Biogenic Origin of Fe-Mn Crusts from Hydrothermal Fields of the Mid-Atlantic Ridge, Puy de Folles Volcano Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ferromanganese Crust: Samples and Sample Location
2.2. Optical Microscopy
2.3. Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS)
2.4. Methods of Analyzing the Composition of Matter
2.5. Extraction of Organic Compounds
2.6. GC-MS Analysis
2.7. Static Methods of Magnetometry
2.8. Resonance Methods of Magnetometry
3. Results
3.1. Analysis of Morphology and Chemical and Mineralogical Composition
- (1)
- It may be amorphous carbon formed from organic compounds as a result of heating, respectively D and G peaks. This is consistent with the detection of a relatively weak signal from the organic component in both FTIR and MS spectra, as well as the shift of the goethite band to the region of higher wave numbers from 385 to 392 cm−1 [59] and the shift of the maximum of the ferrihydrite band to the region of lower wave numbers [66];
- (2)
- The range 1200–1650 cm−1 could potentially be a second-order region, because even when obtaining spectrum at low laser powers, peaks in this range were observed (see [66]). The orange coloring of this region, as well as the presence of a rather significant contribution from OH groups, also indirectly supports the second-order version.
3.2. Diagnosis of Organic Substances
3.3. Magnetic Properties
4. Discussion
- (1)
- (2)
- The characteristic blocking temperature of bacterial ferrihydrite was determined for particles synthesized by Klebsiella oxytoca; it is equal to 23–25 K. A shift of the hysteresis loop is observed, and the coercive force is equal to 150 mT at a temperature of 4.2 K [120];
- (3)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glasby, G.P. Manganese in the marine environment. Oceanogr. Mar. Biol. Annu. Rev. 1984, 22, 164. [Google Scholar]
- Cronan, D.S. (Ed.) Handbook of Marine Mineral Deposits; CRC Press: Boca Raton, FL, USA, 1999; Volume 18. [Google Scholar]
- Heath, G.R. Ferromanganese Nodules of the Deep Sea. In Seventy-Fifth Anniversary Volume; Economic Geology Publishing Company: McLean, VA, USA, 1981; pp. 736–765. [Google Scholar] [CrossRef]
- Toth, J.R. Deposition of submarine crusts rich in manganese and iron. Geol. Soc. Am. Bull. 1980, 91, 44. [Google Scholar] [CrossRef]
- Hein, J.R.; Ahn, J.H.; Wong, J.C.; Kang, J.K.; Smith, V.K.; Yoon, S.H.; Smith, H. Geology, Geophysics, Geochemistry, and Deep-Sea Mineral Deposits, Federated States of Micronesia: KORDI-USGS RV Farnella Cruise F11-90-CP (No. 92-218); US Geological Survey: Reston, VA, USA, 1992. [Google Scholar] [CrossRef]
- Hein, J.R.; Hsueh-Wen, Y.; Gunn, S.H.; Gibbs, A.E.; Chung-ho, W. Composition and origin of hydrothermal ironstones from central Pacific seamounts. Geochim. Cosmochim. Acta 1994, 58, 179–189. [Google Scholar] [CrossRef]
- Hein, J.R.; Gibbs, A.E.; Clague, D.A.; Torresan, M. Hydrothermal mineralization along submarine rift zones, Hawaii. Mar. Georesources Geotechnol. 1996, 14, 177–203. [Google Scholar] [CrossRef]
- Tebo, B.M.; Clement, B.G.; Dick, G.J. Biotransformations of Manganese. In Manual of Environmental Microbiology; Wiley: Hoboken, NJ, USA, 2007; pp. 1223–1238. [Google Scholar] [CrossRef]
- Hein, J.R.; Koschinsky, A. Deep-Ocean Ferromanganese Crusts and Nodules. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2014; pp. 273–291. [Google Scholar] [CrossRef]
- Polgári, M.; Gyollai, I. Comparative Study of Formation Conditions of Fe-Mn Ore Microbialites Based on Mineral Assemblages: A Critical Self-Overview. Minerals 2022, 12, 1273. [Google Scholar] [CrossRef]
- Ehrlich, H.L. Ocean manganese nodules: Biogenesis and bioleaching possibilities. Min. Metall. Explor. 2000, 17, 121–128. [Google Scholar] [CrossRef]
- Shulga, N.; Abramov, S.; Klyukina, A.; Ryazantsev, K.; Gavrilov, S. Fast-growing Arctic Fe–Mn deposits from the Kara Sea as the refuges for cosmopolitan marine microorganisms. Sci. Rep. 2022, 12, 21967. [Google Scholar] [CrossRef]
- Lyu, J.; Yu, X.; Jiang, M.; Cao, W.; Saren, G.; Chang, F. The Mechanism of Microbial-Ferromanganese Nodule Interaction and the Contribution of Biomineralization to the Formation of Oceanic Ferromanganese Nodules. Microorganisms 2021, 9, 1247. [Google Scholar] [CrossRef]
