Mapping of Agate-like Soil Cover Structures Based on a Multitemporal Soil Line Using Neural Network Filtering of Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
2.3.1. Filtering of RSD Archives
2.3.2. BSS Recognition on Selected RSD Scenes
2.3.3. Calculation of MSL Coefficients
2.3.4. Retrospective Monitoring of Soil and Land Cover
2.3.5. Field Soil and Agrochemical Surveys
2.3.6. Cartographic GIS Analysis
2.3.7. Flowchart of Work
3. Results
3.1. Primary Results
3.1.1. The Term “Agate-like Structures” of the Soil Cover
3.1.2. BSS Map—MSL “C” Coefficient Map
3.1.3. ASCS Soil Cover
3.2. Analytical Results
3.2.1. The Influence of Stoniness on Multitemporal Spectral Characteristics
3.2.2. Influence of Carbonate Content on Multitemporal Spectral Characteristics
3.2.3. Influence of the Content of Other Macroelements on Multitemporal Spectral Characteristics
3.2.4. Relationship Between Multitemporal Spectral Characteristics and Soil Varieties
3.3. The Main Result—ASCS Soil Map
4. Discussion
4.1. Genesis of ASCS
4.1.1. Formation of ASCS as a Result of Erosion Processes
4.1.2. Formation of Soil Cover Directly on Permian Sediments
4.1.3. Formation of ASCS on Quaternary Sediments of Varying Thickness
4.2. Agricultural Productivity of ASCS Elements and Suitability of the ASCS Map for Differential Impact Technologies
4.3. Scope of Application of the Proposed Approaches
4.4. Limitations of the Method and Research Prospects
4.5. Physical Interpretation of the MSL Coefficient “C” for ASCSs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haneklaus, S.; Lilienthal, H.; Schnug, E. 25 years Precision Agriculture in Germany—A retrospective. In Proceedings of the 13th International Conference on Precision Agriculture, St. Louis, MO, USA, 31 July 31–4 August 2016. [Google Scholar]
- Mulla, D.; Khosla, R. Chapter 1—Historical evolution and recent advances in precision farming. In Soil Specific Farming: Precision Agriculture; Lal, R., Stewart, B.A., Eds.; Taylor and Francis: Boca Raton, FL, USA, 2015; pp. 1–36. [Google Scholar]
- Fridland, V.M. Structure of the soil mantle. Geoderma 1974, 12, 35–42. [Google Scholar] [CrossRef]
- Breakthroughs in Precision Agriculture. 1985. Available online: https://maes.umn.edu/history/discoveries (accessed on 10 June 2024).
- Robert, P.C. Characterization of soil conditions at the field level for soil specific management. Geoderma 1993, 60, 57–72. [Google Scholar] [CrossRef]
- Robert, P.C. Evaluation of Some Remote Sensing Techniques for Soil and Crop Management. Ph.D. Thesis, University of Minnesota, St. Paul, MN, USA, 1982. [Google Scholar]
- Robert, P.C. Precision agriculture: A challenge for crop nutrition management. Plant Soil 2002, 247, 143–149. [Google Scholar] [CrossRef]
- Skryabina, O.A. The Structure of the Soil Cover, Methods of Its Study; Perm State Agricultural Academy: Perm, Russia, 2007. (In Russian) [Google Scholar]
- Chernousenko, G.I.; Kalinina, N.V.; Khitrov, N.B.; Pankova, E.I.; Rukhovich, D.I.; Yamnova, I.A.; Novikova, A.F. Quantification of the areas of saline and solonetzic soils in the Ural Federal Region of the Russian federation. Eurasian Soil Sci. 2011, 44, 367–379. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Koroleva, P.V.; Kalinina, N.V.; Vil’chevskaya, E.V.; Simakova, M.S.; Dolinina, E.A.; Rukhovich, S.V. State soil map of the Russian Federation: An ArcInfo version. Eurasian Soil Sci. 2013, 46, 225–240. [Google Scholar] [CrossRef]
- Soil Map of the Collective Farm Udarnik, Klyavlinsky district, Samara Region, Scale 1:25000, 1995. Roskomzem RosNIIzemproekt VolgoNIIgiprozem.
