Depositional Environments and Soft Sediment Deformation in the Early Jurassic Ammonitico Rosso Formation of Western Greece
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Material
3.2. Methods
4. Results
4.1. Field Decriptions
4.2. Facies Analysis and Zones
4.2.1. MF 1
4.2.2. MF 2
4.3. Lithostratigraphy and Biostratigraphy of the Study Area
4.4. Correlations of Lithostratigraphic Columns
4.5. Synsedimentary Deformation Structures Within the AR Fm
4.6. XRD Analysis
5. Discussion
5.1. Depositional Environment of the Ammonitico Rosso Formation
5.2. Interpretation of the Submarine Slide
5.3. Mass-Transport Events in the AR Fm During the Early Jurassic
5.4. Lower Posidonia Bed and AR Fms
5.5. Lithotypes of AR Fm
5.6. Basin Evolution
6. Conclusions
- Biostratigraphic analyses showed that the studied sedimentary sequences bear an age of Lower Jurassic–Lowermost Cretaceous. Moreover, there are indications that some Globuligerina tests occurred earlier than previously known; their first appearance probably occurred during the Pliensbachian.
- The palaeoenvironmental reconstruction of the studied sequence revealed two distinct depositional environments: deep-water to open-shelf settings and platform-margin reefs.
- Deposition of the AR Fm in Astakos took place in a deep-water environment, and more specifically in an open-shelf environment. The studied sedimentary sequence, though, comprises an allochthonous submarine slide deposit, consisting of four imbricate slices capped by debrites (except the upper one) rather than four discrete slides. Upwards, a conglomerate with reworked limestone clasts has been deposited as a result of a single turbidite. The sequence closes with sediments of the limestone with filaments and Lower Posidonia bed Fms.
- The autochthonous AR Fm depositional setting fits well with a carbonate ramp, on which turbidity currents with a transport distance of several kilometres would be developed from a watery debris flow formed by headwall collapse.
- The discovery of the AR Fm slide has a profound effect on the reported sedimentation rates for the area, which until now have not taken into consideration the duplication of the layers, and which thus must be significantly lower.
- The AR Fm slides show similarities with other larger-scale studied sandstone–shale slides (i.e., imbricate blocks of bedded sediment, repetitive stratigraphy, flat-lying folds, boudinages, etc.), but some characteristics are missing due to insufficient exposure. Moreover, many small-scale features of sandstone–shale slides do not exist in the AR Fm slides. This is attributed to the early partial lithification of limestones near the seafloor and the resulting decrease in porosity which is present in the studied sediments.
- The present study contributes to the Early Jurassic Ionian Basin Evolution by reporting a case where a submarine landsliding event happened due to the existence of slopes formed during the Early Jurassic extensional phase.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jenkyns, H.C. Origin of Red Nodular Limestones (Ammonitico Rosso, Knollenkalke) in the Mediterranean Jurassic: A Diagenetic Model. In Pelagic Sediments: On Land and Under the Sea; Wiley-Blackwell: Hoboken, NJ, USA, 1975; pp. 249–271. [Google Scholar]
