Spatiotemporal Variability Analysis of Rainfall and Water Quality: Insights from Trend Analysis and Wavelet Coherence Approach
Abstract
:1. Introduction
- To identify the seasonal trend of rainfall and water quality parameters using a modified Mann–Kendall test (MMK) and innovative trend analysis (ITA), respectively, and to show the spatial distribution of rainfall trend parameters.
- To detect the temporal patterns and correlation between rainfall and water quality index (WQI) using wavelet transform coherence (WTC) spanning a period of 22 years.
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Compilation
2.3. Precipitation Concentration Index (PCI)
2.4. Coefficient of Variance (CV)
2.5. Mann–Kendall (MK) and Modified Mann–Kendall (MMK) Tests
2.6. Sen’s Slope Estimator
2.7. Innovative Trend Analysis (ITA)
2.8. Wavelet Analysis
2.8.1. Wavelet
2.8.2. Wavelet Transform Coherence (WTC)
Equation | SN. | Descriptions | References |
---|---|---|---|
(1) | PCI = Precipitation concentration index Ri = Rainfall in month i. | [54] | |
(2) | σ = Standard deviation μ = Mean of the series | [55] | |
(3) | n = Number of data; Xi, Xj = data points of time series i and j | [58] | |
(4) | N = Number of data points m = Number of tied groups tk = Number of ties in kth group | [58] | |
(5) | = Correction factor to adjust the auto correlated data | [42] | |
(6) | xj, xk = Values of data at time j and k (j > k) i = 1, 2, 3…N | [61] | |
(7) | B = Trend detector n = Size of individual sub series xj, xk = The values of sub series = Average of first sub series xk. | [62] | |
(8) | 1/√s = A normalisation factor ensuring the unit variance of the wavelet, with ||||2 = 1 u = Location parameter s = Scale parameter | [66] | |
(9) | Rn = Squared wavelet coherence coefficient ranging from 0 to 1 n = Time index S = Smoothing operator | [65,66] | |
(10) | Sscale = Smoothing along wavelet scale Stime = Time parameter | [65,66] | |
(11) | Stime = Time parameter | [65,66] | |
(12) | C2 = Normalisation factor, and Π = rectangle function | [65,66] |
3. Results and Discussion
3.1. Rainfall Distribution
3.2. Auto Correlation Function (ACF)
3.3. Seasonal Rainfall Trends
3.3.1. Autumn Trend
Station | Z Statistics | MK Tau | p Value | Sen’s Slope (mm/yr) | ITD | B (ITA) |
---|---|---|---|---|---|---|
Cooby Creek | 2.26 | 0.30 | 0.02 | 4.89 | 3.39 | |
Cressbrook Dam | 1.00 | 0.21 | 0.72 | 4.77 | 1.55 | |
Doctors Creek | 1.40 | 0.30 | 0.16 | 5.57 | 3.81 | |
Glenaven | 1.50 | 0.27 | 0.13 | 4.29 | 2.43 | |
Goombungee PO | 1.88 | 0.31 | 0.07 | 5.84 | 4.51 | |
Haden PO | 0.75 | 0.15 | 0.45 | 3.56 | 3.63 | |
Moyola | 2.20 | 0.30 | 0.03 | 5.61 | 4.90 | |
Mount Kynoch | 1.79 | 0.28 | 0.07 | 7.86 | 5.24 | |
Oakey Aero | 1.11 | 0.21 | 0.27 | 4.10 | 3.69 | |
Pechey Forestry | 1.31 | 0.26 | 0.19 | 5.32 | 4.12 | |
Perseverance Dam | 1.36 | 0.25 | 0.17 | 6.34 | 7.38 | |
Tamba | 1.69 | 0.30 | 0.09 | 7.03 | 6.36 |
3.3.2. Winter Trend
3.3.3. Spring Trend
3.3.4. Summer Trend
3.4. Trend of Seasonal Water Quality
3.4.1. Cooby Reservoir
3.4.2. Cressbrook Reservoir
3.4.3. Perseverance Reservoir
3.5. Comparative Analysis of MMK and ITA Trend Methods
3.6. Wavelet Transform Coherence (WTC) Analysis
3.6.1. WTC of Rainfall and WQI (Cooby Reservoir)
3.6.2. WTC of Rainfall and WQI (Cressbrook Reservoir)
3.6.3. WTC of Rainfall and WQI (Perseverance Reservoir)
4. Conclusions and Future Works
- A significant increasing trend of rainfall was observed in two rainfall stations (Cooby Creek and Moyola) in autumn and the combination of non-significant increasing and decreasing trends in the other three seasons. The rainfall during autumn increased by 5.43 mm/yr. The highest value of Sen’s slope was also observed in the autumn, (7.86 mm/yr) at Mount Kynoch.