- Lizeng, B.; Chengyi, L.; Fusheng, Z.; An, D.D.; Jianlin, C.; Huadi, S. Pelagic Manganese Nodules—A New Type of Oncolites. Acta Geol. Sin. Engl. Ed. 1997, 71, 43–48. [Google Scholar] [CrossRef]
- Villalobos, M.; Toner, B.; Bargar, J.; Sposito, G. Characterization of the manganese oxide produced by pseudomonas putida strain MnB1. Geochim. Cosmochim. Acta 2003, 67, 2649–2662. [Google Scholar] [CrossRef]
- Wang, S.H.; Yan, W.; Song, H.B. Mapping the thickness of the gas hydrate stability zone in the South China Sea. Terr. Atmos. Ocean. Sci. 2006, 17, 815–828. [Google Scholar] [CrossRef]
- Wang, X.; Müller, W.E.G. Marine biominerals: Perspectives and challenges for polymetallic nodules and crusts. Trends Biotechnol. 2009, 27, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Schröder, H.C.; Wiens, M.; Schloßmacher, U.; Müller, W.E.G. Manganese/polymetallic nodules: Micro-structural characterization of exolithobiontic- and endolithobiontic microbial biofilms by scanning electron microscopy. Micron 2009, 40, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Peine, F.; Schmidt, A.; Schröder, H.C.; Wiens, M.; Schloßmacher, U.; Müller, W.E.G. Concept of Biogenic Ferromanganese Crust Formation: Coccoliths as Bio-seeds in Crusts from Central Atlantic Ocean (Senghor Seamount/Cape Verde). Nat. Prod. Commun. 2011, 6, 1934578X1100600. [Google Scholar] [CrossRef]
- Wang, X.; Gan, L.; Wiens, M.; Schloßmacher, U.; Schröder, H.C.; Müller, W.E.G. Distribution of Microfossils Within Polymetallic Nodules: Biogenic Clusters within Manganese Layers. Mar. Biotechnol. 2012, 14, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.-D.; Gong, J.-L.; Ren, J.-B.; Liu, Q.-S.; Zhang, J.; Chou, Y.-M. An interdependent relationship between microbial ecosystems and ferromanganese nodules from the Western Pacific Ocean. Sediment. Geol. 2020, 398, 105588. [Google Scholar] [CrossRef]
- Jiang, X.-D.; Sun, X.-M.; Guan, Y. Biogenic mineralization in the ferromanganese nodules and crusts from the South China Sea. J. Asian Earth Sci. 2019, 171, 46–59. [Google Scholar] [CrossRef]
- Hu, M.; Li, F.; Lei, J.; Fang, Y.; Tong, H.; Wu, W.; Liu, C. Pyrosequencing revealed highly microbial phylogenetic diversity in ferromanganese nodules from farmland. Environ. Sci. Process. Impacts 2015, 17, 213–224. [Google Scholar] [CrossRef]
- Bergo, N.M.; Bendia, A.G.; Ferreira, J.C.N.; Murton, B.J.; Brandini, F.P.; Pellizari, V.H. Microbial Diversity of Deep-Sea Ferromanganese Crust Field in the Rio Grande Rise, Southwestern Atlantic Ocean. Microb. Ecol. 2021, 82, 344–355. [Google Scholar] [CrossRef]
- Nakamura, K.; Horinouchi, K.; Shimomura, R.; Machida, S.; Yasukawa, K.; Fujinaga, K.; Nozaki, T.; Kato, Y. Geochemical insights into secular changes in the depositional environment of ferromanganese nodules in the western North Pacific. Deep Sea Res. Part I Oceanogr. Res. Pap. 2024, 203, 104227. [Google Scholar] [CrossRef]
- Knaack, D.R.; Leybourne, M.I.; Layton-Matthews, D.; Hein, J.R.; Stern, R.J.; Wysoczanski, R.; Faure, K.; Usui, A.; Al, T.; McDonald, A.; et al. The role of depositional environment and chemical composition on the triple oxygen isotope ratios of ferromanganese precipitates and their endmember components. Chem. Geol. 2023, 642, 121785. [Google Scholar] [CrossRef]
- Escartín, J.; Olive, J.-A. Mid-Ocean Ridges and Their Geomorphological Features. In Treatise on Geomorphology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 847–881. [Google Scholar] [CrossRef]
- van Avendonk, H.J.A.; Hayman, N.W.; Harding, J.L.; Grevemeyer, I.; Peirce, C.; Dannowski, A. Seismic structure and segmentation of the axial valley of the Mid-Cayman preading Center. Geochem. Geophys. Geosyst. 2017, 18, 2149–2161. [Google Scholar] [CrossRef]
- Sudarikov, S.; Narkevsky, E.; Petrov, V. Identification of Two New Hydrothermal Fields and Sulfide Deposits on the Mid-Atlantic Ridge as a Result of the Combined Use of Exploration Methods: Methane Detection, Water Column Chemistry, Ore Sample Analysis, and Camera Surveys. Minerals 2021, 11, 726. [Google Scholar] [CrossRef]