- Oloriz, F.; Caracuel, J.E.; Ruiz Heras, J.J. Numerical Analysis of Sedimentary Components; a Key for Interpretation of Macroscopic and Microscopic Features in Ammonitico Rosso Facies (Uppermost Jurassic-Lowermost Cretaceous). J. Sediment. Res. 1995, 65, 234–243. [Google Scholar]
- Cecca, F.; Fourcade, E.; Azéma, J. The Disappearance of the “Ammonitico Rosso”. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1992, 99, 55–70. [Google Scholar] [CrossRef]
- Müller, J.; Fabricius, F. Magnesian-calcite Nodules in the Ionian Deep Sea: An Actualistic Model for the Formation of Some Nodular Limestones. In Pelagic Sediments: On Land and Under the Sea; Wiley-Blackwell: Hoboken, NJ, USA, 1975; pp. 235–247. [Google Scholar]
- Rettger, R.E. Experiments on Soft-Rock Deformation. Am. Assoc. Pet. Geol. Bull. 1935, 19, 271–292. [Google Scholar]
- Ferrill, D.A.; Smart, K.J.; Lehrmann, D.J.; Morris, A.P.; McGinnis, R.N. Synsedimentary Slump Folding: Examples and Consequences of an under-Recognized Process in Epicratonic Basins. Mar. Pet. Geol. 2023, 152, 106274. [Google Scholar] [CrossRef]
- García-Tortosa, F.J.; Alfaro, P.; Gibert, L.; Scott, G. Seismically Induced Slump on an Extremely Gentle Slope (<1°) of the Pleistocene Tecopa Paleolake (California). Geology 2011, 39, 1055–1058. [Google Scholar] [CrossRef]
- Alsop, G.I.; Marco, S.; Levi, T.; Weinberger, R. Fold and Thrust Systems in Mass Transport Deposits. J. Struct. Geol. 2017, 94, 98–115. [Google Scholar] [CrossRef]
- Welbon, A.I.F.; Brockbank, P.J.; Brunsden, D.; Olsen, T.S. Characterizing and Producing from Reservoirs in Landslides: Challenges and Opportunities. Geol. Soc. Lond. Spec. Publ. 2007, 292, 49–74. [Google Scholar] [CrossRef]
- Novak, A.; Egenhoff, S. Soft-Sediment Deformation Structures as a Tool to Recognize Synsedimentary Tectonic Activity in the Middle Member of the Bakken Formation, Williston Basin, North Dakota. Mar. Pet. Geol. 2019, 105, 124–140. [Google Scholar] [CrossRef]
- Bourli, N.; Maravelis, A.G.; Zelilidis, A. Classification of Soft-Sediment Deformation in Carbonates Based on the Lower Cretaceous Vigla Formation, Kastos, Greece. Int. J. Earth Sci. 2020, 109, 2599–2614. [Google Scholar] [CrossRef]
- Bourli, N.; Iliopoulos, G.; Zelilidis, A. Reassessing Depositional Conditions of the Pre-Apulian Zone Based on Synsedimentary Deformation Structures during Upper Paleocene to Lower Miocene Carbonate Sedimentation, from Paxoi and Anti-Paxoi Islands, Northwestern End of Greece. Minerals 2022, 12, 201. [Google Scholar] [CrossRef]
- Dimopoulos, N.; Zoumpouli, E.; Bourli, N.; Papadopoulou, P.; Iliopoulos, G.; Zelilidis, A. A Giant Slide within the Upper Cretaceous Limestones as an Indicator for Fault Activity Dating and Basin Evolution. In Proceedings of the 4th International Electronic Conference on Geosciences (IECG) 2022, Online, 1–15 December 2022; MDPI: Basel, Switzerland, 2023; p. 8. [Google Scholar]
- Alvarez, W.; Lowrie, W. Magnetic Stratigraphy Applied to Synsedimentary Slumps, Turbidites, and Basin Analysis: The Scaglia Limestone at Furlo (Italy). Geol. Soc. Am. Bull. 1984, 95, 324. [Google Scholar] [CrossRef]
- Bourli, N.; Pantopoulos, G.; Maravelis, A.G.; Zoumpoulis, E.; Iliopoulos, G.; Pomoni-Papaioannou, F.; Kostopoulou, S.; Zelilidis, A. Late Cretaceous to Early Eocene Geological History of the Eastern Ionian Basin, Southwestern Greece: A Sedimentological Approach. Cretac. Res. 2019, 98, 47–71. [Google Scholar] [CrossRef]