- Smith, G.D. A new soil classification scheme: Progress report. Trans. 7th Int. Congr. Soil Sci. 1960, 4, 105–111. [Google Scholar]
- Johnson, W.M. The pedon and polypedon. Soil Sci. Soc. Am. J. 1963, 27, 212–215. [Google Scholar] [CrossRef]
- Webster, R. Fundamental objections to the 7th Approximation. J. Soil Sci. 1968, 19, 354–366. [Google Scholar] [CrossRef]
- Kozlovsky, F.I. Soil individual and methods for its determination. In Patterns of Spatial Variation in Soil Properties and Information and Statistical Methods for their Study; Nauka: Moscow, Russia, 1970; pp. 42–59. (In Russian) [Google Scholar]
- Ischenko, T.A. (Ed.) All-Union Instruction on Soil Surveys and the Compilation of Large-Scale Soil Land Use Maps; Kolos: Moscow, Russia, 1973. (In Russian) [Google Scholar]
- Maksimov, P.G.; Florinsky, M.A. Guidelines for Conducting a Comprehensive Agrochemical Survey of Soils on Agricultural Land; TsNTIPR: Moscow, Russia, 1994; (In Russian). Available online: https://files.stroyinf.ru/Data2/1/4293736/4293736617.pdf?ysclid=lsztcn25o122621490 (accessed on 10 June 2024).
- Simakova, M.S. Soil maps. In Cartographic Knowledge of Russia (Topographic and Thematic Maps); Publishing House of the Institute of Geography of the Russian Academy of Sciences: Moscow, Russia, 1999; pp. 113–133. (In Russian) [Google Scholar]
- Kiryushin, V.I. The management of soil fertility and productivity of agrocenoses in adaptive-landscape farming systems. Eurasian Soil Sci. 2019, 52, 1137–1145. [Google Scholar] [CrossRef]
- Belik, A.V. Intra-Field Variation in the Fertility of Forest-Steppe Chernozems of the Central Chernozem Region and the Yield of Agricultural Crops. Ph.D. Thesis, All-Russian Research Institute of Agriculture and Soil Protection from Erosion, Kursk, Russia, 2008. (In Russian). [Google Scholar]
- Belousov, A.A.; Belousova, E.N. The influence of intra-field heterogeneity of soil fertility on the choice of elements of the field experiment methodology. Vestn. KrasSAU 2013, 6, 30–37. (In Russian) [Google Scholar]
- Yakusheva, O.I. The Influence of Intra-Field Soil Heterogeneity and the Level of Intensification of Agricultural Technologies on the Yield of Spring Wheat. Ph.D. Thesis, Agrophysical Research Institute of the Russian Agricultural Academy, St. Petersburg, Russia, 2013. (In Russian). [Google Scholar]
- Yang, C.; Anderson, G.L. Determining within-field management zones for grain sorghum using aerial videography. In Proceedings of the 26th International Symposium on Remote Sensing of Environment, Vancouver, BC, Canada, 25–29 March 1996; pp. 606–611. [Google Scholar]
- Hong, S.Y.; Sudduth, K.A.; Kitchen, N.R.; Drummond, S.T.; Palm, H.L.; Wiebold, W.J. Estimating within-field variation in soil properties from airborne hyperspectral images. In Proceedings of the Pecora 15 Land Satellite Information IV Conference and the ISPRS Commission I, Denver, CO, USA, 10–15 November 2002; Available online: https://www.isprs.org/proceedings/xxxiv/part1/paper/00025.pdf (accessed on 10 June 2024).
- Pattison, I.; Coates, V. Inter- and Intra-Field variations in soil compaction levels and subsequent impacts on hydrological extremes. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 12–17 April 2015; Available online: https://ui.adsabs.harvard.edu/abs/2015EGUGA..17.6427P/abstract (accessed on 10 June 2024).