- Yue, X.; Li, H.; Ren, J.; Tao, C.; Zhou, J.; Wang, Y.; Lü, X. Seafloor hydrothermal activity along mid-ocean ridge with strong melt supply: Study from segment 27, southwest Indian ridge. Sci. Rep. 2019, 9, 9874. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chen, S.; Zeng, Z.; Pu, X.; Hou, Q. The influence of seafloor hydrothermal activity on major and trace elements of the sediments from the South Mid-Atlantic Ridge. J. Ocean Univ. China 2017, 16, 775–780. [Google Scholar] [CrossRef]
- Pan, A.; Yang, Q.; Zhou, H.; Ji, F.; Wang, H.; Pancost, R.D. Geochemical impacts of hydrothermal activity on surface deposits at the Southwest Indian Ridge. Deep Sea Res. Part I Oceanogr. Res. Pap. 2018, 139, 1–13. [Google Scholar] [CrossRef]
- Von Damm, K.L. Seafloor hydrothermal activity: Black smoker chemistry and chimneys. Annu. Rev. Earth Planet. Sci. 1990, 18, 173–204. [Google Scholar] [CrossRef]
- Ilyin, A.V. Origin and development of the morphological structure of the rift zone of slow-spreading mid-ocean ridges. Oceanology 2010, 50, 240–253. [Google Scholar] [CrossRef]
- Orcutt, B.N.; D’Angelo, T.; Wheat, C.G.; Trembath-Reichert, E. Microbe-mineral biogeography from multi-year incubations in oceanic crust at North Pond, Mid-Atlantic Ridge. Environ. Microbiol. 2021, 23, 3923–3936. [Google Scholar] [CrossRef]
- Sun, Z.; He, Y.; Li, J.; Qi, C.; Li, J.; Liu, W. The recent progress of submarine hydrothermal biomineralization. Mar. Geol. Quat. Geol. 2011, 31, 123–132. [Google Scholar] [CrossRef]
- Kuznetsov, V.Y.; Tabuns, E.V.; Kuksa, K.A.; Cherkashov, G.A.; Bel’tenev, V.E.; Arslanov, K.A.; Maksimov, F.E.; Lazareva, L.I.; Zhuravleva, A.I.; Petrov, A.Y.; et al. Chronology of Hydrothermal Activity within the Yubileynoye Ore Field (Mid-Atlantic Ridge, 20°08′ N). Dokl. Earth Sci. 2018, 480, 700–704. [Google Scholar] [CrossRef]
- Doebelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 2015, 48, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, K.M.M. Window Functions and Their Applications in Signal Processing; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Porter, C.D.; Tanner, D.B. Correction of phase errors in fourier spectroscopy. Int. J. Infrared Millim. Waves 1983, 4, 273–298. [Google Scholar] [CrossRef]
- Brinco, J.; Guedes, P.; Gomes da Silva, M.; Mateus, E.P.; Ribeiro, A.B. Analysis of pesticide residues in soil: A review and comparison of methodologies. Microchem. J. 2023, 195, 109465. [Google Scholar] [CrossRef]
- Dzah, C.S.; Dzigbor, A. Ultrasound assisted extraction: A relook at solvent to material ratio, its effects on process efficiency and how it can be exploited for different uses. J. Food Process Eng. 2023, 46, e14339. [Google Scholar] [CrossRef]
- Temerdashev, Z.A.; Musorina, T.N.; Ovsepyan, S.K.; Korpakova, I.G. Determination of Polycyclic Aromatic Hydrocarbons in Soils and Bottom Sediments by Gas Chromatography–Mass Spectrometry with QuEChERS Sample Preparation. J. Anal. Chem. 2022, 77, 595–603. [Google Scholar] [CrossRef]
- Santana-Mayor, Á.; Socas-Rodríguez, B.; Herrera-Herrera, A.V.; Rodríguez-Delgado, M.Á. Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis. TrAC Trends Anal. Chem. 2019, 116, 214–235. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, P.; Porto-Figueira, P.; Pereira, J.A.M.; Silva, C.; Medina, S.; Câmara, J.S. QuEChERS—Fundamentals, relevant improvements, applications and future trends. Anal. Chim. Acta 2019, 1070, 1–28. [Google Scholar] [CrossRef]
- Temerdashev, Z.A.; Ovsepyan, S.K.; Musorina, T.N.; Vasileva, L.V.; Vasilev, A.M.; Korpakova, I.G. QuEChERS Extraction of PAHs from Various Soils and Sediments Followed by Chromatographic Determination. J. Anal. Chem. 2023, 78, 1159–1173. [Google Scholar] [CrossRef]
- Poole, C.; Mester, Z.; Miró, M.; Pedersen-Bjergaard, S.; Pawliszyn, J. Extraction for analytical scale sample preparation (IUPAC Technical Report). Pure Appl. Chem. 2016, 88, 649–687. [Google Scholar] [CrossRef]
- Kopka, J.; Schauer, N.; Krueger, S.; Birkemeyer, C.; Usadel, B.; Bergmuller, E.; Dormann, P.; Weckwerth, W.; Gibon, Y.; Stitt, M.; et al. [email protected]: The Golm Metabolome Database. Bioinformatics 2005, 21, 1635–1638. [Google Scholar] [CrossRef] [PubMed]