- In water quality trends, NH3-N showed increasing trends across four seasons in all three reservoirs. PO43− showed a significant decreasing trend in all three reservoirs in four seasons and was not affecting the trend of WQI. The declining trend of PO43− levels was a positive indicator of improved water quality in the reservoir. It indicated improved agricultural practice reducing phosphate runoff and better environmental regulations aimed at controlling phosphate discharge. The increasing trend of NH3-N, pH and turbidity affected the overall trend of WQI in Cooby and Cressbrook reservoirs. A slight increasing trend of WQI was observed in the Perseverance reservoir.
- The MMK test provided statistical robustness and identified significant trends in rainfall and water quality data and ITA offered a detailed graphical representation highlighting subtle and nonlinear trends that MMK might have overlooked. In the case of water quality, WQI showed a decreasing trend in the first half of the data (2001–2012) in Cooby and Cressbrook reservoirs and slight increasing trend in the second half of the data in Perseverance reservoir. ITA’s visual output was particularly valuable in illustrating gradual changes and potential breakpoints, complementing the statistical validation provided by MMK.
- In wavelet transform coherence (WTC) results, a notable correlation was found between seasonal rainfall and WQI. At Cooby Creek station, a very high coherence was noticed between rainfall and WQI in 8 to 16 periods ranging from 2002 to 2022. The regions with a 5% significance level were scattered in all plots. Among the twelve stations, the higher coherency was visible in Cooby Creek and at the Haden Post Office rainfall station with WQI of all reservoirs. However, comparatively low coherency was observed amidst rainfall and WQI of Perseverance reservoir. In terms of water quality trends and correlation analysis, Perseverance reservoir showed a slightly different scenario. The causes of this difference may include land use practices, catchment size, different outflow and inflow patterns and the variation in distribution and intensity of rainfall. This can be thoroughly investigated in future studies.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mathew, M.M.; Sreelash, K.; Mathew, M.; Arulbalaji, P.; Padmalal, D. Spatiotemporal variability of rainfall and its effect on hydrological regime in a tropical monsoon-dominated domain of Western Ghats, India. J. Hydrol. Reg. Stud. 2021, 36, 100861. [Google Scholar] [CrossRef]
- Ashcroft, L.; Karoly, D.J.; Dowdy, A.J. Historical extreme rainfall events in Southeastern Australia. Weather Clim. Extrem. 2019, 25, 100210. [Google Scholar] [CrossRef]
- Mohan, P.R.; Srinivas, C.; Yesubabu, V.; Baskaran, R.; Venkatraman, B. Simulation of a heavy rainfall event over Chennai in Southeast India using WRF: Sensitivity to microphysics parameterization. Atmos. Res. 2018, 210, 83–99. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Wang, Y. Temperature and precipitation changes over the Loess Plateau between 1961 and 2011, based on high-density gauge observations. Glob. Planet. Chang. 2015, 132, 1–10. [Google Scholar] [CrossRef]
- Onyutha, C. Variability of seasonal and annual rainfall in the River Nile riparian countries and possible linkages to ocean–atmosphere interactions. Hydrol. Res. 2016, 47, 171–184. [Google Scholar] [CrossRef]
- Liu, S.; Qiu, Y.; Fu, R.; Liu, Y.; Suo, C. Identifying the water quality variation characteristics and their main driving factors from 2008 to 2020 in the Yellow River Basin, China. Environ. Sci. Pollut. Res. 2023, 30, 66753–66766. [Google Scholar] [CrossRef] [PubMed]
- Farzana, S.Z.; Paudyal, D.R.; Chadalavada, S.; Alam, M.J. Prediction of Water Quality in Reservoirs: A Comparative Assessment of Machine Learning and Deep Learning Approaches in the Case of Toowoomba, Queensland, Australia. Geosciences 2023, 13, 293. [Google Scholar] [CrossRef]