- Moforis, L.; Kontakiotis, G.; Janjuhah, H.T.; Zambetakis-Lekkas, A.; Galanakis, D.; Paschos, P.; Kanellopoulos, C.; Sboras, S.; Besiou, E.; Karakitsios, V.; et al. Sedimentary and Diagenetic Controls across the Cretaceous—Paleogene Transition: New Paleoenvironmental Insights of the External Ionian Zone from the Pelagic Carbonates of the Gardiki Section (Epirus, Western Greece). J. Mar. Sci. Eng. 2022, 10, 1948. [Google Scholar] [CrossRef]
- Karakitsios, V. The Influence of Preexisting Structure and Halokinesis on Organic Matter Preservation and Thrust System Evolution in the Ionian Basin, Northwest Greece. Am. Assoc. Pet. Geol. Bull. 1995, 79, 960–980. [Google Scholar] [CrossRef]
- Papanikolaou, D.I. The Geology of Greece; Springer Nature: Berlin/Heidelberg, Germany, 2021; ISBN 3030607313. [Google Scholar]
- Karakitsios, V.; Kvaĉek, Z.; Mantzouka, D. The First Plant Megafossil in the Early Jurassic of Greece: Brachyphyllum (Coniferales) from the Lower Posidonia Beds (Toarcian) in the Ionian Zone (NW Greece) and Its Palaeogeographic Implications. Neues Jahrb. Für Geol. Und Paläontologie Abh. 2015, 278, 79–94. [Google Scholar] [CrossRef]
- Kontakiotis, G.; Moforis, L.; Karakitsios, V.; Antonarakou, A. Sedimentary Facies Analysis, Reservoir Characteristics and Paleogeography Significance of the Early Jurassic to Eocene Carbonates in Epirus (Ionian Zone, Western Greece). J. Mar. Sci. Eng. 2020, 8, 706. [Google Scholar] [CrossRef]
- Zelilidis, A.; Piper, D.J.W.; Vakalas, I.; Avramidis, P.; Getsos, K. Oil and Gas Plays in Albania: Do Equivalent Plays Exist in Greece? J. Pet. Geol. 2003, 26, 29–48. [Google Scholar] [CrossRef]
- Zelilidis, A.; Maravelis, A.G.; Tserolas, P.; Konstantopoulos, P.A. An Overview of the Petroleum Systems in the Ionian Zone, Onshore NW Greece and Albania. J. Pet. Geol. 2015, 38, 331–348. [Google Scholar] [CrossRef]
- Danelian, T.; De Wever, P.; Azéma, J. Palaeoceanographic Significance of New and Revised Palaeontological Datings for the Onset of Vigla Limestone Sedimentation in the Ionian Zone of Greece. Geol. Mag. 1997, 134, 869–872. [Google Scholar] [CrossRef]
- Karakitsios, V. Western Greece and Ionian Sea Petroleum Systems. Am. Assoc. Pet. Geol. Bull. 2013, 97, 1567–1595. [Google Scholar] [CrossRef]
- Bernoulli, D.; Renz, O. Jurassic Carbonate Facies and New Ammonite Faunas from Western Greece. Eclogae Geol. Helv. 1970, 63, 573–607. [Google Scholar] [CrossRef]
- British Petroleum Company. The Geological Results of Petroleum Exploration in Western Greece; Institute for Geology and Subsurface Research: Athens, Greece, 1971; Volume 10. [Google Scholar]
- Clews, J.E. Mesozoic and Cenozoic Geodynamic Evolution of Western Greece. Ph.D. Thesis, University of Wales, Wales, UK, 1989. [Google Scholar]
- Underhill, J.R. Late Cenozoic Deformation of the Hellenide Foreland, Western Greece. Geol. Soc. Am. Bull. 1989, 101, 613–634. [Google Scholar] [CrossRef]
- Birch, W.G. Palaeomagnetic Studies in Western and Central Greece: Tectonic Evolution of the Aegean Domain since the Triassic. Ph.D. Thesis, University of Liverpool, Liverpool, UK, 1990. [Google Scholar]
- Bourli, N.; Iliopoulos, G.; Papadopoulou, P.; Zelilidis, A. Microfacies and Depositional Conditions of Jurassic to Eocene Carbonates: Implication on Ionian Basin Evolution. Geosciences 2021, 11, 288. [Google Scholar] [CrossRef]