- Cremonezzi, J.M.d.O.; Tiba, D.Y.; Domingues, S.H. Fast synthesis of δ-MnO2 for a high-performance supercapacitor electrode. SN Appl. Sci. 2020, 2, 1689. [Google Scholar] [CrossRef]
- Julien, C. Raman spectra of birnessite manganese dioxides. Solid State Ion. 2003, 159, 345–356. [Google Scholar] [CrossRef]
- Bernardini, S.; Bellatreccia, F.; Casanova Municchia, A.; della Ventura, G.; Sodo, A. Raman spectra of natural manganese oxides. J. Raman Spectrosc. 2019, 50, 873–888. [Google Scholar] [CrossRef]
- Lavra, T.C.C.; Silva, L.A.; Cavalcante, K.S.B.; Marinho, K.L.L.; Figueira, B.A.M.; Mercury, J.M.R. Microwave radiation influence on the thermal and spectroscopic properties of Na-birnessite-type material. Cerâmica 2019, 65, 547–553. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Chervonnyi, A.D. Infrared Spectroscopy of Minerals and Related Compounds; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Abd El-Mageed, H.R.; Abd El-Salam, H.M.; Abdel-Latif, M.K.; Mustafa, F.M. Preparation and spectroscopic properties, density functional theory calculations and nonlinear optical properties of poly (acrylic acid-co-acrylamide)-graft-polyaniline. J. Mol. Struct. 2018, 1173, 268–279. [Google Scholar] [CrossRef]
- Hansen, P.E.; Spanget-Larsen, J. NMR and IR Investigations of Strong Intramolecular Hydrogen Bonds. Molecules 2017, 22, 552. [Google Scholar] [CrossRef]
- Pankin, D.; Povolotckaia, A.; Smirnov, M.; Borisov, E.; Gulyaev, A.; Dorochov, A.; Novikov, V.; Kuznetsov, S.; Noy, O.; Belousov, S.; et al. Theoretical Investigation of Anhydrofusarubin: Structural and Optical Properties. Crystals 2023, 13, 1556. [Google Scholar] [CrossRef]
- Mayo, D.W.; Miller, F.A.; Hannah, R.W. Course Notes on the Interpretation of Infrared and Raman Spectra; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Pankin, D.; Povolotckaia, A.; Borisov, E.; Belyakov, M.; Borzenko, S.; Gulyaev, A.; Moskovskiy, M. Theoretical modelling of structure, vibrational and UV–vis absorbance spectra of rubrofusarin molecule. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 293, 122469. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Wehling, B.; Moens, L.; Edwards, H.; de Reu, M.; van Hooydonk, G. Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art. Anal. Chim. Acta 2000, 407, 261–274. [Google Scholar] [CrossRef]
- Pankin, D.; Povolotckaia, A.; Borisov, E.; Rongonen, S.; Mikhailova, A.; Tkachenko, T.; Dovedova, N.; Rylkova, L.; Kurochkin, A. Investigation of wafers used as paper binding in the academician von Struve manuscripts. J. Cult. Herit. 2021, 51, 125–131. [Google Scholar] [CrossRef]
- Hanesch, M. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int. 2009, 177, 941–948. [Google Scholar] [CrossRef]
- Prokuratov, D.S.; Davtian, A.S.; Vereshchagin, O.S.; Kurganov, N.S.; Samokhvalov, A.A.; Pankin, D.V.; Povolotckaia, A.V.; Shimko, A.A.; Mikhailova, A.A.; Somov, P.A.; et al. Laser cleaning of archaeologically corroded iron objects with inlays. Opt. Quantum Electron. 2020, 52, 113. [Google Scholar] [CrossRef]
- Bellot-Gurlet, L.; Neff, D.; Réguer, S.; Monnier, J.; Saheb, M.; Dillmann, P. Raman Studies of Corrosion Layers Formed on Archaeological Irons in Various Media. J. Nano Res. 2009, 8, 147–156. [Google Scholar] [CrossRef]
- Pollard, R.J.; Pankhurst, Q.A. Ferrimagnetism in fine feroxyhite particles. J. Magn. Magn. Mater. 1991, 99, L39–L44. [Google Scholar] [CrossRef]
- Mazzetti, L.; Thistlethwaite, P.J. Raman spectra and thermal transformations of ferrihydrite and schwertmannite. J. Raman Spectrosc. 2002, 33, 104–111. [Google Scholar] [CrossRef]
- Post, J.E.; McKeown, D.A.; Heaney, P.J. Raman spectroscopy study of manganese oxides: Tunnel structures. Am. Mineral. 2020, 105, 1175–1190. [Google Scholar] [CrossRef]
- Reiche, I.; Coquinot, Y.; Trosseau, A.; Maigret, A. First discovery of charcoal-based prehistoric cave art in Dordogne. Sci. Rep. 2023, 13, 22235. [Google Scholar] [CrossRef]
- Murad, E.; Cashion, J. Mössbauer Spectroscopy of Environmental Materials and Their Industrial Utilization; Springer Science & Business Media: Secaucus, NJ, USA, 2004. [Google Scholar] [CrossRef]
- Murad, E. The Mössbauer spectrum of “well”-crystallized ferrihydrite. J. Magn. Magn. Mater. 1988, 74, 153–157. [Google Scholar] [CrossRef]