- Ziliani, M.G.; Altaf, M.U.; Aragon, B.; Houborg, R.; Franz, T.E.; Lu, Y.; Sheffield, J.; Hoteit, I.; McCabe, M.F. Intra-field crop yield variability by assimilating CubeSat LAI in the APSIM crop model. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 43, 1045–1052. [Google Scholar] [CrossRef]
- Sorokina, N.P. Methodology for Compiling Large-Scale Agroecologically Oriented Soil; Maps, V.V., Ed.; Dokuchaev Soil Science Institute: Moscow, Russia, 2006. (In Russian) [Google Scholar]
- Wollenhaupt, N.C.; Wolkowski, R.P. Grid soil sampling. Better Crop. 1994, 78, 6–9. [Google Scholar]
- Joernsgaard, B.; Halmoe, S. Intra-field yield variation over crops and years. Eur. J. Agron. 2003, 19, 23–33. [Google Scholar] [CrossRef]
- Asare, E.; Segarra, E. Adoption and extent of adoption of georeferenced grid soil sampling technology by cotton producers in the southern US. Precis. Agric. 2018, 19, 992–1010. [Google Scholar] [CrossRef]
- Mendonça-Santos, M.D.L.; Dart, R.O.; Santos, H.G.; Coelho, M.R.; Berbara, R.L.L.; Lumbreras, J.F. Digital soil mapping of topsoil organic carbon content of Rio de Janeiro state, Brazil. In Digital Soil Mapping; Boettinger, J.L., Howell, D.W., Moore, A.C., Hartemink, A.E., Kienast-Brown, S., Eds.; Springer: New York, NY, USA, 2010; pp. 255–266. [Google Scholar] [CrossRef]
- Higginbottom, T.P.; Symeonakis, E. Assessing land degradation and desertification using vegetation index data: Current frameworks and future directions. Remote Sens. 2014, 6, 9552–9575. [Google Scholar] [CrossRef]
- Ibrahim, Y.Z.; Balzter, H.; Kaduk, J.; Tucker, C.J. Land degradation assessment using residual trend analysis of GIMMS NDVI3g, soil moisture and rainfall in Sub-Saharan West Africa from 1982 to 2012. Remote Sens. 2015, 7, 5471–5494. [Google Scholar] [CrossRef]
- Xu, H.; Hu, X.; Guan, H.; Zhang, B.; Wang, M.; Chen, S.; Chen, M.A. Remote sensing based method to detect soil erosion in forests. Remote Sens. 2019, 11, 513. [Google Scholar] [CrossRef]
- Shary, P.; Sharaya, L.S.; Mitusov, A.V. Fundamental quantitative methods of land surface analysis. Geoderma 2002, 107, 1–32. [Google Scholar] [CrossRef]
- Larionov, G.A.; Dobrovol’skaya, N.G.; Krasnov, S.F.; Liu, B.Y. The new equation for the relief factor in statistical models of water erosion. Eurasian Soil Sci. 2003, 36, 1105–1113. [Google Scholar]
- Yemefack, M.; Rossiter, D.G.; Njomgang, R. Multi-scale characterization of soil variability within an agricultural landscape mosaic system in southern Cameroon. Geoderma 2005, 125, 117–143. [Google Scholar] [CrossRef]
- Seibert, J.; Stendahl, J.; Sørensen, R. Topographical influences on soil properties in boreal forests. Geoderma 2007, 141, 139–148. [Google Scholar] [CrossRef]
- Romanenkov, V.A.; Smith, J.U.; Smith, P.; Sirotenko, O.D.; Rukhovich, D.I.; Romanenko, I.A. Soil organic carbon dynamics of croplands in European Russia: Estimates from the “model of humus balance”. Reg. Environ. Change 2007, 7, 93–104. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Koroleva, P.V.; Vilchevskaya, E.V.; Romanenkov, V.; Kolesnikova, L.G. Constructing a spatially-resolved database for modelling soil organic carbon stocks of croplands in European Russia. Reg. Environ. Change 2007, 7, 51–61. [Google Scholar] [CrossRef]
- Varvel, G.E.; Schlemmer, M.R.; Schepers, J.S. Relationship between spectral data from an aerial image and soil organic matter and phosphorus levels. Precis. Agric. 1999, 1, 291–300. [Google Scholar] [CrossRef]
- Eckert, S.; Hüsler, F.; Liniger, H.; Hodel, E. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid. Environ. 2015, 113, 16–28. [Google Scholar] [CrossRef]
- Yengoh, G.T.; Dent, D.; Olsson, L.; Tengberg, A.E.; Tucker, C.J. Limits to the use of NDVI in land degradation assessment. In Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales; Springer Briefs in Environmental Science; Springer: Cham, Switzerland, 2015; pp. 27–30. [Google Scholar] [CrossRef]