- Alam, M.J.; Dutta, D. Modelling of nutrient pollution dynamics in river basins: A review with a perspective of a distributed modelling approach. Geosciences 2021, 11, 369. [Google Scholar] [CrossRef]
- Shumway, R.H.; Stoffer, D.S. Time series regression and exploratory data analysis. In Time Series Analysis and Its Applications: With R Examples; Springer: Cham, Switzerland, 2017; pp. 45–74. [Google Scholar] [CrossRef]
- Almazroui, M.; Şen, Z. Trend analyses methodologies in hydro-meteorological records. Earth Syst. Environ. 2020, 4, 713–738. [Google Scholar] [CrossRef]
- Şen, Z. Innovative Trend Methodologies in Science and Engineering; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Şen, Z. Innovative trend significance test and applications. Theor. Appl. Climatol. 2017, 127, 939–947. [Google Scholar] [CrossRef]
- Phuong, D.N.D.; Hai, L.M.; Dung, H.M.; Loi, N.K. Temporal trend possibilities of annual rainfall and standardized precipitation index in the Central Highlands, Vietnam. Earth Syst. Environ. 2022, 6, 69–85. [Google Scholar] [CrossRef]
- Imteaz, M.A.; Hossain, I. Climate change impacts on ‘seasonality index’and its potential implications on rainwater savings. Water Resour. Manag. 2023, 37, 2593–2606. [Google Scholar] [CrossRef]
- Berihun, M.L.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Yasuda, H.; Fenta, A.A.; Dile, Y.T.; Bayabil, H.K.; Tilahun, S.A. Examining the past 120 years’ climate dynamics of Ethiopia. Theor. Appl. Climatol. 2023, 154, 535–566. [Google Scholar] [CrossRef]
- Fenta, A.A.; Yasuda, H.; Shimizu, K.; Haregeweyn, N.; Kawai, T.; Sultan, D.; Ebabu, K.; Belay, A.S. Spatial distribution and temporal trends of rainfall and erosivity in the Eastern Africa region. Hydrol. Process. 2017, 31, 4555–4567. [Google Scholar] [CrossRef]
- Naddafi, K.; Honari, H.; Ahmadi, M. Water quality trend analysis for the Karoon River in Iran. Environ. Monit. Assess. 2007, 134, 305–312. [Google Scholar] [CrossRef]
- Antonopoulos, V.Z.; Papamichail, D.M.; Mitsiou, K.A. Statistical and trend analysis of water quality and quantity data for the Strymon River in Greece. Hydrol. Earth Syst. Sci. 2001, 5, 679–692. [Google Scholar] [CrossRef]
- Xu, H.; Gao, Q.; Yuan, B. Analysis and identification of pollution sources of comprehensive river water quality: Evidence from two river basins in China. Ecol. Indic. 2022, 135, 108561. [Google Scholar] [CrossRef]
- Xiao, J.; Lv, G.; Chai, N.; Hu, J.; Jin, Z. Hydrochemistry and source apportionment of boron, sulfate, and nitrate in the Fen River, a typical loess covered area in the eastern Chinese Loess Plateau. Environ. Res. 2022, 206, 112570. [Google Scholar] [CrossRef]
- Delpla, I.; Jung, A.-V.; Baures, E.; Clement, M.; Thomas, O. Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int. 2009, 35, 1225–1233. [Google Scholar] [CrossRef]
- Ponting, J.; Kelly, T.J.; Verhoef, A.; Watts, M.J.; Sizmur, T. The impact of increased flooding occurrence on the mobility of potentially toxic elements in floodplain soil—A review. Sci. Total Environ. 2021, 754, 142040. [Google Scholar] [CrossRef]
- Ockenden, M.C.; Hollaway, M.J.; Beven, K.J.; Collins, A.; Evans, R.; Falloon, P.; Forber, K.J.; Hiscock, K.; Kahana, R.; Macleod, C. Major agricultural changes required to mitigate phosphorus losses under climate change. Nat. Commun. 2017, 8, 161. [Google Scholar] [CrossRef]
- Mortazavi-Naeini, M.; Bussi, G.; Elliott, J.A.; Hall, J.W.; Whitehead, P.G. Assessment of risks to public water supply from low flows and harmful water quality in a changing climate. Water Resour. Res. 2019, 55, 10386–10404. [Google Scholar] [CrossRef]
- Watts, G.; Anderson, M. Water Climate Change Impacts Report Card 2016 Edition. Living with Environmental Change. 2016, pp. 9–10. Available online: https://www.ukri.org/wp-content/uploads/2021/12/091221-NERC-LWEC-WaterClimateChangeImpacts-ReportCard2016.pdf (accessed on 8 August 2024).