- Insight into Superparamagnetism in Magnetic Nanoparticles. In Magnetic Nanoparticles; Wiley: Hoboken, NJ, USA, 2022; pp. 219–232. [CrossRef]
- Ta, K.; Peng, X.; Chen, S.; Xu, H.; Li, J.; Du, M.; Hao, J.; Lin, Y. Hydrothermal nontronite formation associated with microbes from low-temperature diffuse hydrothermal vents at the South Mid-Atlantic Ridge. J. Geophys. Res. Biogeosci. 2017, 122, 2375–2392. [Google Scholar] [CrossRef]
- Benzerara, K.; Elmaleh, A.; Ciobanu, M.; de Wever, A.; Bertolino, P.; Iniesto, M.; Jézéquel, D.; López-García, P.; Menguy, N.; Muller, E.; et al. Biomineralization of amorphous Fe-, Mn- and Si-rich mineral phases by cyanobacteria under oxic and alkaline conditions. Biogeosciences 2023, 20, 4183–4195. [Google Scholar] [CrossRef]
- Baines, S.B.; Twining, B.S.; Brzezinski, M.A.; Krause, J.W.; Vogt, S.; Assael, D.; McDaniel, H. Significant silicon accumulation by marine picocyanobacteria. Nat. Geosci. 2012, 5, 886–891. [Google Scholar] [CrossRef]
- Mackenzie, F.T.; Stoffyn, M.; Wollast, R. Aluminum in Seawater: Control by Biological Activity. Science 1978, 199, 680–682. [Google Scholar] [CrossRef]
- Akhmetzhanov, T.F.; Labutin, T.A.; Zaytsev, S.M.; Drozdova, A.N.; Popov, A.M. Determination of the Mn/Fe Ratio in Ferromanganese Nodules Using Calibration-Free Laser-Induced Breakdown Spectroscopy. Opt. Spectrosc. 2019, 126, 316–320. [Google Scholar] [CrossRef]
- Ta, K.; Wu, Z.; Peng, X.; Luan, Z.; Chen, S. Formation and origin of Fe–Si oxyhydroxide deposits at the ultra-slow spreading Southwest Indian Ridge. Deep Sea Res. Part I Oceanogr. Res. Pap. 2021, 170, 103491. [Google Scholar] [CrossRef]
- Baturin, G.N.; Dubinchuk, V.T. Mineralogy and chemistry of ferromanganese crusts from the Atlantic Ocean. Geochem. Int. 2011, 49, 578–593. [Google Scholar] [CrossRef]
- Dubinin, A.V.; Rimskaya-Korsakova, M.N.; Berezhnaya, E.D.; Uspenskaya, T.U.; Dara, O.M. Ferromanganese Crusts in the South Atlantic Ocean: Compositional Evolution and Specific Features of Ore Formation. Geochem. Int. 2018, 56, 1093–1108. [Google Scholar] [CrossRef]
- Dekoninck, A.; Bernard, A.; Barbarand, J.; Saint-Bezar, B.; Missenard, Y.; Lepretre, R.; Saddiqi, O.; Yans, J. Detailed mineralogy and petrology of manganese oxyhydroxide deposits of the Imini district (Morocco). Miner. Depos. 2015, 51, 13–23. [Google Scholar] [CrossRef]
- Zhao, H.; Liang, X.; Yin, H.; Liu, F.; Tan, W.; Qiu, G.; Feng, X. Formation of todorokite from “c-disordered” H+-birnessites: The roles of average manganese oxidation state and interlayer cations. Geochem. Trans. 2015, 16, 8. [Google Scholar] [CrossRef]
- Liu, F.; Qiu, G.-G.; Tan, W.; Chen, X.-H.; Cui, G.-J.; Feng, X. Progress in the Study of Todorokite. Adv. Earth Sci. 2009, 24, 1084–1093. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses; Wiley-VCH: Hoboken, NJ, USA, 2003. [Google Scholar]
- Harrison, P.M.; Arosio, P. The Ferritins: Molecular Properties, Iron Storage Function and Cellular Regulation. Biochim. Biophys. Acta 1996, 1275, 161–203. [Google Scholar] [CrossRef] [PubMed]
- Brindley, G.W.; Brown, G. Crystal Structures of Clay Minerals and Their X-ray Identification; The Mineralogical Society of Great Britain and Ireland: London, UK, 1980. [Google Scholar]
- Köhler, B.; Singer, A.; Stoffers, P. Biogenic Nontronite from Marine White Smoker Chimneys. Clays Clay Miner. 1994, 42, 689–701. [Google Scholar] [CrossRef]
- Cole, T.G.; Shaw, H.F. The nature and origin of authigenic smectites in some recent marine sediments. Clay Miner. 1983, 18, 239–252. [Google Scholar] [CrossRef]
- Sun, Z.; Li, J.; Huang, W.; Dong, H.; Little, T.S.; Li, J. Generation of hydrothermal Fe-Si oxyhydroxide deposit on the Southwest Indian Ridge and its implication for the origin of ancient banded iron formations. J. Geophys. Res. Biogeosci. 2015, 120, 187–203. [Google Scholar] [CrossRef]
- Lubetkin, M.; Carey, S.; Kelley, K.A.; Robert, G.; Cornell, W.; Raineault, N.; Balcanoff, J.; Ballard, R.D.; Salinas-de-León, P. Nontronite-bearing tubular hydrothermal deposits from a Galapagos seamount. Deep Sea Res. Part II Top. Stud. Oceanogr. 2018, 150, 181–194. [Google Scholar] [CrossRef]