- Bourli, N.; Kokkaliari, M.; Iliopoulos, I.; Pe-Piper, G.; Piper, D.J.W.; Maravelis, A.G.; Zelilidis, A. Mineralogy of Siliceous Concretions, Cretaceous of Ionian Zone, Western Greece: Implication for Diagenesis and Porosity. Mar. Pet. Geol. 2019, 105, 45–63. [Google Scholar] [CrossRef]
- Avramidis, P.; Zelilidis, A. The Nature of Deep-Marine Sedimentation and Palaeocurrent Trends as Evidence of Pindos Foreland Basin Fill Conditions. Episodes 2001, 24, 252–256. [Google Scholar] [CrossRef]
- Avramidis, P.; Zelilidis, A.; Vakalas, I.; Kontopoulos, N. Interactions Between Tectonic Activity And Eustatic Sea-Level Changes In The Pindos and Mesohellenic Basins, NW Greece: Basin Evolution And Hydrocarbon Potential. J. Pet. Geol. 2002, 25, 53–82. [Google Scholar] [CrossRef]
- Golfinopoulos, V. Biostratigraphic Study, Microfacies Analyses and Hydrocarbon Prospectivity of the Jurassic—Cretaceous Shale Formations, North of Petousi Fault in Epirus. Master’s Thesis, Aristotle University of Thessaloniki, Patras, Greece, 2022. [Google Scholar]
- Folk, R.L. Practical Petrographic Classification of Limestones. Am. Assoc. Pet. Geololists Bull. 1959, 43, 1–38. [Google Scholar]
- Folk, R.L.; Ham, W.E. Classification of Carbonate Rocks; American Association of Petroleum Geologists: Tulsa, OK, USA, 1962; pp. 62–84. [Google Scholar]
- Dunham, R.J. Spectral Subdivision of Limestone Type. In Classification of Carbonate Rocks; American Association of Petroleum Geologists: Tulsa, OK, USA, 1962; Volume 1, pp. 62–84. [Google Scholar]
- Flügel, E. Microfacies of Carbonate Rocks; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 978-3-662-08728-2. [Google Scholar]
- Wilson, J.L. Carbonate Facies in Geologic History; Springer: New York, NY, USA, 1975; ISBN 978-0-387-90343-9. [Google Scholar]
- Flügel, E. Microfacies of Carbonate Rocks, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-03795-5. [Google Scholar]
- Gradstein, F.; Waskowska, A. New Insights into the Taxonomy and Evolution of Jurassic Planktonic Foraminifera. Swiss J. Palaeontol. 2021, 140, 1. [Google Scholar] [CrossRef]
- Golfinopoulos, V.; Papadopoulou, P.; Zelilidis, A.; Iliopoulos, G. Palaeoenvironmental Interpretation of the Lower Jurassic Formations in the Ionian Basin: First Stereoscopic Record of Benthic Foraminifera and Ostracods Assemblages from Greece. 2024; to be submitted. [Google Scholar]
- Benzaggagh, M. Discussion on the Calpionellid Biozones and Proposal of a Homogeneous Calpionellid Zonation for the Tethyan Realm. Cretac. Res. 2020, 114, 104184. [Google Scholar] [CrossRef]
- Verga, D.; Premoli Silva, I. Early Cretaceous Planktonic Foraminifera from the Tethys: The Small, Few-Chambered Representatives of the Genus Globigerinelloides. Cretac. Res. 2003, 24, 305–334. [Google Scholar] [CrossRef]
- Kafousia, N.; Karakitsios, V.; Mattioli, E.; Kenjo, S.; Jenkyns, H.C. The Toarcian Oceanic Anoxic Event in the Ionian Zone, Greece. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 393, 135–145. [Google Scholar] [CrossRef]
- Karakitsios, V.; Chatzicharalampous, E. Biostratigraphy and Sedimentology of the Ionian Zone Ammonitico Rosso in the Mavron Oros Area (NW Epirus, Greece)-Paleogeographic Implications. Bull. Geol. Soc. Greece 2013, 47, 136–145. [Google Scholar] [CrossRef]
- Rigakis, N.; Karakitsios, V. The Source Rock Horizons of the Ionian Basin (NW Greece). Mar. Pet. Geol. 1998, 15, 593–617. [Google Scholar] [CrossRef]