- Chen, J.; Gao, Y.; Qian, H.; Jia, H.; Zhang, Q. Insights into water sustainability from a grey water footprint perspective in an irrigated region of the Yellow River Basin. J. Clean. Prod. 2021, 316, 128329. [Google Scholar] [CrossRef]
- Quan, J.; Xu, Y.; Ma, T.; Wilson, J.P.; Zhao, N.; Ni, Y. Improving surface water quality of the Yellow River Basin due to anthropogenic changes. Sci. Total Environ. 2022, 836, 155607. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.; Gemmer, M.; Jiang, T. Spatiotemporal analysis of precipitation trends in the Yangtze River catchment. Stoch. Environ. Res. Risk Assess. 2006, 20, 435–444. [Google Scholar] [CrossRef]
- Gemmer, M.; Fischer, T.; Jiang, T.; Su, B.; Liu, L.L. Trends in precipitation extremes in the Zhujiang River basin, South China. J. Clim. 2011, 24, 750–761. [Google Scholar] [CrossRef]
- Şen, Z. Moving trend analysis methodology for hydro-meteorology time series dynamic assessment. Water Resour. Manag. 2024, 1–15. [Google Scholar] [CrossRef]
- Sonali, P.; Kumar, D.N. Review of trend detection methods and their application to detect temperature changes in India. J. Hydrol. 2013, 476, 212–227. [Google Scholar] [CrossRef]
- Sun, W.; Mu, X.; Song, X.; Wu, D.; Cheng, A.; Qiu, B. Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960–2013 under global warming. Atmos. Res. 2016, 168, 33–48. [Google Scholar] [CrossRef]
- Tabari, H.; Marofi, S.; Ahmadi, M. Long-term variations of water quality parameters in the Maroon River, Iran. Environ. Monit. Assess. 2011, 177, 273–287. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Lei, C.; Li, G.; Han, L.; Song, S.; Yang, L.; Deng, X. Spatio-temporal characteristics of precipitation and dryness/wetness in Yangtze River Delta, eastern China, during 1960–2012. Atmos. Res. 2016, 172, 196–205. [Google Scholar] [CrossRef]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global increasing trends in annual maximum daily precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef]
- Zang, C.; Liu, J. Trend analysis for the flows of green and blue water in the Heihe River basin, northwestern China. J. Hydrol. 2013, 502, 27–36. [Google Scholar] [CrossRef]
- Mahmood, R.; Jia, S.; Zhu, W. Analysis of climate variability, trends, and prediction in the most active parts of the Lake Chad basin, Africa. Sci. Rep. 2019, 9, 6317. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, C.; Xu, C.-y.; Xu, Y.; Jiang, T. Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze River Basin, China. J. Hydrol. 2006, 324, 255–265. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Tabari, H.; Wang, J.; Wang, Q.; Song, S.; Hu, Z. Innovative trend analysis of annual and seasonal rainfall in the Yangtze River Delta, eastern China. Atmos. Res. 2020, 231, 104673. [Google Scholar] [CrossRef]
- Güçlü, Y.S. Multiple Şen-innovative trend analyses and partial Mann-Kendall test. J. Hydrol. 2018, 566, 685–704. [Google Scholar] [CrossRef]
- Dabanlı, İ.; Şen, Z.; Yeleğen, M.Ö.; Şişman, E.; Selek, B.; Güçlü, Y.S. Trend assessment by the innovative-Şen method. Water Resour. Manag. 2016, 30, 5193–5203. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Miles, K.; Joeland, B.; Bannon, K. Review of Regional Water Quality and Security 663, Volume 1—Review and Reform Strategy; Infrastucture Australia: Sydney, NSW, Australia, 2010; pp. 1–68. [Google Scholar]
- Wyrwoll, P.R.; Manero, A.; Taylor, K.S.; Rose, E.; Quentin Grafton, R. Measuring the gaps in drinking water quality and policy across regional and remote Australia. npj Clean Water 2022, 5, 32. [Google Scholar] [CrossRef]
- Willems, P.; Olsson, J. Impacts of Climate Change on Rainfall Extremes and Urban Drainage Systems; IWA PublishingAlliance House: London, UK, 2012. [Google Scholar]
- Queensland Government. Queensland Place Names. Available online: https://www.qld.gov.au/environment/land/title/place-names (accessed on 23 June 2024).
- Queensland Government. Business Queensland. Available online: https://www.business.qld.gov.au/running-business/support-assistance/mapping-data-imagery/maps/topographic-maps (accessed on 20 June 2024).
- Amos, M.; Baxter, G.; Finch, N.; Lisle, A.; Murray, P. I just want to count them! Considerations when choosing a deer population monitoring method. Wildl. Biol. 2014, 20, 362–370. [Google Scholar] [CrossRef]
- Bureau of Meteorology. Climate Statistics for Australian Locations. Available online: http://www.bom.gov.au/climate/averages/tables/cw_041103.shtml (accessed on 23 June 2024).
- Queensland Government. In Climate Change in the Eastern Downs Regions, Version 1, 2019; Department of Environment and Science, Queensland Government: Brisbane, QLD, Australia, 2019.
- Toowoomba Regional Council. Where Our Water Comes from. Available online: https://www.tr.qld.gov.au/environment-water-waste/water-sources-supply-storage-levels/dams-bores/13244-where-our-water-comes-from (accessed on 20 June 2024).
- Bureau of Meteorology. Climate Glossary. Available online: http://www.bom.gov.au/climate/glossary/seasons.shtml (accessed on 23 June 2024).