- Phinzi, K.; Ngetar, N.S. Mapping soil erosion in a quaternary catchment in Eastern Cape using geographic information system and remote sensing. S. Afr. J. Geomat. 2017, 6, 11. [Google Scholar] [CrossRef]
- Yang, C.; Anderson, G.L. Airborne videography to identify spatial plant growth variability for grain sorghum. Precis. Agric. 1999, 1, 67–79. [Google Scholar] [CrossRef]
- Ayalew, D.A.; Deumlich, D.; Šarapatka, B.; Doktor, D. Quantifying the sensitivity of NDVI-Based C factor estimation and potential soil erosion prediction using Spaceborne earth observation data. Remote Sens. 2020, 12, 1136. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Manoudakis, S.; Agapiou, A.; Polykretis, C. Towards the assessment of soil-erosion-related C-Factor on European scale using Google Earth Engine and Sentinel-2 images. Remote Sens. 2021, 13, 5019. [Google Scholar] [CrossRef]
- Romano, E.; Bergonzoli, S.; Pecorella, I.; Bisaglia, C.; De Vita, P. Methodology for the definition of durum wheat yield homogeneous zones by using satellite spectral indices. Remote Sens. 2021, 13, 2036. [Google Scholar] [CrossRef]
- De Carvalho, D.F.; Durigon, V.L.; Antunes, M.A.H.; De Almeida, W.S.; Oliveira, P.T.S. Predicting soil erosion using Rusle and NDVI time series from TM Landsat 5. Pesqui. Agropecuária Bras. 2014, 49, 215–224. [Google Scholar] [CrossRef]
- Khitrov, N.B.; Rukhovich, D.I.; Koroleva, P.V.; Kalinina, N.V.; Trubnikov, A.V.; Petukhov, D.A.; Kulyanitsa, A.L. A study of the responsiveness of crops to fertilizers by zones of stable intra-field heterogeneity based on big satellite data analysis. Arch. Agron. Soil Sci. 2020, 66, 1963–1975. [Google Scholar] [CrossRef]
- Iwahashi, Y.; Ye, R.; Kobayashi, S.; Yagura, K.; Hor, S.; Soben, K.; Homma, K. Quantification of changes in rice production for 2003–2019 with MODIS LAI data in Pursat Province, Cambodia. Remote Sens. 2021, 13, 1971. [Google Scholar] [CrossRef]
- Qi, G.; Chang, C.; Yang, W.; Gao, P.; Zhao, G. Soil salinity inversion in coastal corn planting areas by the satellite-UAV-ground integration approach. Remote Sens. 2021, 13, 3100. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Koroleva, P.V.; Rukhovich, D.D.; Kalinina, N.V. The use of deep machine learning for the automated selection of remote sensing data for the determination of areas of arable land degradation processes distribution. Remote Sens. 2021, 13, 155. [Google Scholar] [CrossRef]
- Zhang, Y.; Walker, J.P.; Pauwels, V.R.N.; Sadeh, Y. Assimilation of wheat and soil states into the APSIM-Wheat crop model: A case study. Remote Sens. 2022, 14, 65. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Rukhovich, A.D.; Rukhovich, D.D.; Simakova, M.S.; Kulyanitsa, A.L.; Bryzzhev, A.V.; Koroleva, P.V. Maps of averaged spectral deviations from soil lines and their comparison with traditional soil maps. Eurasian Soil Sci. 2016, 49, 739–756. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Rukhovich, A.D.; Rukhovich, D.D.; Simakova, M.S.; Kulyanitsa, A.L.; Bryzzhev, A.V.; Koroleva, P.V. The informativeness of coefficients a and b of the soil line for the analysis of remote sensing materials. Eurasian Soil Sci. 2016, 49, 831–845. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Koroleva, P.V.; Kalinina, N.V.; Vilchevskaya, E.V.; Suleiman, G.A.; Chernousenko, G.I. Detecting degraded arable land on the basis of remote sensing big data analysis. Eurasian Soil Sci. 2021, 54, 161–175. [Google Scholar] [CrossRef]
- Koroleva, P.V.; Rukhovich, D.I.; Rukhovich, A.D.; Rukhovich, D.D.; Kulyanitsa, A.L.; Trubnikov, A.V.; Kalinina, N.V.; Simakova, M.S. Location of bare soil surface and soil line on the RED–NIR spectral plane. Eurasian Soil Sci. 2017, 50, 1375–1385. [Google Scholar] [CrossRef]
- Koroleva, P.V.; Rukhovich, D.I.; Rukhovich, A.D.; Rukhovich, D.D.; Kulyanitsa, A.L.; Trubnikov, A.V.; Kalinina, N.V.; Simakova, M.S. Characterization of soil types and subtypes in N-dimensional space of multitemporal (empirical) soil line. Eurasian Soil Sci. 2018, 51, 1021–1033. [Google Scholar] [CrossRef]