- Djakovic, M.; Gawlick, H.-J.; Sudar, M. Early-Middle Jurassic Stepwise Deepening in the Transitional Facies Belt between the Adriatic Carbonte Platform Basement and Neo-Tethys Open Shelf in Northeastern Montenegro Evidenced by New Ammonoid Data from the Early Late Pliensbachian (Lavinianum Zone). Geol. Anal. Balk. Poluostrva 2021, 82, 1–25. [Google Scholar] [CrossRef]
- Piper, D.J.W.; Pirmez, C.; Manley, P.L.; Long, D.; Flood, R.D.; Normark, W.R.; Showers, W. Mass-Transport Deposits of the Amazon Fan. In Proceedings-Ocean Drilling Program Scientific Results; National Science Foundation: Alexandria, VA, USA, 1997; pp. 109–146. [Google Scholar]
- Piper, D.J.W.; Cochonat, P.; Morrison, M.L. The Sequence of Events around the Epicentre of the 1929 Grand Banks Earthquake: Initiation of Debris Flows and Turbidity Current Inferred from Sidescan Sonar. Sedimentology 1999, 46, 79–97. [Google Scholar] [CrossRef]
- Sobiesiak, M.S.; Kneller, B.; Alsop, G.I.; Milana, J.P. Internal Deformation and Kinematic Indicators within a Tripartite Mass Transport Deposit, NW Argentina. Sediment. Geol. 2016, 344, 364–381. [Google Scholar] [CrossRef]
- Sun, Q.; Xie, X.; Wu, S.; Yin, G. Thrust Faults Promoted Hydrocarbon Leakage at the Compressional Zone of Fine-Grained Mass-Transport Deposits. Front. Earth Sci. 2021, 9, 764319. [Google Scholar] [CrossRef]
- de Lima Rodrigues, M.C.N.; Trzaskos, B.; Alsop, G.I.; Vesely, F.F. Making a Homogenite: An Outcrop Perspective into the Evolution of Deformation within Mass-Transport Deposits. Mar. Pet. Geol. 2020, 112, 104033. [Google Scholar] [CrossRef]
- Sobiesiak, M.S.; Buso, V.V.; Kneller, B.; Alsop, G.I.; Milana, J.P. Block Generation, Deformation, and Interaction of Mass-Transport Deposits with the Seafloor: An Outcrop-Based Study of the Carboniferous at Cerro Bola, NW Argentina; American Geophysical Union: Washington, DC, USA, 2020; Volume 246, pp. 91–104. [Google Scholar]
- Sobiesiak, M.S.; Kneller, B.; Alsop, G.I.; Milana, J.P. Styles of Basal Interaction beneath Mass Transport Deposits. Mar. Pet. Geol. 2018, 98, 629–639. [Google Scholar] [CrossRef]
- Spalluto, L.; Moretti, M.; Festa, V.; Tropeano, M. Seismically-Induced Slumps in Lower-Maastrichtian Peritidal Carbonates of the Apulian Platform (Southern Italy). Sediment. Geol. 2007, 196, 81–98. [Google Scholar] [CrossRef]
- Bao, Z. Continental Slope Limestones of Lower and Middle Triassic, South China. Sediment. Geol. 1998, 118, 77–93. [Google Scholar] [CrossRef]
- Jablonska, D.; Di Celma, C.; Korneva, I.; Tondi, E.; Alsop, I. Mass-Transport Deposits within Basinal Carbonates from Southern Italy. Ital. J. Geosci. 2016, 135, 30–40. [Google Scholar] [CrossRef]
- Jablonská, D.; Di Celma, C.N.; Alsop, G.I.; Tondi, E. Internal Architecture of Mass-transport Deposits in Basinal Carbonates: A Case Study from Southern Italy. Sedimentology 2018, 65, 1246–1276. [Google Scholar] [CrossRef]
- Walton, M.A.L.; Conrad, J.E.; Papesh, A.G.; Brothers, D.S.; Kluesner, J.W.; McGann, M.; Dartnell, P. A Comprehensive Assessment of Submarine Landslides and Mass Wasting Processes Offshore Southern California. Geochem. Geophys. Geosyst. 2024, 25, e2023GC011258. [Google Scholar] [CrossRef]
- Pierre, A.; Durlet, C.; Razin, P.; Chellai, E.H. Spatial and Temporal Distribution of Ooids along a Jurassic Carbonate Ramp: Amellago Outcrop Transect, High-Atlas, Morocco. Geol. Soc. Lond. Spec. Publ. 2010, 329, 65–88. [Google Scholar] [CrossRef]