- Oliver, J.E. Monthly precipitation distribution: A comparative index. Prof. Geogr. 1980, 32, 300–309. [Google Scholar] [CrossRef]
- Siqueira, B.; Teixeira Nery, J. Spatial and temporal variability of precipitation concentration in northeastern Brazil. Investig. Geográficas 2021. [Google Scholar] [CrossRef]
- Abdi, H. Coefficient of variation. Encycl. Res. Des. 2010, 1, 169–171. [Google Scholar]
- Hare, W. Assessment of knowledge on impacts of climate change–contribution. Arctic 2003, 100, 25–35. [Google Scholar]
- Zaiontz, C. Mann Kendall Test. Available online: https://real-statistics.com/time-series-analysis/time-series-miscellaneous/mann-kendall-test/ (accessed on 23 June 2024).
- Gedefaw, M.; Yan, D.; Wang, H.; Qin, T.; Girma, A.; Abiyu, A.; Batsuren, D. Innovative trend analysis of annual and seasonal rainfall variability in Amhara regional state, Ethiopia. Atmosphere 2018, 9, 326. [Google Scholar] [CrossRef]
- Gao, F.; Wang, Y.; Chen, X.; Yang, W. Trend analysis of rainfall time series in Shanxi Province, Northern China (1957–2019). Water 2020, 12, 2335. [Google Scholar] [CrossRef]
- Tosunoglu, F. Trend analysis of daily maximum rainfall series in Çoruh Basin, Turkey. J. Inst. Sci. Technol. 2017, 7, 195–205. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Şen, Z. Innovative trend analysis methodology. J. Hydrol. Eng. 2012, 17, 1042–1046. [Google Scholar] [CrossRef]
- Pour, S.H.; Abd Wahab, A.K.; Shahid, S.; Ismail, Z.B. Changes in reference evapotranspiration and its driving factors in peninsular Malaysia. Atmos. Res. 2020, 246, 105096. [Google Scholar] [CrossRef]
- Şen, Z.; Şişman, E.; Dabanli, I. Innovative polygon trend analysis (IPTA) and applications. J. Hydrol. 2019, 575, 202–210. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Rahimi, D.; Joghataei, M.; Movahedi, S. Correlation wavelet analysis for linkage between winter precipitation and three oceanic sources in Iran. Environ. Process. 2021, 8, 1027–1045. [Google Scholar] [CrossRef]
- Vacha, L.; Barunik, J. Co-movement of energy commodities revisited: Evidence from wavelet coherence analysis. Energy Econ. 2012, 34, 241–247. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Torrence, C.; Webster, P.J. Interdecadal changes in the ENSO–monsoon system. J. Clim. 1999, 12, 2679–2690. [Google Scholar] [CrossRef]
- Das, J.; Mandal, T.; Rahman, A.S.; Saha, P. Spatio-temporal characterization of rainfall in Bangladesh: An innovative trend and discrete wavelet transformation approaches. Theor. Appl. Climatol. 2021, 143, 1557–1579. [Google Scholar] [CrossRef]
- Queensland Government. Queensland’s Extended Wet and Dry Periods; Ecosciences Precinct, Queensland Government: Brisbane, QLD, Australia, 2019.
- Yang, Q.; Chen, J.; Liu, Y.; Li, Y.; Zhang, H.; Zhang, J.; Sun, X.; Lu, M.; Ma, R.; Wu, Y. Analysis of changes in water quality and treatment effectiveness of seven major river basins in China from 2001 to 2020. Front. Environ. Sci. 2024, 12, 1340994. [Google Scholar] [CrossRef]