- Kulyanitsa, A.L.; Rukhovich, A.D.; Rukhovich, D.D.; Koroleva, P.V.; Rukhovich, D.I.; Simakova, M.S. The application of the piecewise linear approximation to the spectral neighborhood of soil line for the analysis of the quality of normalization of remote sensing materials. Eurasian Soil Sci. 2017, 50, 387–396. [Google Scholar] [CrossRef]
- Gallo, B.C.; Demattê, J.A.M.; Rizzo, R.; Safanelli, J.L.; Mendes, W.D.S.; Lepsch, I.F.; Sato, M.V.; Romero, D.J.; Lacerda, M.P.C. Multi-temporal satellite images on topsoil attribute quantification and the relationship with soil classes and geology. Remote Sens. 2018, 10, 1571. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Koroleva, P.V.; Rukhovich, A.D.; Komissarov, M.A. Informativeness of the long-term average spectral characteristics of the bare soil surface for the detection of soil cover degradation with the neural network filtering of remote sensing data. Remote Sens. 2023, 15, 124. [Google Scholar] [CrossRef]
- Myslyva, T.; Nadtochiy, P.; Bilyavskyi, Y.; Trofymenko, P. Intra-field spatial heterogeneity prediction for the purposes of precision farming: Comparison of frequency ratio and Shannon’s entropy models. Scientific Papers. Series A. Agronomy 2023, 66, 138–147. Available online: https://agronomyjournal.usamv.ro/pdf/2023/issue_1/Art19.pdf (accessed on 10 June 2024).
- Georgi, C.; Spengler, D.; Itzerott, S.; Kleinschmit, B. Automatic delineation algorithm for site-specific management zones based on satellite remote sensing data. Precis. Agric. 2018, 19, 684–707. [Google Scholar] [CrossRef]
- Samsonova, V.P.; Meshalkina, J.L.; Blagoveschensky, Y.N.; Yaroslavtsev, A.M.; Stoorvogel, J.J. The role of positional errors while interpolating soil organic carbon contents using satellite imagery. Precis. Agric. 2018, 19, 1085–1099. [Google Scholar] [CrossRef]
- Bento, N.L.; Silva Ferraz, G.A.; Santana, L.S.; de Oliveira Faria, R.; da Silva Amorim, J.; de Lourdes Oliveira e Silva, M.; Silva, M.M.A.; Alonso, D.J.C. Soil compaction mapping by plant height and spectral responses of coffee in multispectral images obtained by remotely piloted aircraft system. Precis. Agric. 2024, 25, 729–750. [Google Scholar] [CrossRef]
- Liu, P.; Di, L.; Du, Q.; Wang, L. Remote sensing big data: Theory, methods and applications. Remote Sens. 2018, 10, 711. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Koroleva, P.V.; Rukhovich, D.D.; Rukhovich, A.D. Recognition of the bare soil using deep machine learning methods to create maps of arable soil degradation based on the analysis of multi-temporal remote sensing data. Remote Sens. 2022, 14, 2224. [Google Scholar] [CrossRef]
- Di, L.; Yu, E. Remote Sensing Big Data; Springer International Publishing: Cham, Switzerland, 2023. [Google Scholar]
- Ivakhnenko, M.F. Tetrapods of the East European Placket—A Late Paleozoic Territorial-Natural Complex; Perm Regional Museum of Local History: Perm, Russia, 2001. [Google Scholar]
- Kirikov, V.P. (Ed.) Map of Quaternary Sediments: N-39-VII, Middle Volga Series, Scale: 1:200,000; FGUGP “Volgageology”: Nizhny Novgorod, Russia, 1995. [Google Scholar]
- Shinkarev, A.A.; Gusarov, A.V.; Giniyatullin, K.G.; Melnikov, L.V.; Latypov, M.K. Nomenclature and Taxonomy of the Main Soil Types in the Republic of Tatarstan; Kazan State University Publishing House: Kazan, Russia, 2008. [Google Scholar]
- Ivanov, D.V.; Alexandrova, A.B.; Grigoryan, B.R.; Kulagina, V.I. Rare and Endangered Soils of the Republic of Tatarstan. Georesursy 2011, 5. (In Russian). Available online: https://cyberleninka.ru/article/n/redkie-i-ischezayuschie-pochvy-respubliki-tatarstan/viewer (accessed on 10 June 2024).
- Fridland, V.M. (Ed.) Soil Map of the RSFSR; Scale 1:2,500,000; GUGK USSR: Moscow, Russia, 1988. [Google Scholar]
- Global Black Soil Distribution Map. 2022. Available online: https://www.fao.org/global-soil-partnership/GBSmap (accessed on 10 June 2024).