- Mueller, E.; Philp, R.P. Extraction of high molecular weight hydrocarbons from source rocks: An example from the Green River Formation, Uinta Basin, Utah. Org. Geochem. 1998, 28, 625–631. [Google Scholar] [CrossRef]
- Konn, C.; Charlou, J.L.; Donval, J.P.; Holm, N.G.; Dehairs, F.; Bouillon, S. Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic hosted vents. Chem. Geol. 2009, 258, 299–314. [Google Scholar] [CrossRef]
- Morgunova, I.P.; Ivanov, V.N.; Litvinenko, I.V.; Petrova, V.I.; Stepanova, T.V.; Cherkashev, G.A. Geochemistry of organic matter in bottom sediments of the Ashadze hydrothermal field. Oceanology 2012, 52, 345–353. [Google Scholar] [CrossRef]
- Simoneit, B.R.T. A review of current applications of mass-spectrometry for biomarker/molecular tracer elucidations. Mass Spectrom. Rev. 2005, 24, 719–765. [Google Scholar] [CrossRef]
- Wade, M.L.; Agresti, D.G.; Wdowiak, T.J.; Armendarez, L.P.; Farmer, J.D. A Mössbauer investigation of iron-rich terrestrial hydrothermal vent systems: Lessons for Mars exploration. J. Geophys. Res. Planets 1999, 104, 8489–8507. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Milder, O.B.; Semionkin, V.A.; Malakheeva, L.I.; Prokopenko, P.G. Analysis of iron storage proteins in chicken liver and spleen tissues in comparison with human liver ferritin by Mössbauer spectroscopy. J. Radioanal. Nucl. Chem. 2006, 269, 671–677. [Google Scholar] [CrossRef]
- Stolyar, S.V.; Bayukov, O.A.; Gurevich, Y.L.; Ladygina, V.P.; Iskhakov, R.S.; Pustoshilov, P.P. Mössbauer study of bacterial ferrihydrite. Inorg. Mater. 2007, 43, 638–641. [Google Scholar] [CrossRef]
- Stolyar, S.V.; Bayukov, O.A.; Ishkakov, R.S.; Gurevich, Y.L.; Ladygina, V.P. Mössbauer investigation of iron-producing bacteria Kleb. Oxytoca. Bull. Russ. Acad. Sci. Phys. 2007, 71, 1286–1290. [Google Scholar] [CrossRef]
- Stolyar, S.V.; Bayukov, O.A.; Iskhakov, R.S.; Ishchenko, L.A.; Yakovchuk, V.Y.; Piksina, O.E.; Pozdnyakov, A.I.; Ladygina, V.P.; Dobretsov, K.G. Mössbauer investigation of temperature transformations in bacterial ferrihydrite. Phys. Solid State 2011, 53, 100–104. [Google Scholar] [CrossRef]
- Ershov, N.V.; Kleĭnerman, N.M.; Lukshina, V.A.; Pilyugin, V.P.; Serikov, V.V. Specific features of the local atomic structure of a Fe-Si alloy in the α area of the phase diagram. Phys. Solid State 2009, 51, 1236–1242. [Google Scholar] [CrossRef]
- Chukhrov, F.V.; Zvyagin, B.B.; Gorshkov, A.I.; Yermilova, L.P.; Korovushkin, V.V.; Rudnitskaya, Y.S.; Yakubovskaya, N.Y. Feroxyhyte, a new modification of FeOOH. Int. Geol. Rev. 1977, 19, 873–890. [Google Scholar] [CrossRef]
- Balaev, D.A.; Stolyar, S.V.; Knyazev, Y.V.; Yaroslavtsev, R.N.; Pankrats, A.I.; Vorotynov, A.M.; Krasikov, A.A.; Velikanov, D.A.; Bayukov, O.A.; Ladygina, V.P.; et al. Role of the Surface Effects and Interparticle Magnetic Interactions in the Temperature Evolution of Magnetic Resonance Spectra of Ferrihydrite Nanoparticle Ensembles. Results Phys. 2022, 35, 105340. [Google Scholar] [CrossRef]
- Stolyar, S.V.; Balaev, D.A.; Ladygina, V.P.; Dubrovskiy, A.A.; Krasikov, A.A.; Popkov, S.I.; Bayukov, O.A.; Knyazev, Y.V.; Yaroslavtsev, R.N.; Volochaev, M.N.; et al. Bacterial Ferrihydrite Nanoparticles: Preparation, Magnetic Properties, and Application in Medicine. J. Supercond. Nov. Magn. 2018, 31, 2297–2304. [Google Scholar] [CrossRef]
- Balaev, D.A.; Krasikov, A.A.; Stolyar, S.V.; Iskhakov, R.S.; Ladygina, V.P.; Yaroslavtsev, R.N.; Bayukov, O.A.; Vorotynov, A.M.; Volochaev, M.N.; Dubrovskiy, A.A. Change in the Magnetic Properties of Nanoferrihydrite with an Increase in the Volume of Nanoparticles During Low-Temperature Annealing. Phys. Solid State 2016, 58, 1782–1791. [Google Scholar] [CrossRef]
- Stolyar, S.V.; Kolenchukova, O.A.; Boldyreva, A.V.; Kudryasheva, N.S.; Gerasimova, Y.V.; Krasikov, A.A.; Yaroslavtsev, R.N.; Bayukov, O.A.; Ladygina, V.P.; Birukova, E.A. Biogenic Ferrihydrite Nanoparticles: Synthesis, Properties In Vitro and In Vivo Testing and the Concentration Effect. Biomedicines 2021, 9, 323. [Google Scholar] [CrossRef]