Stations | Location | MSL (m) | Annual Rainfall | ||||
---|---|---|---|---|---|---|---|
Latitude (°) | Longitude (°) | Mean (mm) | SD (mm) | CV (%) | PCI | ||
Cooby Creek | −27.3825 | 151.9244 | 497 | 648 | 193 | 29.8 | 15.9 |
Cressbrook Dam | −27.2641 | 152.1959 | 295 | 765 | 247 | 32.3 | 15.8 |
Doctors Creek | −27.2067 | 151.8467 | 612 | 665 | 196 | 29.5 | 15.2 |
Glenaven | −27.1882 | 151.9634 | 612 | 709 | 226 | 31.9 | 15.7 |
Goombungee PO | −27.3072 | 151.8506 | 497 | 600 | 192 | 32.0 | 16.1 |
Haden PO | −27.2242 | 151.8833 | 640 | 597 | 198 | 33.2 | 17.7 |
Moyola | −27.5233 | 151.8819 | 559 | 645 | 222 | 34.4 | 16.0 |
Mount Kynoch | −27.5094 | 151.9547 | 739 | 890 | 350 | 39.3 | 16.2 |
Oakey Aero | −27.4034 | 151.7413 | 406 | 575 | 171 | 29.7 | 15.9 |
Pechey Forestry | −27.3042 | 152.0542 | 667 | 763 | 261 | 34.2 | 14.2 |
Perseverance Dam | −27.2883 | 152.1239 | 470 | 776 | 221 | 28.5 | 15.5 |
Tamba | −27.4722 | 151.9481 | 642 | 878 | 314 | 35.8 | 15.1 |
Station | Lag 1 ACF Autumn | Lag 1 ACF Winter | Lag 1 ACF Spring | Lag 1 ACF Summer |
---|---|---|---|---|
Cooby Creek | 0.04 | −0.06 | −0.21 | −0.14 |
Cressbrook Dam | 0.34 | 0.04 | −0.29 | −0.18 |
Doctors Creek | 0.40 | −0.02 | −0.25 | −0.02 |
Glenaven | 0.23 | −0.04 | −0.24 | 0.14 |
Goombungee PO | 0.26 | −0.18 | −0.30 | 0.09 |
Haden PO | 0.21 | 0.16 | −0.06 | 0.11 |
Moyola | −0.02 | −0.01 | −0.01 | 0.05 |
Mount Kynoch | 0.18 | 0.04 | −0.01 | 0.13 |
Oakey Aero | 0.25 | 0.08 | −0.32 | 0.28 |
Pechey Forestry | 0.33 | −0.05 | −0.11 | 0.23 |
Perseverance Dam | 0.23 | 0.08 | −0.22 | −0.35 |
Tamba | 0.28 | 0.01 | −0.10 | 0.11 |
Station | Z Statistics | MK Tau | p Value | Sen’s Slope (mm/yr) | ITD | B (ITA) |
---|---|---|---|---|---|---|
Cooby Creek | 0.50 | 0.62 | 0.08 | 0.75 | 0.22 | |
Cressbrook Dam | 0.36 | 0.06 | 0.72 | 0.53 | 0.18 | |
Doctors Creek | 0.43 | 0.07 | 0.67 | 0.75 | 0.23 | |
Glenaven | −0.11 | −0.02 | 0.91 | −0.24 | −0.48 | |
Goombungee PO | 0.62 | 0.08 | 0.53 | 0.58 | 0.20 | |
Haden PO | −1.10 | −0.21 | 0.27 | −2.04 | −1.82 | |
Moyola | −0.16 | −0.03 | 0.87 | −0.42 | −0.76 | |
Mount Kynoch | −0.05 | −0.01 | 0.96 | −0.27 | −0.51 | |
Oakey Aero | 0.17 | 0.03 | 0.86 | 0.37 | 0.23 | |
Pechey Forestry | 0.75 | 0.11 | 0.45 | 0.53 | 0.77 | |
Perseverance Dam | 0.39 | 0.07 | 0.70 | 0.52 | 0.31 | |
Tamba | 0.57 | 0.09 | 0.57 | 0.90 | 0.53 |
Station | Z Statistics | MK Tau | p Value | Sen’s Slope (mm/yr) | ITD | B (ITA) |
---|---|---|---|---|---|---|
Cooby Creek | 0.02 | 0.03 | 1.00 | −0.02 | −0.86 | |
Cressbrook Dam | 0.28 | 0.04 | 0.78 | 0.47 | 0.59 | |
Doctors Creek | 0.88 | 0.11 | 0.38 | 1.69 | 0.41 | |
Glenaven | −0.07 | −0.01 | 0.95 | −0.20 | −0.28 | |
Goombungee PO | 0.72 | 0.08 | 0.47 | 2.33 | 1.45 | |
Haden PO | −0.24 | −0.04 | 0.81 | −0.76 | −0.99 | |
Moyola | 0.32 | 0.05 | 0.75 | 1.51 | 0.65 | |
Mount Kynoch | 0.29 | 0.05 | 0.77 | 1.13 | 0.56 | |
Oakey Aero | 0.22 | 0.03 | 0.83 | 0.57 | 0.60 | |
Pechey Forestry | 0.18 | 0.03 | 0.86 | 0.74 | 0.75 | |
