; Sugahara, T. Impact Assessment of Digital Elevation Model (DEM) Resolution on Drainage System Extraction and the Evaluation of Mass Movement Hazards in the Upper Catchment. Geosciences 2024, 14, 223. https://doi.org/10.3390/geosciences14080223
Akbar AQ, Mitani Y, Nakanishi R, Djamaluddin I, Sugahara T. Impact Assessment of Digital Elevation Model (DEM) Resolution on Drainage System Extraction and the Evaluation of Mass Movement Hazards in the Upper Catchment. Geosciences. 2024; 14(8):223. https://doi.org/10.3390/geosciences14080223
Chicago/Turabian StyleAkbar, Ahmad Qasim, Yasuhiro Mitani, Ryunosuke Nakanishi, Ibrahim Djamaluddin, and Takumi Sugahara. 2024. "Impact Assessment of Digital Elevation Model (DEM) Resolution on Drainage System Extraction and the Evaluation of Mass Movement Hazards in the Upper Catchment" Geosciences 14, no. 8: 223. https://doi.org/10.3390/geosciences14080223
APA StyleAkbar, A. Q., Mitani, Y., Nakanishi, R., Djamaluddin, I., & Sugahara, T. (2024). Impact Assessment of Digital Elevation Model (DEM) Resolution on Drainage System Extraction and the Evaluation of Mass Movement Hazards in the Upper Catchment. Geosciences, 14(8), 223. https://doi.org/10.3390/geosciences14080223