- Balaev, D.A.; Krasikov, A.A.; Dubrovskiy, A.A.; Semenov, S.V.; Popkov, S.I.; Stolyar, S.V.; Iskhakov, R.S.; Ladygina, V.P.; Yaroslavtsev, R.N. Specific features of magnetic properties of ferrihydrite nanoparticles of bacterial origin: A shift of the hysteresis loop. Phys. Solid State 2016, 58, 287–292. [Google Scholar] [CrossRef]
- Balaev, D.A.; Krasikov, A.A.; Dubrovskii, A.A.; Semenov, S.V.; Bayukov, O.A.; Stolyar, S.V.; Iskhakov, R.S.; Ladygina, V.P.; Ishchenko, L.A. Magnetic properties and the mechanism of formation of the uncompensated magnetic moment of antiferromagnetic ferrihydrite nanoparticles of a bacterial origin. J. Exp. Theor. Phys. 2014, 119, 479–487. [Google Scholar] [CrossRef]
- Balaev, D.A.; Krasikov, A.A.; Dubrovskiy, A.A.; Popkov, S.I.; Stolyar, S.V.; Iskhakov, R.S.; Ladygina, V.P.; Yaroslavtsev, R.N. Exchange bias in nano-ferrihydrite. J. Appl. Phys. 2016, 120, 183903. [Google Scholar] [CrossRef]
- Schulz, K.; ThomasArrigo, L.K.; Kaegi, R.; Kretzschmar, R. Stabilization of Ferrihydrite and Lepidocrocite by Silicate during Fe(II)-Catalyzed Mineral Transformation: Impact on Particle Morphology and Silicate Distribution. Environ. Sci. Technol. 2022, 56, 5929–5938. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Shi, T.; Mehta, N.; Yang, S.; Wang, H.; Liu, D.; Zhu, Z. Changes in Magnetic Properties of Magnetite Nanoparticles Upon Microbial Iron Reduction. Geochem. Geophys. Geosyst. 2022, 23, e2021GC010212. [Google Scholar] [CrossRef]
- Jeong, M.; Kim, Y.; Roh, Y. Biogenesis of Magnetite Nanoparticles Using Shewanella Species Isolated from Diverse Regions. J. Nanosci. Nanotechnol. 2019, 19, 963–966. [Google Scholar] [CrossRef]
- Liu, D.; Dong, H.; Zhao, L.; Wang, H. Smectite Reduction by Shewanella Species as Facilitated by Cystine and Cysteine. Geomicrobiol. J. 2014, 31, 53–63. [Google Scholar] [CrossRef]
- Néel, L. Théorie du traînage magnétique des ferromagnétiques en grains fins avec application aux terres cuites. Ann. Géophysique 1949, 5, 99–136. [Google Scholar]
- Kharitonskii, P.; Sergienko, E.; Ralin, A.; Setrov, E.; Sheidaev, T.; Gareev, K.; Ustinov, A.; Zolotov, N.; Yanson, S.; Dubeshko, D. Superparamagnetism of Artificial Glasses Based on Rocks: Experimental Data and Theoretical Modeling. Magnetochemistry 2023, 9, 220. [Google Scholar] [CrossRef]
- Afremov, L.L.; Anisimov, S.; Iliushin, I. Blocking Temperature of a System of Core/Shell Nanoparticles. Solid State Phenomena 2020, 312, 270–274. [Google Scholar] [CrossRef]
- Guyodo, Y.; Banerjee, S.K.; Penn, R.L.; Burleson, D.; Berquo, T.S.; Seda, T.; Solheid, P. Magnetic properties of synthetic six-line ferrihydrite nanoparticles. Phys. Earth Planet. Inter. 2006, 154, 222–233. [Google Scholar] [CrossRef]
- Carta, D.; Casula, M.F.; Corrias, A.; Falqui, A.; Navarra, G.; Pinna, G. Structural and magnetic characterization of synthetic ferrihydrite nanoparticles. Mater. Chem. Phys. 2009, 113, 349–355. [Google Scholar] [CrossRef]
- Punnoose, A.; Seehra, M.S.; van Tol, J.; Brunel, L.C. High-frequency electron magnetic resonance and magnetic studies of ferrihydrite nanoparticles and evidence of a phase transition. J. Magn. Magn. Mater. 2005, 288, 168–172. [Google Scholar] [CrossRef]
- Punnoose, A.; Phanthavady, T.; Seehra, M.S.; Shah, N.; Huffman, G.P. Magnetic properties of ferrihydrite nanoparticles doped with Ni, Mo, and Ir. Phys. Rev. B 2004, 69, 054425. [Google Scholar] [CrossRef]
- Silva, N.J.O.; Amaral, V.S.; Carlos, L.D.; Rodríguez-González, B.; Liz-Marzán, L.M.; Millan, A.; de Zea Bermudez, V. Structural and magnetic studies in ferrihydrite nanoparticles formed within organic-inorganic hybrid matrices. J. Appl. Phys 2006, 100, 054301. [Google Scholar] [CrossRef]
- Komogortsev, S.V.; Balaev, D.A.; Krasikov, A.A.; Stolyar, S.V.; Yaroslavtsev, R.N.; Ladygina, V.P.; Iskhakov, R.S. Magnetic hysteresis of blocked ferrihydrite nanoparticles. AIP Adv. 2021, 11, 015329. [Google Scholar] [CrossRef]
- Makhlouf, S.A.; Parker, F.T.; Berkowitz, A.E. Magnetic hysteresis anomalies in ferritin. Phys. Rev. B 1997, 55, R14717–R14720. [Google Scholar] [CrossRef]
- Dubiel, S.M.; Zablotna-Rypien, B.; Mackey, J.B.; Williams, J.M. Magnetic properties of human liver and brain ferritin. Eur. Biophys. J. 1999, 28, 263–267. [Google Scholar] [CrossRef]