Perseverance Dam | 0.07 | 0.01 | 0.95 | 0.36 | 0.92 | |
Tamba | −0.06 | −0.01 | 0.95 | −0.91 | −0.82 |
Station | Z Statistics | MK Tau | p Value | Sen’s Slope (mm/yr) | ITD | B (ITA) |
---|---|---|---|---|---|---|
Cooby Creek | −0.24 | −0.04 | 0.81 | −0.89 | −0.64 | |
Cressbrook Dam | 0.62 | 0.08 | 0.53 | 2.80 | 0.20 | |
Doctors Creek | 0.43 | 0.07 | 0.67 | 2.00 | 1.48 | |
Glenaven | 0.23 | 0.04 | 0.82 | 0.48 | 0.77 | |
Goombungee PO | −0.10 | −0.02 | 0.92 | −0.26 | −0.53 | |
Haden PO | −1.46 | −0.21 | 0.14 | −5.48 | −2.11 | |
Moyola | 0.10 | 0.02 | 0.92 | 0.14 | 0.49 | |
Mount Kynoch | 0.47 | 0.08 | 0.64 | 3.31 | 2.25 | |
Oakey Aero | −0.42 | −0.05 | 0.68 | −1.40 | −0.77 | |
Pechey Forestry | −0.30 | −0.06 | 0.77 | −1.71 | −0.75 | |
Perseverance Dam | 0.53 | 0.06 | 0.60 | 0.87 | 0.24 | |
Tamba | 0.52 | 0.09 | 0.60 | 1.73 | 0.10 |
Parameter | Season | Z Statistic | MK Tau | p Value | Sen’s Slope | ITD | B (ITA) |
---|---|---|---|---|---|---|---|
NH3-N | Autumn | 0.33 | 0.12 | 0.74 | 0.01 | 0.07 | |
Winter | 0.35 | 0.13 | 0.73 | 0.01 | 2.37 | ||
Spring | 0.50 | 0.11 | 0.62 | 0.01 | 0.27 | ||
Summer | 0.08 | 0.03 | 0.94 | 0.01 | 0.30 | ||
pH | Autumn | −0.25 | −0.04 | 0.81 | 0.00 | −0.06 | |
Winter | 0.84 | 0.11 | 0.40 | 0.01 | 0.00 | ||
Spring | 0.61 | 0.09 | 0.54 | 0.00 | 0.08 | ||
Summer | −1.33 | −0.19 | 0.18 | −0.01 | −0.10 | ||
PO43− | Autumn | −3.19 | −0.39 | 0.00 | 0.00 | −4.10 | |
Winter | −2.09 | −0.38 | 0.04 | 0.00 | −3.83 | ||
Spring | −4.55 | −0.64 | 0.00 | 0.00 | −3.95 | ||
Summer | −4.22 | −0.63 | 0.00 | 0.00 | −4.30 | ||
TDS | Autumn | 0.06 | 0.03 | 0.95 | 2.64 | 1.89 | |
Winter | 0.00 | 0.00 | 1.00 | 0.73 | 1.93 | ||
Spring | 0.04 | 0.02 | 0.97 | 2.55 | 1.81 | ||
Summer | 0.13 | 0.05 | 0.90 | 2.49 | 1.81 | ||
Turbidity | Autumn | 1.24 | 0.18 | 0.21 | 0.04 | 0.09 | |
Winter | 0.87 | 0.15 | 0.38 | 0.03 | 0.03 | ||
Spring | 0.42 | 0.14 | 0.68 | 0.02 | 0.95 | ||
Summer | 0.20 | 0.04 | 0.84 | 0.01 | 0.09 | ||
WQI | Autumn | −0.06 | −0.03 | 0.95 | −0.15 | −1.83 | |
Winter | −0.04 | −0.02 | 0.97 | −0.05 | −1.82 | ||
Spring | −0.06 | −0.03 | 0.95 | −0.05 | −1.60 | ||
Summer | −0.04 | −0.02 | 0.97 | −0.03 | −1.73 |
Parameter | Season | Z Statistic | MK Tau | p Value | Sen’s Slope | ITD | B (ITA) |
---|---|---|---|---|---|---|---|
NH3-N | Autumn | 0.95 | 0.16 | 0.34 | 0.01 | 0.06 | |
Winter | 1.73 | 0.27 | 0.08 | 0.01 | 0.05 | ||
Spring | 0.58 | 0.95 | 0.56 | 0.01 | 0.62 | ||
Summer | 0.40 | 0.11 | 0.69 | 0.01 | 0.06 | ||
pH | Autumn | 0.22 | 0.04 | 0.82 | 0.00 | 0.01 | |
Winter | 0.87 | 0.19 | 0.38 | 0.01 | 0.03 | ||
Spring | −0.25 | −0.04 | 0.81 | 0.00 | −0.09 | ||
Summer | 0.19 | 0.04 | 0.85 | 0.00 | 0.03 | ||
PO43− | Autumn | −4.88 | −0.51 | 0.00 | 0.00 | −1.06 | |
Winter | −4.59 | −0.52 | 0.00 | 0.00 | −1.52 | ||
Spring | −3.90 | −0.58 | 0.00 | 0.00 | −1.22 | ||
Summer | −3.55 | −0.61 | 0.00 | 0.00 | −1.31 | ||
TDS | Autumn | −0.24 | −0.08 | 0.81 | −0.88 | −0.98 | |