- Erdas Imagine. Available online: https://www.hexagongeospatial.com/products/power-portfolio/erdas-imagine (accessed on 10 June 2024).
- Rukhovich, D.I.; Koroleva, P.V.; Vilchevskaya, E.V.; Kalinina, N.V. Digital thematic cartography as a change in the available primary sources and ways of using them. In Digital Soil Mapping: Theoretical and Experimental Studies; Ivanov, A.L., Sorokina, N.P., Savin, I.Y., Eds.; Dokuchaev Soil Science Institute: Moscow, Russia, 2012; pp. 58–86. [Google Scholar]
- Landsat Data Courtesy of the U.S. Geological Survey. 2023. Available online: https://earthexplorer.usgs.gov (accessed on 10 June 2024).
- Modified Copernicus Sentinel Data 2016–2023. Available online: https://www.sentinel-hub.com (accessed on 10 June 2024).
- USGS EROS Archive-Declassified Data-Declassified Satellite Imagery-1. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-declassified-data-declassified-satellite-imagery-1?qt-science_center_objects=0#qt-science_center_objects (accessed on 10 June 2024).
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. Catboost: Unbiased boosting with categorical features. Adv. Neural Inf. Process. Syst. 2018, 31, 6638–6648. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- McCarty, J.L.; Ellicott, E.A.; Romanenkov, V.; Rukhovitch, D.; Koroleva, P. Multi-year black carbon emissions from cropland burning in the Russian Federation. Atmos. Environ. 2012, 63, 223–238. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium, Washington, DC, USA, 10–14 December 1973; Scientific and Technical Information Office, NASA: Washington, DC, USA, 1974; Volume 1, pp. 309–317. [Google Scholar]
- Kauth, R.J.; Thomas, G.S. The tasseled cap—A graphic description of the spectral-temporal development of agricultural crops as seen by LANDSAT. In Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, Purdue University, West Lafayette, IN, USA, 29 June–1 July 1976; (A77-15051 04-43). Institute of Electrical and Electronics Engineers, Inc.: New York, NY, USA, 1976; pp. 4B-41–4B-51. [Google Scholar]
- Crist, E.P.; Cicone, R.C. A physically-based transformation of thematic mapper data—The TM tasseled cap. IEEE Trans. Geosci. Remote Sens. 1984, 22, 256–263. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, H.; Wang, P.; Ling, X. ATT squeeze U-Net: A lightweight network for forest fire detection and recognition. IEEE Access 2021, 9, 10858–10870. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167v3. [Google Scholar]
- Jadon, S. A survey of loss functions for semantic segmentation. In Proceedings of the 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Santiago, Chile, 27–29 October 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. Available online: https://arxiv.org/abs/1412.6980 (accessed on 10 June 2024).
- Rukhovich, D.I. Method for Creating Soil Maps Based on the Results of the Analysis of Remote Sensing Data. Patent RU 2777272 C1, IPC G01V 9/00, 1 August 2022. [Google Scholar]
- Unified Interdepartmental Information and Statistical System. State Statistics. Available online: https://fedstat.ru/indicator/31328 (accessed on 10 June 2024).