- Cardile, C.M.; Johnston, J.H.; Dickson, D.P.E. Magnetic Ordering At 4.2 And 1.3 K in Nontronites of Different Iron Contents: A 57Fe Mössbauer Spectroscopic Study. Clays Clay Miner. 1986, 34, 233–238. [Google Scholar] [CrossRef]
- Rumpf, K.; Granitzer, P.; Morales, P.; Poelt, P.; Reissner, M. Variable blocking temperature of a porous silicon/Fe3O4 composite due to different interactions of the magnetic nanoparticles. Nanoscale Res. Lett. 2012, 7, 445. [Google Scholar] [CrossRef]
- Scott, J.J.; Breier, J.A.; Luther, G.W.; Emerson, D. Microbial Iron Mats at the Mid-Atlantic Ridge and Evidence that Zetaproteobacteria May Be Restricted to Iron-Oxidizing Marine Systems. PLoS ONE 2015, 10, e0119284. [Google Scholar] [CrossRef] [PubMed]
- Hribovšek, P.; Olesin Denny, E.; Dahle, H.; Mall, A.; Øfstegaard Viflot, T.; Boonnawa, C.; Reeves, E.P.; Steen, I.H.; Stokke, R. Putative novel hydrogen- and iron-oxidizing sheath-producing Zetaproteobacteria thrive at the Fåvne deep-sea hydrothermal vent field. MSystems 2023, 8, e00543-23. [Google Scholar] [CrossRef] [PubMed]
- Slobodkina, G.B.; Kolganova, T.V.; Chernyh, N.A.; Querellou, J.; Bonch-Osmolovskaya, E.A.; Slobodkin, A.I. Deferribacter autotrophicus sp. nov., an iron(III)-reducing bacterium from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 2009, 59, 1508–1512. [Google Scholar] [CrossRef] [PubMed]
- Konhauser, K.O. Introduction to Geomicrobiology; Wiley-Blackwell: Hoboken, NJ, USA, 2007. [Google Scholar]
- Dehouck, E.; McLennan, S.M.; Sklute, E.C.; Dyar, M.D. Stability and fate of ferrihydrite during episodes of water/rock interactions on early Mars: An experimental approach. J. Geophys. Res. 2017, 122, 358–382. [Google Scholar] [CrossRef]
Oxi. (wt %) | FM1 | FM2 |
---|---|---|
MnOtot | 57.5 | 36.2 |
FeOtot | 25.0 | 22.6 |
SiO2 | 9.9 | 26.5 |
Al2O3 | 0.8 | 1.1 |
Other elements | 6.8 | 13.6 |
Σ | 100 | 100 |
Extractant | ε (25 °C) | D (λ = 254 nm) | |
---|---|---|---|
FM1 | FM2 | ||
n-Hexane | 1.9 | 0.235 | 0.150 |
Chloroform | 4.9 | 0.127 | 0.102 |
Ethanol | 24.6 | 0.078 | 0.082 |
Acetonitrile | 37.5 | −0.003 | −0.021 |
Water | 78.6 | 0.115 | 0.080 |
Velocity Range (mm/s) | Spectral Component | W (mm/s) | IS (mm/s) | QS (mm/s) | S (%) |
---|---|---|---|---|---|
±12 | D1 | 0.33 ± 0.02 | 0.37 ± 0.01 | 0.61 ± 0.02 | 48.46 |
D2 | 0.39 ± 0.02 | 0.36 ± 0.01 | 1.02 ± 0.02 | 51.54 | |
±4.5 | D1 | 0.27 ± 0.02 | 0.37 ± 0.03 | 0.46 ± 0.03 | 20.16 |
D2 | 0.29 ± 0.08 | 0.37 ± 0.02 | 0.69 ± 0.04 | 33.54 | |
D3 | 0.29 ± 0.07 | 0.36 ± 0.02 | 0.93 ± 0.05 | 28.06 | |
D4 | 0.24 ± 0.09 | 0.37 ± 0.03 | 1.20 ± 0.03 | 12.08 | |
D5 | 0.27 ± 0.06 | 0.36 ± 0.04 | 1.55 ± 0.07 | 6.17 |
Temperature, K | μ0Hc, mT | μ0Hcr, mT | Mrs, A·m2/kg |
---|---|---|---|
2 | 104.0 | 1100.0 | 0.4 |
295 | 0.1 | 230.0 | 4.0 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sergienko, E.S.; Tarakhovskaya, E.R.; Rodinkov, O.V.; Yanson, S.Y.; Pankin, D.V.; Kozlov, V.S.; Gareev, K.G.; Bugrov, A.N.; Kharitonskii, P.V. Biogenic Origin of Fe-Mn Crusts from Hydrothermal Fields of the Mid-Atlantic Ridge, Puy de Folles Volcano Region. Geosciences 2024, 14, 240. https://doi.org/10.3390/geosciences14090240
Sergienko ES, Tarakhovskaya ER, Rodinkov OV, Yanson SY, Pankin DV, Kozlov VS, Gareev KG, Bugrov AN, Kharitonskii PV. Biogenic Origin of Fe-Mn Crusts from Hydrothermal Fields of the Mid-Atlantic Ridge, Puy de Folles Volcano Region. Geosciences. 2024; 14(9):240. https://doi.org/10.3390/geosciences14090240
Chicago/Turabian StyleSergienko, Elena S., Elena R. Tarakhovskaya, Oleg V. Rodinkov, Svetlana Yu. Yanson, Dmitrii V. Pankin, Valery S. Kozlov, Kamil G. Gareev, Alexander N. Bugrov, and Petr V. Kharitonskii. 2024. "Biogenic Origin of Fe-Mn Crusts from Hydrothermal Fields of the Mid-Atlantic Ridge, Puy de Folles Volcano Region" Geosciences 14, no. 9: 240. https://doi.org/10.3390/geosciences14090240
APA StyleSergienko, E. S., Tarakhovskaya, E. R., Rodinkov, O. V., Yanson, S. Y., Pankin, D. V., Kozlov, V. S., Gareev, K. G., Bugrov, A. N., & Kharitonskii, P. V. (2024). Biogenic Origin of Fe-Mn Crusts from Hydrothermal Fields of the Mid-Atlantic Ridge, Puy de Folles Volcano Region. Geosciences, 14(9), 240. https://doi.org/10.3390/geosciences14090240