- Bernoulli, D. Redeposited Pelagic Sediments in the Jurassic of the Central Mediterranean Area. In Annales Instituti Geologici Publici Hungarici; Hungarian Geological Institute: Budapest, Hungary, 1971; Volume 54, pp. 71–90. [Google Scholar]
- Walzebuck, J.P. Bedding Types of the Toarcian Black Shales in NW-Greece. In Cyclic and Event Stratification; Springer: Berlin/Heidelberg, Germany, 1982; pp. 512–525. [Google Scholar]
- Lambiase, J.J.; Bosworth, W. Structural Controls on Sedimentation in Continental Rifts. Geol. Soc. Lond. Spec. Publ. 1995, 80, 117–144. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, Y.; Pe-Piper, G.; Piper, D.J.W.; Guo, Z.; Li, W. Permian Rifting Processes in the NW Junggar Basin, China: Implications for the Post-Accretionary Successor Basins. Gondwana Res. 2021, 98, 107–124. [Google Scholar] [CrossRef]
- Jenkyns, H.C. The Early Toarcian (Jurassic) Anoxic Event; Stratigraphic, Sedimentary and Geochemical Evidence. Am. J. Sci. 1988, 288, 101–151. [Google Scholar]
- Psonis, K. Geological Sheet of Astakos (1:50,000); Institute of Geology and Mineral Exploration: Athens, Greece, 1983. [Google Scholar]
- Zelilidis, A.; Bourli, N.; Zoumpouli, E.; Maravelis, A.G. Tectonic Inversion and Deformation Differences in the Transition from Ionian Basin to Apulian Platform: The Example from Ionian Islands, Greece. Geosciences 2024, 14, 203. [Google Scholar] [CrossRef]
MF | SMF Type | FZ | Description | Samples |
---|---|---|---|---|
1 | 7 | 5 | Unsorted biosparite/boundstone | PA.2 |
2 | 3 | 3 | Sparse and fossiliferous micrite, micrite/wackestone–mudstone | PA.5, PA.8, PA.11, PA.17, PA.21, PA.24, PA.29, AR.1, AR.2, AR.3, AR.5, AR.6, AR.7, AR.10, AR.14, AR.16, AR.18, AR.20 |
3-RAD | 3 | Packed biomicrite/wackestone–packstone | AS.8 | |
3-CALP | 3 | Packed biomicrite/wackestone | AS.12 | |
3-FIL | 3 | Sparse to packed biomicrite/wackestone–packstone | AS.11, AR.8, AR.9, AR.11, AR.12, AR.13, AR. 15, AR.17, AR.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golfinopoulos, V.; Piper, D.J.W.; Zelilidis, A.; Pe-Piper, G.; Papadopoulou, P.; Bourli, N.; Iliopoulos, G. Depositional Environments and Soft Sediment Deformation in the Early Jurassic Ammonitico Rosso Formation of Western Greece. Geosciences 2025, 15, 10. https://doi.org/10.3390/geosciences15010010
Golfinopoulos V, Piper DJW, Zelilidis A, Pe-Piper G, Papadopoulou P, Bourli N, Iliopoulos G. Depositional Environments and Soft Sediment Deformation in the Early Jurassic Ammonitico Rosso Formation of Western Greece. Geosciences. 2025; 15(1):10. https://doi.org/10.3390/geosciences15010010
Chicago/Turabian StyleGolfinopoulos, Vasilis, David J. W. Piper, Avraam Zelilidis, Georgia Pe-Piper, Penelope Papadopoulou, Nicolina Bourli, and George Iliopoulos. 2025. "Depositional Environments and Soft Sediment Deformation in the Early Jurassic Ammonitico Rosso Formation of Western Greece" Geosciences 15, no. 1: 10. https://doi.org/10.3390/geosciences15010010
APA StyleGolfinopoulos, V., Piper, D. J. W., Zelilidis, A., Pe-Piper, G., Papadopoulou, P., Bourli, N., & Iliopoulos, G. (2025). Depositional Environments and Soft Sediment Deformation in the Early Jurassic Ammonitico Rosso Formation of Western Greece. Geosciences, 15(1), 10. https://doi.org/10.3390/geosciences15010010