Winter | 0.00 | 0.00 | 1.00 | −0.02 | −0.08 | ||
Spring | −0.09 | −0.04 | 0.93 | −0.46 | −0.84 | ||
Summer | −0.16 | −0.06 | 0.88 | −0.48 | −0.59 | ||
Turbidity | Autumn | 2.08 | 0.33 | 0.04 | 0.05 | 0.69 | |
Winter | 1.29 | 0.19 | 0.20 | 0.03 | 0.33 | ||
Spring | −0.30 | −0.08 | 0.76 | −0.01 | −0.08 | ||
Summer | 0.88 | 0.20 | 0.38 | 0.02 | −0.68 | ||
WQI | Autumn | −0.05 | −0.02 | 0.96 | −0.01 | −0.01 | |
Winter | −0.13 | −0.05 | 0.89 | −0.01 | −0.71 | ||
Spring | −0.10 | −0.04 | 0.92 | −0.01 | −0.56 | ||
Summer | −0.12 | −0.04 | 0.91 | −0.02 | −0.72 |
Parameter | Season | Z Statistic | MK Tau | p Value | Sen’s Slope | ITD | B (ITA) |
---|---|---|---|---|---|---|---|
NH3-N | Autumn | 0.87 | 0.22 | 0.39 | 0.01 | 0.53 | |
Winter | 0.38 | 0.16 | 0.71 | 0.00 | 0.99 | ||
Spring | 0.40 | 0.14 | 0.69 | 0.00 | 0.05 | ||
Summer | 0.17 | 0.08 | 0.86 | 0.01 | 0.05 | ||
pH | Autumn | 0.10 | 0.03 | 0.92 | 0.00 | 0.01 | |
Winter | 0.41 | 0.11 | 0.68 | 0.01 | 0.06 | ||
Spring | 0.27 | 0.05 | 0.79 | 0.01 | 0.08 | ||
Summer | −0.06 | −0.02 | 0.95 | 0.00 | −0.01 | ||
PO43− | Autumn | −3.76 | −0.54 | 0.00 | −0.01 | −1.00 | |
Winter | −2.33 | −0.40 | 0.02 | 0.00 | −1.25 | ||
Spring | −2.35 | −0.51 | 0.02 | 0.00 | −0.04 | ||
Summer | −2.72 | −0.63 | 0.01 | 0.00 | −0.52 | ||
TDS | Autumn | 1.61 | 0.38 | 0.11 | 1.43 | 1.11 | |
Winter | 1.97 | 0.38 | 0.05 | 1.34 | 1.65 | ||
Spring | 2.05 | 0.44 | 0.04 | 1.47 | 2.01 | ||
Summer | 1.77 | 0.49 | 0.08 | 1.60 | 1.63 | ||
Turbidity | Autumn | 1.82 | 0.40 | 0.07 | 0.16 | 0.63 | |
Winter | 2.18 | 0.33 | 0.29 | 0.14 | 0.89 | ||
Spring | 2.14 | 0.42 | 0.03 | 0.16 | 0.99 | ||
Summer | 1.64 | 0.42 | 0.10 | 0.17 | 0.93 | ||
WQI | Autumn | 2.05 | 0.45 | 0.04 | 0.06 | 0.40 | |
Winter | 1.87 | 0.46 | 0.06 | 0.05 | 0.41 | ||
Spring | 1.69 | 0.42 | 0.09 | 0.05 | 0.33 | ||
Summer | 2.13 | 0.57 | 0.03 | 0.07 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farzana, S.Z.; Paudyal, D.R.; Chadalavada, S.; Alam, M.J. Spatiotemporal Variability Analysis of Rainfall and Water Quality: Insights from Trend Analysis and Wavelet Coherence Approach. Geosciences 2024, 14, 225. https://doi.org/10.3390/geosciences14080225
Farzana SZ, Paudyal DR, Chadalavada S, Alam MJ. Spatiotemporal Variability Analysis of Rainfall and Water Quality: Insights from Trend Analysis and Wavelet Coherence Approach. Geosciences. 2024; 14(8):225. https://doi.org/10.3390/geosciences14080225
Chicago/Turabian StyleFarzana, Syeda Zehan, Dev Raj Paudyal, Sreeni Chadalavada, and Md Jahangir Alam. 2024. "Spatiotemporal Variability Analysis of Rainfall and Water Quality: Insights from Trend Analysis and Wavelet Coherence Approach" Geosciences 14, no. 8: 225. https://doi.org/10.3390/geosciences14080225
APA StyleFarzana, S. Z., Paudyal, D. R., Chadalavada, S., & Alam, M. J. (2024). Spatiotemporal Variability Analysis of Rainfall and Water Quality: Insights from Trend Analysis and Wavelet Coherence Approach. Geosciences, 14(8), 225. https://doi.org/10.3390/geosciences14080225