- Bryzzhev, A.V.; Rukhovich, D.I.; Koroleva, P.V.; Kalinina, N.V.; Vilchevskaya, E.V.; Dolinina, E.A.; Rukhovich, S.V. Organization of retrospective monitoring of the soil cover of Rostov Oblast. Eurasian Soil Sci. 2015, 48, 1029–1049. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Simakova, M.S.; Kulyanitsa, A.L.; Bryzzhev, A.V.; Koroleva, P.V.; Kalinina, N.V.; Vil’Chevskaya, E.V.; Dolinina, E.A.; Rukhovich, S.V. Impact of shelterbelts on the fragmentation of erosional networks and local soil waterlogging. Eurasian Soil Sci. 2014, 47, 1086–1099. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Simakova, M.S.; Kulyanitsa, A.L.; Bryzzhev, A.V.; Koroleva, P.V.; Kalinina, N.V.; Vil’Chveskaya, E.V.; Dolinina, E.A.; Rukhovich, S.V. Retrospective analysis of changes in land uses on vertic soils of closed mesodepressions on the Azov plain. Eurasian Soil Sci. 2015, 48, 1050–1075. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Simakova, M.S.; Kulyanitsa, A.L.; Bryzzhev, A.V.; Koroleva, P.V.; Kalinina, N.V.; Chernousenko, G.I.; Vil’Chevskaya, E.V.; Dolinina, E.A.; Rukhovich, S.V. Methodology for comparing soil maps of different dates with the aim to reveal and describe changes in the soil cover (by the example of soil salinization monitoring). Eurasian Soil Sci. 2016, 49, 145–162. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Simakova, M.S.; Kulyanitsa, A.L.; Bryzzhev, A.V.; Koroleva, P.V.; Kalinina, N.V.; Chernousenko, G.I.; Vil’Chevskaya, E.V.; Dolinina, E.A. The influence of soil salinization on land use changes in Azov district of Rostov oblast. Eurasian Soil Sci. 2017, 50, 276–295. [Google Scholar] [CrossRef]
- Koroleva, P.V.; Rukhovich, D.I.; Shapovalov, D.A.; Suleiman, G.A.; Dolinina, E.A. Retrospective monitoring of soil waterlogging on arable land of Tambov oblast in 2018–1968. Eurasian Soil Sci. 2019, 52, 834–852. [Google Scholar] [CrossRef]
- SRTM. Available online: http://srtm.csi.cgiar.org (accessed on 10 June 2024).
- European Space Agency. Copernicus Global Digital Elevation Model. Distributed by Open Topography; European Space Agency: Paris, France, 2021. [Google Scholar] [CrossRef]
- Arnold, R.; Blume, H.P.; Bockheim, J.; Boyadgiev, T.; Bridges, E.; Brinkman, R.; Broll, G.; Bronger, A.; Constantini, E.; Creutzberg, D.; et al. World Reference Base for Soil Resources: IUSS Working Group WRB; Food and Agriculture Organization of the United Nations Rome (FAO): Rome, Italy, 1998. [Google Scholar]
- Unified State Register of Soil Resources of Russia. Available online: http://egrpr.soil.msu.ru/index.php (accessed on 10 June 2024).
- Soils. Methods for Determination of Organic Matter. 1993. Available online: http://docs.cntd.ru/document/1200023481 (accessed on 1 June 2023).
- Walkley, A.J.; Black, I.A. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Vorobyova, L.A. Chemical Analysis of Soils; Moscow University Publishing House: Moscow, Russia, 1998; pp. 129–130. (In Russian) [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Practice-Hall, Inc.: Englewood Cliffs, NJ, USA; Hoboken, NJ, USA, 1958; pp. 268–270. [Google Scholar]
- Testing Laboratory of the Central Scientific and Analytical Association. Available online: https://www.vniia-pr.ru/laboratorii/ispytatelnaya-laboratoriya-tsinao (accessed on 10 January 2025).
- Pryanishnikov All-Russian Research Institute of Agrochemistry. Available online: https://www.vniia-pr.ru/en (accessed on 10 January 2025).
- Accredited Person Card. Federal State Budgetary Scientific Institution “All-Russian Research Institute of Agrochemistry”. Available online: https://pub.fsa.gov.ru/ral/view/34825/current-aa (accessed on 10 January 2025).
- National Accreditation System. Available online: https://fsa.gov.ru (accessed on 10 January 2025).
- Federal Law of 28.12.2013 N 412-FZ (as Amended on 24 July 2023) “on Accreditation in the National Accreditation System” (as Amended and Supplemented on 1 September 2024). 2024. Available online: https://www.consultant.ru/document/cons_doc_LAW_156522/85a3287ee882bb2c7a442cdeb2a534d5f617fa21 (accessed on 10 January 2025).
- ArcGIS. Available online: https://www.esri.com/ru-ru/arcgis/about-arcgis/overview (accessed on 10 June 2024).
- Rukhovich, D.; Koroleva, P.; Rukhovich, A.; Komissarov, M. A detailed mapping of soil organic matter content in arable land based on the multitemporal soil line coefficients and neural network filtering of big remote sensing data. Geoderma 2024, 447, 116941. [Google Scholar] [CrossRef]
- Egorov, V.V.; Fridland, V.M.; Ivanova, E.N.; Rozov, N.N.; Nosin, V.A.; Friev, T.A. (Eds.) Classification and Diagnostics of Soils of the USSR (Russian Translations Series, 42); U.S. Department of Agriculture, and the National Science Foundation: Washington, DC, USA, 1986. [Google Scholar]
Soil # | Name of the Soil According to the Research Results | Soil Classification of Russia 1977 | WRB | MSL “C” Coefficient Values |
---|---|---|---|---|
1 | Non-calcareous, medium-thick, medium-humus, medium-loamy chernozem on Quaternary eluvial loams | Leached chernozem, medium-thick, medium-humus, medium-loamy on Quaternary eluvial loams | Luvic Chernic Phaeozem (Loamic, Aric) | <0.184 |
2 | Non-calcareous, medium-thick, medium-humus, medium-loamy chernozem on Quaternary eluvial loams underlain by Permian sediments | Leached chernozem, medium-thick, medium-humus, medium-loamy on Quaternary eluvial loams | Luvic Chernic Endoleptic Phaeozem (Loamic, Aric) | 0.184–0.188 |
3 | Non-calcareous, medium-thick, medium-humus, medium-loamy, incomplete-profile chernozem on Quaternary eluvial loams, underlain by red-colored Permian sediments | Incompletely developed, medium-thick, medium-humus, medium-loamy chernozem on Quaternary eluvial loams | Chernic Epileptic Phaeozem (Loamic, Aric) | 0.188–0.194 |
4 | Non-calcareous, medium-thick, medium-humus, medium-loamy, incomplete-profile chernozem on Quaternary eluvial loams, underlain by dolomite Permian sediments | Incompletely developed, medium-thick, medium-humus, medium-loamy chernozem on Quaternary eluvial loams | Chernic Epileptic Rendzic Phaeozem (Loamic, Aric) | 0.194–0.198 |
5 | Non-calcareous, medium-thick, medium-humus, medium-loamy, incomplete-profile, shortened chernozem on Quaternary eluvial loams, underlain by red-colored Permian sediments | Incompletely developed, medium-thick, medium-humus, medium-loamy chernozem on Quaternary eluvial loams | Chernic Epileptic Phaeozem (Loamic, Aric) | 0.198–0.203 |
6 | Non-calcareous, medium-thick, medium-humus, medium-loamy, incomplete-profile, shortened chernozem on Quaternary eluvial loams, underlain by dolomite Permian sediments | Incompletely developed, medium-thick, medium-humus, medium-loamy chernozem on Quaternary eluvial loams | Chernic Epileptic Rendzic Phaeozem (Loamic, Aric) | 0.203–0.215 |
7 | Incompletely developed, non-calcareous, low-thick, medium-humus, medium-loamy chernozem on Quaternary eluvial loams and red-colored Permian sediments | Incompletely developed, medium-thick, medium-humus, medium-loamy chernozem on Quaternary eluvial loams | Epileptic Phaeozem (Loamic, Aric) | 0.215–0.230 |
8 | Incompletely developed calcareous, low-thick, medium-humus, medium-loamy, stony chernozem on Quaternary eluvial loams and dolomite Permian sediments | Incompletely developed, medium-thick, medium-humus, medium-loamy, stony chernozem on Quaternary eluvial loams | Epileptic Rendzic Phaeozem (Loamic, Aric) | >0.230 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rukhovich, D.I.; Koroleva, P.V.; Rukhovich, A.D.; Komissarov, M.A. Mapping of Agate-like Soil Cover Structures Based on a Multitemporal Soil Line Using Neural Network Filtering of Remote Sensing Data. Geosciences 2025, 15, 32. https://doi.org/10.3390/geosciences15010032
Rukhovich DI, Koroleva PV, Rukhovich AD, Komissarov MA. Mapping of Agate-like Soil Cover Structures Based on a Multitemporal Soil Line Using Neural Network Filtering of Remote Sensing Data. Geosciences. 2025; 15(1):32. https://doi.org/10.3390/geosciences15010032
Chicago/Turabian StyleRukhovich, Dmitry I., Polina V. Koroleva, Alexey D. Rukhovich, and Mikhail A. Komissarov. 2025. "Mapping of Agate-like Soil Cover Structures Based on a Multitemporal Soil Line Using Neural Network Filtering of Remote Sensing Data" Geosciences 15, no. 1: 32. https://doi.org/10.3390/geosciences15010032
APA StyleRukhovich, D. I., Koroleva, P. V., Rukhovich, A. D., & Komissarov, M. A. (2025). Mapping of Agate-like Soil Cover Structures Based on a Multitemporal Soil Line Using Neural Network Filtering of Remote Sensing Data. Geosciences, 15(1), 32. https://doi.org/10.3390/geosciences15010032